Files
clang-p2996/lldb/tools/debugserver/source/MacOSX/ppc/DNBArchImpl.cpp
Kate Stone b9c1b51e45 *** This commit represents a complete reformatting of the LLDB source code
*** to conform to clang-format’s LLVM style.  This kind of mass change has
*** two obvious implications:

Firstly, merging this particular commit into a downstream fork may be a huge
effort.  Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit.  The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):

    find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
    find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;

The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.

Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit.  There are alternatives available that will attempt
to look through this change and find the appropriate prior commit.  YMMV.

llvm-svn: 280751
2016-09-06 20:57:50 +00:00

493 lines
17 KiB
C++

//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/25/07.
//
//===----------------------------------------------------------------------===//
#if defined(__powerpc__) || defined(__ppc__) || defined(__ppc64__)
#if __DARWIN_UNIX03
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) __##reg
#else
#define PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(reg) reg
#endif
#include "MacOSX/ppc/DNBArchImpl.h"
#include "DNBBreakpoint.h"
#include "DNBLog.h"
#include "DNBRegisterInfo.h"
#include "MacOSX/MachThread.h"
static const uint8_t g_breakpoint_opcode[] = {0x7F, 0xC0, 0x00, 0x08};
const uint8_t *DNBArchMachPPC::SoftwareBreakpointOpcode(nub_size_t size) {
if (size == 4)
return g_breakpoint_opcode;
return NULL;
}
uint32_t DNBArchMachPPC::GetCPUType() { return CPU_TYPE_POWERPC; }
uint64_t DNBArchMachPPC::GetPC(uint64_t failValue) {
// Get program counter
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0);
return failValue;
}
kern_return_t DNBArchMachPPC::SetPC(uint64_t value) {
// Get program counter
kern_return_t err = GetGPRState(false);
if (err == KERN_SUCCESS) {
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0) = value;
err = SetGPRState();
}
return err == KERN_SUCCESS;
}
uint64_t DNBArchMachPPC::GetSP(uint64_t failValue) {
// Get stack pointer
if (GetGPRState(false) == KERN_SUCCESS)
return m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(r1);
return failValue;
}
kern_return_t DNBArchMachPPC::GetGPRState(bool force) {
if (force || m_state.GetError(e_regSetGPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeGPR;
m_state.SetError(e_regSetGPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr, &count));
}
return m_state.GetError(e_regSetGPR, Read);
}
kern_return_t DNBArchMachPPC::GetFPRState(bool force) {
if (force || m_state.GetError(e_regSetFPR, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeFPR;
m_state.SetError(e_regSetFPR, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr, &count));
}
return m_state.GetError(e_regSetFPR, Read);
}
kern_return_t DNBArchMachPPC::GetEXCState(bool force) {
if (force || m_state.GetError(e_regSetEXC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeEXC;
m_state.SetError(e_regSetEXC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc, &count));
}
return m_state.GetError(e_regSetEXC, Read);
}
kern_return_t DNBArchMachPPC::GetVECState(bool force) {
if (force || m_state.GetError(e_regSetVEC, Read)) {
mach_msg_type_number_t count = e_regSetWordSizeVEC;
m_state.SetError(e_regSetVEC, Read,
::thread_get_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec, &count));
}
return m_state.GetError(e_regSetVEC, Read);
}
kern_return_t DNBArchMachPPC::SetGPRState() {
m_state.SetError(e_regSetGPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetGPR,
(thread_state_t)&m_state.gpr,
e_regSetWordSizeGPR));
return m_state.GetError(e_regSetGPR, Write);
}
kern_return_t DNBArchMachPPC::SetFPRState() {
