Files
clang-p2996/lldb/source/Plugins/Process/minidump/MinidumpParser.cpp
Greg Clayton 77c57200f8 Don't include the Age in the UUID for CvRecordPdb70 UUID records in minidump files for Apple vendors.
The CvRecordPdb70 structure looks like:

struct CvRecordPdb70 {
  uint8_t Uuid[16];
  llvm::support::ulittle32_t Age;
  // char PDBFileName[];
};
We were including the "Age" in the UUID for Apple vedors which caused us to not be able to match the UUID to built binaries. The "Age" field is set to zero in breakpad minidump files for Apple targets. 

Differential Revision: https://reviews.llvm.org/D51442

llvm-svn: 340966
2018-08-29 20:34:08 +00:00

579 lines
19 KiB
C++

//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Project includes
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"
// Other libraries and framework includes
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Utility/LLDBAssert.h"
// C includes
// C++ includes
#include <algorithm>
#include <map>
#include <vector>
using namespace lldb_private;
using namespace minidump;
llvm::Optional<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_buf_sp) {
if (data_buf_sp->GetByteSize() < sizeof(MinidumpHeader)) {
return llvm::None;
}
return MinidumpParser(data_buf_sp);
}
MinidumpParser::MinidumpParser(const lldb::DataBufferSP &data_buf_sp)
: m_data_sp(data_buf_sp) {}
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
m_data_sp->GetByteSize());
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetStream(MinidumpStreamType stream_type) {
auto iter = m_directory_map.find(static_cast<uint32_t>(stream_type));
if (iter == m_directory_map.end())
return {};
// check if there is enough data
if (iter->second.rva + iter->second.data_size > m_data_sp->GetByteSize())
return {};
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes() + iter->second.rva,
iter->second.data_size);
}
llvm::Optional<std::string> MinidumpParser::GetMinidumpString(uint32_t rva) {
auto arr_ref = m_data_sp->GetData();
if (rva > arr_ref.size())
return llvm::None;
arr_ref = arr_ref.drop_front(rva);
return parseMinidumpString(arr_ref);
}
UUID MinidumpParser::GetModuleUUID(const MinidumpModule *module) {
auto cv_record =
GetData().slice(module->CV_record.rva, module->CV_record.data_size);
// Read the CV record signature
const llvm::support::ulittle32_t *signature = nullptr;
Status error = consumeObject(cv_record, signature);
if (error.Fail())
return UUID();
const CvSignature cv_signature =
static_cast<CvSignature>(static_cast<const uint32_t>(*signature));
if (cv_signature == CvSignature::Pdb70) {
// PDB70 record
const CvRecordPdb70 *pdb70_uuid = nullptr;
Status error = consumeObject(cv_record, pdb70_uuid);
if (!error.Fail()) {
auto arch = GetArchitecture();
// For Apple targets we only need a 16 byte UUID so that we can match
// the UUID in the Module to actual UUIDs from the built binaries. The
// "Age" field is zero in breakpad minidump files for Apple targets, so
// we restrict the UUID to the "Uuid" field so we have a UUID we can use
// to match.
if (arch.GetTriple().getVendor() == llvm::Triple::Apple)
return UUID::fromData(pdb70_uuid->Uuid, sizeof(pdb70_uuid->Uuid));
else
return UUID::fromData(pdb70_uuid, sizeof(*pdb70_uuid));
}
} else if (cv_signature == CvSignature::ElfBuildId)
return UUID::fromData(cv_record);
return UUID();
}
llvm::ArrayRef<MinidumpThread> MinidumpParser::GetThreads() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ThreadList);
if (data.size() == 0)
return llvm::None;
return MinidumpThread::ParseThreadList(data);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const MinidumpThread &td) {
if (td.thread_context.rva + td.thread_context.data_size > GetData().size())
return {};
return GetData().slice(td.thread_context.rva, td.thread_context.data_size);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const MinidumpThread &td) {
// On Windows, a 32-bit process can run on a 64-bit machine under WOW64. If
// the minidump was captured with a 64-bit debugger, then the CONTEXT we just
// grabbed from the mini_dump_thread is the one for the 64-bit "native"
// process rather than the 32-bit "guest" process we care about. In this
// case, we can get the 32-bit CONTEXT from the TEB (Thread Environment
// Block) of the 64-bit process.
