Files
clang-p2996/parallel-libs/acxxel/examples/simple_example.cu
Jason Henline ac232ddc23 Initial check-in of Acxxel (StreamExecutor renamed)
Summary:
Acxxel is basically a simplified redesign of StreamExecutor.

Here are the major points where Acxxel differs from the current
StreamExecutor design:

* Acxxel doesn't support the kernel and kernel loader types designed for
  emission by the compiler to support type-safe kernel launches. For
  CUDA, kernels in Acxxel can be seamlessly launched using the standard
  CUDA triple-chevron kernel launch syntax that is available with clang
  and nvcc. For CUDA and OpenCL, kernel arguments can be passed in the
  old-fashioned way, as one array of pointers to arguments and another
  array of argument sizes. Although OpenCL doesn't get a type-safe
  kernel launch method, it does still get the benefit of all the memory
  management wrappers. In the future, clang may add support for
  triple-chevron OpenCL kernel launchs, or some other type-safe OpenCL
  kernel launch method.
* Acxxel does not depend on any other code in LLVM, so it builds
  completely independently from LLVM.

The goal will be to check in Acxxel and remove StreamExecutor, or
perhaps to remove the old StreamExecutor and rename Acxxel to
StreamExecutor, so I think Acxxel should be thought of as a new version
of StreamExecutor, not as a separate project.

Reviewers: jlebar, jprice

Subscribers: beanz, mgorny, modocache, parallel_libs-commits

Differential Revision: https://reviews.llvm.org/D25701

llvm-svn: 285111
2016-10-25 20:18:56 +00:00

111 lines
3.3 KiB
Plaintext

//===--- simple_example.cu - Simple example of using Acxxel ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// This file is a simple example of using Acxxel.
///
//===----------------------------------------------------------------------===//
/// [Example simple saxpy]
#include "acxxel.h"
#include <array>
#include <cstdio>
#include <cstdlib>
// A standard CUDA kernel.
__global__ void saxpyKernel(float A, float *X, float *Y, int N) {
int I = (blockDim.x * blockIdx.x) + threadIdx.x;
if (I < N)
X[I] = A * X[I] + Y[I];
}
// A host library wrapping the CUDA kernel. All Acxxel calls are in here.
template <size_t N>
void saxpy(float A, std::array<float, N> &X, const std::array<float, N> &Y) {
// Get the CUDA platform and make a CUDA stream.
acxxel::Platform *CUDA = acxxel::getCUDAPlatform().getValue();
acxxel::Stream Stream = CUDA->createStream().takeValue();
// Allocate space for device arrays.
auto DeviceX = CUDA->mallocD<float>(N).takeValue();
auto DeviceY = CUDA->mallocD<float>(N).takeValue();
// Copy X and Y out to the device.
Stream.syncCopyHToD(X, DeviceX).syncCopyHToD(Y, DeviceY);
// Launch the kernel using triple-chevron notation.
saxpyKernel<<<1, N, 0, Stream>>>(A, DeviceX, DeviceY, N);
// Copy the results back to the host.
acxxel::Status Status = Stream.syncCopyDToH(DeviceX, X).takeStatus();
// Check for any errors.
if (Status.isError()) {
std::fprintf(stderr, "Error performing acxxel saxpy: %s\n",
Status.getMessage().c_str());
std::exit(EXIT_FAILURE);
}
}
/// [Example simple saxpy]
/// [Example CUDA simple saxpy]
template <size_t N>
void cudaSaxpy(float A, std::array<float, N> &X, std::array<float, N> &Y) {
// This size is needed all over the place, so give it a name.
constexpr size_t Size = N * sizeof(float);
// Allocate space for device arrays.
float *DeviceX;
float *DeviceY;
cudaMalloc(&DeviceX, Size);
cudaMalloc(&DeviceY, Size);
// Copy X and Y out to the device.
cudaMemcpy(DeviceX, X.data(), Size, cudaMemcpyHostToDevice);
cudaMemcpy(DeviceY, Y.data(), Size, cudaMemcpyHostToDevice);
// Launch the kernel using triple-chevron notation.
saxpyKernel<<<1, N>>>(A, DeviceX, DeviceY, N);
// Copy the results back to the host.
cudaMemcpy(X.data(), DeviceX, Size, cudaMemcpyDeviceToHost);
// Free resources.
cudaFree(DeviceX);
cudaFree(DeviceY);
// Check for any errors.
cudaError_t Error = cudaGetLastError();
if (Error) {
std::fprintf(stderr, "Error performing cudart saxpy: %s\n",
cudaGetErrorString(Error));
std::exit(EXIT_FAILURE);
}
}
/// [Example CUDA simple saxpy]
template <typename F> void testSaxpy(F &&SaxpyFunction) {
float A = 2.f;
std::array<float, 3> X = {{0.f, 1.f, 2.f}};
std::array<float, 3> Y = {{3.f, 4.f, 5.f}};
std::array<float, 3> Expected = {{3.f, 6.f, 9.f}};
SaxpyFunction(A, X, Y);
for (int I = 0; I < 3; ++I)
if (X[I] != Expected[I]) {
std::fprintf(stderr, "Result mismatch at index %d, %f != %f\n", I, X[I],
Expected[I]);
std::exit(EXIT_FAILURE);
}
}
int main() {
testSaxpy(saxpy<3>);
testSaxpy(cudaSaxpy<3>);
}