m_state.SetError(e_regSetFPR, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetFPR,
(thread_state_t)&m_state.fpr,
e_regSetWordSizeFPR));
return m_state.GetError(e_regSetFPR, Write);
}
kern_return_t DNBArchMachPPC::SetEXCState() {
m_state.SetError(e_regSetEXC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetEXC,
(thread_state_t)&m_state.exc,
e_regSetWordSizeEXC));
return m_state.GetError(e_regSetEXC, Write);
}
kern_return_t DNBArchMachPPC::SetVECState() {
m_state.SetError(e_regSetVEC, Write,
::thread_set_state(m_thread->MachPortNumber(), e_regSetVEC,
(thread_state_t)&m_state.vec,
e_regSetWordSizeVEC));
return m_state.GetError(e_regSetVEC, Write);
}
bool DNBArchMachPPC::ThreadWillResume() {
bool success = true;
// Do we need to step this thread? If so, let the mach thread tell us so.
if (m_thread->IsStepping()) {
// This is the primary thread, let the arch do anything it needs
success = EnableHardwareSingleStep(true) == KERN_SUCCESS;
}
return success;
}
bool DNBArchMachPPC::ThreadDidStop() {
bool success = true;
m_state.InvalidateAllRegisterStates();
// Are we stepping a single instruction?
if (GetGPRState(true) == KERN_SUCCESS) {
// We are single stepping, was this the primary thread?
if (m_thread->IsStepping()) {
// This was the primary thread, we need to clear the trace
// bit if so.
success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
} else {
// The MachThread will automatically restore the suspend count
// in ThreadDidStop(), so we don't need to do anything here if
// we weren't the primary thread the last time
}
}
return success;
}
// Set the single step bit in the processor status register.
kern_return_t DNBArchMachPPC::EnableHardwareSingleStep(bool enable) {
DNBLogThreadedIf(LOG_STEP,
"DNBArchMachPPC::EnableHardwareSingleStep( enable = %d )",
enable);
if (GetGPRState(false) == KERN_SUCCESS) {
const uint32_t trace_bit = 0x400;
if (enable)
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) |= trace_bit;
else
m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr1) &= ~trace_bit;
return SetGPRState();
}
return m_state.GetError(e_regSetGPR, Read);
}
//----------------------------------------------------------------------
// Register information definitions for 32 bit PowerPC.
//----------------------------------------------------------------------
enum gpr_regnums {
e_regNumGPR_srr0,
e_regNumGPR_srr1,
e_regNumGPR_r0,
e_regNumGPR_r1,
e_regNumGPR_r2,
e_regNumGPR_r3,
e_regNumGPR_r4,
e_regNumGPR_r5,
e_regNumGPR_r6,
e_regNumGPR_r7,
e_regNumGPR_r8,
e_regNumGPR_r9,
e_regNumGPR_r10,
e_regNumGPR_r11,
e_regNumGPR_r12,
e_regNumGPR_r13,
e_regNumGPR_r14,
e_regNumGPR_r15,
e_regNumGPR_r16,
e_regNumGPR_r17,
e_regNumGPR_r18,
e_regNumGPR_r19,
e_regNumGPR_r20,
e_regNumGPR_r21,
e_regNumGPR_r22,
e_regNumGPR_r23,
e_regNumGPR_r24,
e_regNumGPR_r25,
e_regNumGPR_r26,
e_regNumGPR_r27,
e_regNumGPR_r28,
e_regNumGPR_r29,
e_regNumGPR_r30,
e_regNumGPR_r31,
e_regNumGPR_cr,
e_regNumGPR_xer,
e_regNumGPR_lr,
e_regNumGPR_ctr,
e_regNumGPR_mq,
e_regNumGPR_vrsave
};
// General purpose registers
static DNBRegisterInfo g_gpr_registers[] = {
{"srr0", Uint, 4, Hex}, {"srr1", Uint, 4, Hex}, {"r0", Uint, 4, Hex},
{"r1", Uint, 4, Hex}, {"r2", Uint, 4, Hex}, {"r3", Uint, 4, Hex},
{"r4", Uint, 4, Hex}, {"r5", Uint, 4, Hex}, {"r6", Uint, 4, Hex},
{"r7", Uint, 4, Hex}, {"r8", Uint, 4, Hex}, {"r9", Uint, 4, Hex},
{"r10", Uint, 4, Hex}, {"r11", Uint, 4, Hex}, {"r12", Uint, 4, Hex},
{"r13", Uint, 4, Hex}, {"r14", Uint, 4, Hex}, {"r15", Uint, 4, Hex},
{"r16", Uint, 4, Hex}, {"r17", Uint, 4, Hex}, {"r18", Uint, 4, Hex},
{"r19", Uint, 4, Hex}, {"r20", Uint, 4, Hex}, {"r21", Uint, 4, Hex},
{"r22", Uint, 4, Hex}, {"r23", Uint, 4, Hex}, {"r24", Uint, 4, Hex},
{"r25", Uint, 4, Hex}, {"r26", Uint, 4, Hex}, {"r27", Uint, 4, Hex},
{"r28", Uint, 4, Hex}, {"r29", Uint, 4, Hex}, {"r30", Uint, 4, Hex},