auto teb_mem = GetMemory(td.teb, sizeof(TEB64));
if (teb_mem.empty())
return {};
const TEB64 *wow64teb;
Status error = consumeObject(teb_mem, wow64teb);
if (error.Fail())
return {};
// Slot 1 of the thread-local storage in the 64-bit TEB points to a structure
// that includes the 32-bit CONTEXT (after a ULONG). See:
// https://msdn.microsoft.com/en-us/library/ms681670.aspx
auto context =
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
if (context.size() < sizeof(MinidumpContext_x86_32))
return {};
return context;
// NOTE: We don't currently use the TEB for anything else. If we
// need it in the future, the 32-bit TEB is located according to the address
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
const MinidumpSystemInfo *MinidumpParser::GetSystemInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::SystemInfo);
if (data.size() == 0)
return nullptr;
return MinidumpSystemInfo::Parse(data);
}
ArchSpec MinidumpParser::GetArchitecture() {
if (m_arch.IsValid())
return m_arch;
// Set the architecture in m_arch
const MinidumpSystemInfo *system_info = GetSystemInfo();
if (!system_info)
return m_arch;
// TODO what to do about big endiand flavors of arm ?
// TODO set the arm subarch stuff if the minidump has info about it
llvm::Triple triple;
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
const MinidumpCPUArchitecture arch =
static_cast<const MinidumpCPUArchitecture>(
static_cast<const uint32_t>(system_info->processor_arch));
switch (arch) {
case MinidumpCPUArchitecture::X86:
triple.setArch(llvm::Triple::ArchType::x86);
break;
case MinidumpCPUArchitecture::AMD64:
triple.setArch(llvm::Triple::ArchType::x86_64);
break;
case MinidumpCPUArchitecture::ARM:
triple.setArch(llvm::Triple::ArchType::arm);
break;
case MinidumpCPUArchitecture::ARM64:
triple.setArch(llvm::Triple::ArchType::aarch64);
break;
default:
triple.setArch(llvm::Triple::ArchType::UnknownArch);
break;
}
const MinidumpOSPlatform os = static_cast<const MinidumpOSPlatform>(
static_cast<const uint32_t>(system_info->platform_id));
// TODO add all of the OSes that Minidump/breakpad distinguishes?
switch (os) {
case MinidumpOSPlatform::Win32S:
case MinidumpOSPlatform::Win32Windows:
case MinidumpOSPlatform::Win32NT:
case MinidumpOSPlatform::Win32CE:
triple.setOS(llvm::Triple::OSType::Win32);
break;
case MinidumpOSPlatform::Linux:
triple.setOS(llvm::Triple::OSType::Linux);
break;
case MinidumpOSPlatform::MacOSX:
triple.setOS(llvm::Triple::OSType::MacOSX);
triple.setVendor(llvm::Triple::Apple);
break;
case MinidumpOSPlatform::IOS:
triple.setOS(llvm::Triple::OSType::IOS);
triple.setVendor(llvm::Triple::Apple);
break;
case MinidumpOSPlatform::Android:
triple.setOS(llvm::Triple::OSType::Linux);
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
break;
default: {
triple.setOS(llvm::Triple::OSType::UnknownOS);
std::string csd_version;
if (auto s = GetMinidumpString(system_info->csd_version_rva))
csd_version = *s;
if (csd_version.find("Linux") != std::string::npos)
triple.setOS(llvm::Triple::OSType::Linux);
break;
}
}
m_arch.SetTriple(triple);
return m_arch;
}
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MiscInfo);
if (data.size() == 0)
return nullptr;
return MinidumpMiscInfo::Parse(data);
}
llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::LinuxProcStatus);
if (data.size() == 0)
return llvm::None;
return LinuxProcStatus::Parse(data);
}
llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
const MinidumpMiscInfo *misc_info = GetMiscInfo();
if (misc_info != nullptr) {
return misc_info->GetPid();
}
llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
if (proc_status.hasValue()) {
return proc_status->GetPid();
}
return llvm::None;
}
llvm::ArrayRef<MinidumpModule> MinidumpParser::GetModuleList() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ModuleList);
if (data.size() == 0)
return {};
return MinidumpModule::ParseModuleList(data);
}
std::vector<const MinidumpModule *> MinidumpParser::GetFilteredModuleList() {
llvm::ArrayRef<MinidumpModule> modules = GetModuleList();
// map module_name -> pair(load_address, pointer to module struct in memory)
llvm::StringMap<std::pair<uint64_t, const MinidumpModule *>> lowest_addr;
std::vector<const MinidumpModule *> filtered_modules;
llvm::Optional<std::string> name;
std::string module_name;
for (const auto &module : modules) {
name = GetMinidumpString(module.module_name_rva);
if (!name)
continue;
module_name = name.getValue();
auto iter = lowest_addr.end();
bool exists;
std::tie(iter, exists) = lowest_addr.try_emplace(
module_name, std::make_pair(module.base_of_image, &module));
if (exists && module.base_of_image < iter->second.first)
iter->second = std::make_pair(module.base_of_image, &module);
}
filtered_modules.reserve(lowest_addr.size());
for (const auto &module : lowest_addr) {
filtered_modules.push_back(module.second.second);
}
return filtered_modules;
}
const MinidumpExceptionStream *MinidumpParser::GetExceptionStream() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::Exception);
if (data.size() == 0)
return nullptr;
return MinidumpExceptionStream::Parse(data);
}
llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryList);
llvm::ArrayRef<uint8_t> data64 = GetStream(MinidumpStreamType::Memory64List);
if (data.empty() && data64.empty())
return llvm::None;
if (!data.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor> memory_list =
MinidumpMemoryDescriptor::ParseMemoryList(data);
if (memory_list.empty())
return llvm::None;
for (const auto &memory_desc : memory_list) {
const MinidumpLocationDescriptor &loc_desc = memory_desc.memory;
const lldb::addr_t range_start = memory_desc.start_of_memory_range;
const size_t range_size = loc_desc.data_size;
if (loc_desc.rva + loc_desc.data_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(loc_desc.rva, range_size));
}
}
}
// Some Minidumps have a Memory64ListStream that captures all the heap memory
// (full-memory Minidumps). We can't exactly use the same loop as above,
// because the Minidump uses slightly different data structures to describe
// those
if (!data64.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
uint64_t base_rva;
std::tie(memory64_list, base_rva) =
MinidumpMemoryDescriptor64::ParseMemory64List(data64);
if (memory64_list.empty())
return llvm::None;
for (const auto &memory_desc64 : memory64_list) {
const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
const size_t range_size = memory_desc64.data_size;
if (base_rva + range_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(base_rva, range_size));
}
base_rva += range_size;
}
}
return llvm::None;
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
size_t size) {
// I don't have a sense of how frequently this is called or how many memory
// ranges a Minidump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
if (!range)
return {};
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and how
// much overlap there is.
const size_t offset = addr - range->start;
if (addr < range->start || offset >= range->range_ref.size())
return {};
const size_t overlap = std::min(size, range->range_ref.size() - offset);
return range->range_ref.slice(offset, overlap);
}
llvm::Optional<MemoryRegionInfo>
MinidumpParser::GetMemoryRegionInfo(lldb::addr_t load_addr) {
MemoryRegionInfo info;
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryInfoList);
if (data.empty())
return llvm::None;
std::vector<const MinidumpMemoryInfo *> mem_info_list =
MinidumpMemoryInfo::ParseMemoryInfoList(data);
if (mem_info_list.empty())
return llvm::None;
const auto yes = MemoryRegionInfo::eYes;
const auto no = MemoryRegionInfo::eNo;
const MinidumpMemoryInfo *next_entry = nullptr;
for (const auto &entry : mem_info_list) {
const auto head = entry->base_address;
const auto tail = head + entry->region_size;
if (head <= load_addr && load_addr < tail) {
info.GetRange().SetRangeBase(
(entry->state != uint32_t(MinidumpMemoryInfoState::MemFree))
? head
: load_addr);
info.GetRange().SetRangeEnd(tail);
const uint32_t PageNoAccess =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageNoAccess);
info.SetReadable((entry->protect & PageNoAccess) == 0 ? yes : no);
const uint32_t PageWritable =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageWritable);
info.SetWritable((entry->protect & PageWritable) != 0 ? yes : no);
const uint32_t PageExecutable = static_cast<uint32_t>(
MinidumpMemoryProtectionContants::PageExecutable);
info.SetExecutable((entry->protect & PageExecutable) != 0 ? yes : no);
const uint32_t MemFree =
static_cast<uint32_t>(MinidumpMemoryInfoState::MemFree);
info.SetMapped((entry->state != MemFree) ? yes : no);
return info;
} else if (head > load_addr &&
(next_entry == nullptr || head < next_entry->base_address)) {
// In case there is no region containing load_addr keep track of the
// nearest region after load_addr so we can return the distance to it.