{"r31", Uint, 4, Hex}, {"cr", Uint, 4, Hex}, {"xer", Uint, 4, Hex},
{"lr", Uint, 4, Hex}, {"ctr", Uint, 4, Hex}, {"mq", Uint, 4, Hex},
{"vrsave", Uint, 4, Hex},
};
// Floating point registers
static DNBRegisterInfo g_fpr_registers[] = {
{"fp0", IEEE754, 8, Float}, {"fp1", IEEE754, 8, Float},
{"fp2", IEEE754, 8, Float}, {"fp3", IEEE754, 8, Float},
{"fp4", IEEE754, 8, Float}, {"fp5", IEEE754, 8, Float},
{"fp6", IEEE754, 8, Float}, {"fp7", IEEE754, 8, Float},
{"fp8", IEEE754, 8, Float}, {"fp9", IEEE754, 8, Float},
{"fp10", IEEE754, 8, Float}, {"fp11", IEEE754, 8, Float},
{"fp12", IEEE754, 8, Float}, {"fp13", IEEE754, 8, Float},
{"fp14", IEEE754, 8, Float}, {"fp15", IEEE754, 8, Float},
{"fp16", IEEE754, 8, Float}, {"fp17", IEEE754, 8, Float},
{"fp18", IEEE754, 8, Float}, {"fp19", IEEE754, 8, Float},
{"fp20", IEEE754, 8, Float}, {"fp21", IEEE754, 8, Float},
{"fp22", IEEE754, 8, Float}, {"fp23", IEEE754, 8, Float},
{"fp24", IEEE754, 8, Float}, {"fp25", IEEE754, 8, Float},
{"fp26", IEEE754, 8, Float}, {"fp27", IEEE754, 8, Float},
{"fp28", IEEE754, 8, Float}, {"fp29", IEEE754, 8, Float},
{"fp30", IEEE754, 8, Float}, {"fp31", IEEE754, 8, Float},
{"fpscr", Uint, 4, Hex}};
// Exception registers
static DNBRegisterInfo g_exc_registers[] = {{"dar", Uint, 4, Hex},
{"dsisr", Uint, 4, Hex},
{"exception", Uint, 4, Hex}};
// Altivec registers
static DNBRegisterInfo g_vec_registers[] = {
{"vr0", Vector, 16, VectorOfFloat32},
{"vr1", Vector, 16, VectorOfFloat32},
{"vr2", Vector, 16, VectorOfFloat32},
{"vr3", Vector, 16, VectorOfFloat32},
{"vr4", Vector, 16, VectorOfFloat32},
{"vr5", Vector, 16, VectorOfFloat32},
{"vr6", Vector, 16, VectorOfFloat32},
{"vr7", Vector, 16, VectorOfFloat32},
{"vr8", Vector, 16, VectorOfFloat32},
{"vr9", Vector, 16, VectorOfFloat32},
{"vr10", Vector, 16, VectorOfFloat32},
{"vr11", Vector, 16, VectorOfFloat32},
{"vr12", Vector, 16, VectorOfFloat32},
{"vr13", Vector, 16, VectorOfFloat32},
{"vr14", Vector, 16, VectorOfFloat32},
{"vr15", Vector, 16, VectorOfFloat32},
{"vr16", Vector, 16, VectorOfFloat32},
{"vr17", Vector, 16, VectorOfFloat32},
{"vr18", Vector, 16, VectorOfFloat32},
{"vr19", Vector, 16, VectorOfFloat32},
{"vr20", Vector, 16, VectorOfFloat32},
{"vr21", Vector, 16, VectorOfFloat32},
{"vr22", Vector, 16, VectorOfFloat32},
{"vr23", Vector, 16, VectorOfFloat32},
{"vr24", Vector, 16, VectorOfFloat32},
{"vr25", Vector, 16, VectorOfFloat32},
{"vr26", Vector, 16, VectorOfFloat32},
{"vr27", Vector, 16, VectorOfFloat32},
{"vr28", Vector, 16, VectorOfFloat32},
{"vr29", Vector, 16, VectorOfFloat32},
{"vr30", Vector, 16, VectorOfFloat32},
{"vr31", Vector, 16, VectorOfFloat32},
{"vscr", Uint, 16, Hex},
{"vrvalid", Uint, 4, Hex}};
// Number of registers in each register set
const size_t k_num_gpr_registers =
sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_fpr_registers =
sizeof(g_fpr_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_exc_registers =
sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
const size_t k_num_vec_registers =
sizeof(g_vec_registers) / sizeof(DNBRegisterInfo);
// Total number of registers for this architecture
const size_t k_num_ppc_registers = k_num_gpr_registers + k_num_fpr_registers +
k_num_exc_registers + k_num_vec_registers;
//----------------------------------------------------------------------
// Register set definitions. The first definitions at register set index
// of zero is for all registers, followed by other registers sets. The
// register information for the all register set need not be filled in.
//----------------------------------------------------------------------
static const DNBRegisterSetInfo g_reg_sets[] = {
{"PowerPC Registers", NULL, k_num_ppc_registers},
{"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
{"Floating Point Registers", g_fpr_registers, k_num_fpr_registers},