next_entry = entry;
}
}
// No containing region found. Create an unmapped region that extends to the
// next region or LLDB_INVALID_ADDRESS
info.GetRange().SetRangeBase(load_addr);
info.GetRange().SetRangeEnd((next_entry != nullptr) ? next_entry->base_address
: LLDB_INVALID_ADDRESS);
info.SetReadable(no);
info.SetWritable(no);
info.SetExecutable(no);
info.SetMapped(no);
// Note that the memory info list doesn't seem to contain ranges in kernel
// space, so if you're walking a stack that has kernel frames, the stack may
// appear truncated.
return info;
}
Status MinidumpParser::Initialize() {
Status error;
lldbassert(m_directory_map.empty());
llvm::ArrayRef<uint8_t> header_data(m_data_sp->GetBytes(),
sizeof(MinidumpHeader));
const MinidumpHeader *header = MinidumpHeader::Parse(header_data);
if (header == nullptr) {
error.SetErrorString("invalid minidump: can't parse the header");
return error;
}
// A minidump without at least one stream is clearly ill-formed
if (header->streams_count == 0) {
error.SetErrorString("invalid minidump: no streams present");
return error;
}
struct FileRange {
uint32_t offset = 0;
uint32_t size = 0;
FileRange(uint32_t offset, uint32_t size) : offset(offset), size(size) {}
uint32_t end() const { return offset + size; }
};
const uint32_t file_size = m_data_sp->GetByteSize();
// Build a global minidump file map, checking for:
// - overlapping streams/data structures
// - truncation (streams pointing past the end of file)
std::vector<FileRange> minidump_map;
// Add the minidump header to the file map
if (sizeof(MinidumpHeader) > file_size) {
error.SetErrorString("invalid minidump: truncated header");
return error;
}
minidump_map.emplace_back( 0, sizeof(MinidumpHeader) );
// Add the directory entries to the file map
FileRange directory_range(header->stream_directory_rva,
header->streams_count *
sizeof(MinidumpDirectory));
if (directory_range.end() > file_size) {
error.SetErrorString("invalid minidump: truncated streams directory");
return error;
}
minidump_map.push_back(directory_range);
// Parse stream directory entries
llvm::ArrayRef<uint8_t> directory_data(
m_data_sp->GetBytes() + directory_range.offset, directory_range.size);
for (uint32_t i = 0; i < header->streams_count; ++i) {
const MinidumpDirectory *directory_entry = nullptr;
error = consumeObject(directory_data, directory_entry);
if (error.Fail())
return error;
if (directory_entry->stream_type == 0) {
// Ignore dummy streams (technically ill-formed, but a number of
// existing minidumps seem to contain such streams)
if (directory_entry->location.data_size == 0)
continue;
error.SetErrorString("invalid minidump: bad stream type");
return error;
}
// Update the streams map, checking for duplicate stream types
if (!m_directory_map
.insert({directory_entry->stream_type, directory_entry->location})
.second) {
error.SetErrorString("invalid minidump: duplicate stream type");
return error;
}
// Ignore the zero-length streams for layout checks
if (directory_entry->location.data_size != 0) {
minidump_map.emplace_back(directory_entry->location.rva,
directory_entry->location.data_size);
}
}
// Sort the file map ranges by start offset
std::sort(minidump_map.begin(), minidump_map.end(),
[](const FileRange &a, const FileRange &b) {
return a.offset < b.offset;
});
// Check for overlapping streams/data structures
for (size_t i = 1; i < minidump_map.size(); ++i) {
const auto &prev_range = minidump_map[i - 1];
if (prev_range.end() > minidump_map[i].offset) {
error.SetErrorString("invalid minidump: overlapping streams");
return error;
}
}
// Check for streams past the end of file
const auto &last_range = minidump_map.back();
if (last_range.end() > file_size) {
error.SetErrorString("invalid minidump: truncated stream");
return error;
}
return error;
}