{"Exception State Registers", g_exc_registers, k_num_exc_registers},
{"Altivec Registers", g_vec_registers, k_num_vec_registers}};
// Total number of register sets for this architecture
const size_t k_num_register_sets =
sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
const DNBRegisterSetInfo *
DNBArchMachPPC::GetRegisterSetInfo(nub_size_t *num_reg_sets) const {
*num_reg_sets = k_num_register_sets;
return g_reg_sets;
}
bool DNBArchMachPPC::GetRegisterValue(uint32_t set, uint32_t reg,
DNBRegisterValue *value) const {
if (set == REGISTER_SET_GENERIC) {
switch (reg) {
case GENERIC_REGNUM_PC: // Program Counter
set = e_regSetGPR;
reg = e_regNumGPR_srr0;
break;
case GENERIC_REGNUM_SP: // Stack Pointer
set = e_regSetGPR;
reg = e_regNumGPR_r1;
break;
case GENERIC_REGNUM_FP: // Frame Pointer
// Return false for now instead of returning r30 as gcc 3.x would
// use a variety of registers for the FP and it takes inspecting
// the stack to make sure there is a frame pointer before we can
// determine the FP.
return false;
case GENERIC_REGNUM_RA: // Return Address
set = e_regSetGPR;
reg = e_regNumGPR_lr;
break;
case GENERIC_REGNUM_FLAGS: // Processor flags register
set = e_regSetGPR;
reg = e_regNumGPR_srr1;
break;
default:
return false;
}
}
if (!m_state.RegsAreValid(set))
return false;
const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
if (regInfo) {
value->info = *regInfo;
switch (set) {
case e_regSetGPR:
if (reg < k_num_gpr_registers) {
value->value.uint32 =
(&m_state.gpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(srr0))[reg];
return true;
}
break;
case e_regSetFPR:
if (reg < 32) {
value->value.float64 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpregs)[reg];
return true;
} else if (reg == 32) {
value->value.uint32 =
m_state.fpr.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(fpscr);
return true;
}
break;
case e_regSetEXC:
if (reg < k_num_exc_registers) {
value->value.uint32 =
(&m_state.exc.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(dar))[reg];
return true;
}
break;
case e_regSetVEC:
if (reg < k_num_vec_registers) {
if (reg < 33) // FP0 - FP31 and VSCR
{
// Copy all 4 uint32 values for this vector register
value->value.v_uint32[0] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[0];
value->value.v_uint32[1] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[1];
value->value.v_uint32[2] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[2];
value->value.v_uint32[3] =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vr)[reg]
[3];
return true;
} else if (reg == 34) // VRVALID
{
value->value.uint32 =
m_state.vec.PREFIX_DOUBLE_UNDERSCORE_DARWIN_UNIX03(save_vrvalid);
return true;
}
}
break;
}
}
return false;
}
kern_return_t DNBArchMachPPC::GetRegisterState(int set, bool force) {
switch (set) {
case e_regSetALL:
return GetGPRState(force) | GetFPRState(force) | GetEXCState(force) |
GetVECState(force);
case e_regSetGPR:
return GetGPRState(force);
case e_regSetFPR:
return GetFPRState(force);
case e_regSetEXC:
return GetEXCState(force);
case e_regSetVEC:
return GetVECState(force);
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
kern_return_t DNBArchMachPPC::SetRegisterState(int set) {
// Make sure we have a valid context to set.
kern_return_t err = GetRegisterState(set, false);
if (err != KERN_SUCCESS)
return err;
switch (set) {
case e_regSetALL:
return SetGPRState() | SetFPRState() | SetEXCState() | SetVECState();
case e_regSetGPR:
return SetGPRState();
case e_regSetFPR:
return SetFPRState();
case e_regSetEXC:
return SetEXCState();
case e_regSetVEC:
return SetVECState();
default:
break;
}
return KERN_INVALID_ARGUMENT;
}
bool DNBArchMachPPC::RegisterSetStateIsValid(int set) const {
return m_state.RegsAreValid(set);
}
#endif // #if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__)