Files
clang-p2996/polly/test/ScheduleOptimizer/pattern-matching-based-opts_6.ll
Roman Gareev 925ce50f1b Unroll and separate the remaining parts of isolation
The remaining parts produced by the full partial tile isolation can contain
hot spots that are worth to be optimized. Currently, we rely on the simple
loop unrolling pass, LiCM and the SLP vectorizer to optimize such parts.
However, the approach can suffer from the lack of the information about
aliasing that Polly provides using additional alias metadata or/and the lack
of the information required by simple loop unrolling pass.

This patch is the first step to optimize the remaining parts. To do it, we
unroll and separate them. In case of, for instance, Intel Kaby Lake, it helps
to increase the performance of the generated code from 39.87 GFlop/s to
49.23 GFlop/s.

The next possible step is to avoid unrolling performed by Polly in case of
isolated and remaining parts and rely only on simple loop unrolling pass and
the Loop vectorizer.

Reviewed-by: Tobias Grosser <tobias@grosser.es>

Differential Revision: https://reviews.llvm.org/D37692

llvm-svn: 312929
2017-09-11 17:46:47 +00:00

176 lines
11 KiB
LLVM

; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; RUN: -polly-target-throughput-vector-fma=1 \
; RUN: -polly-target-latency-vector-fma=8 \
; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \
; RUN: -polly-target-2nd-cache-level-associativity=8 \
; RUN: -polly-target-1st-cache-level-size=32768 \
; RUN: -polly-target-vector-register-bitwidth=256 \
; RUN: -polly-target-2nd-cache-level-size=262144 < %s \
; RUN: | FileCheck %s
;
; opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; -polly-target-throughput-vector-fma=1 \
; -polly-target-latency-vector-fma=8 \
; -polly-codegen -polly-target-1st-cache-level-associativity=8 \
; -polly-target-2nd-cache-level-associativity=8 \
; -polly-target-1st-cache-level-size=32768 \
; -polly-target-vector-register-bitwidth=256 \
; -polly-target-2nd-cache-level-size=262144 -gvn -licm -slp-vectorizer \
; -mcpu=corei7 -stats -S < %s 2>&1 | FileCheck %s \
; --check-prefix=AUTO-VECTORIZATION
;
;
; /* We isolate a set of partial tile prefixes, which contains only partial
; tile prefixes that have exactly Mr x Nr iterations of the two innermost
; loops produced by the optimization of the matrix multiplication. Mr and
; Nr are parameters of the micro-kernel (see getMicroKernelParams and
; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp for
; details). This test check that in case it cannot be proved that
; the number of loop iterations can be evenly divided by tile sizes
; and we tile and unroll the point loops, it helps to get rid of
; the conditional expressions of the unrolled innermost loops, which
; prevents stores and loads of the unrolled loops from being sunk
; and hoisted. Otherwise, it causes a run-time regression in comparison
; to the vectorized code with sunk and hoisted memory accesses. */
; /* C := A * B + C */
; for (i = 0; i < 1020; i++)
; for (j = 0; j < 1020; j++)
; for (k = 0; k < 1020; ++k)
; C[i][j] += A[i][k] * B[k][j];
;
; CHECK: // 1st level tiling - Tiles
; CHECK-NEXT: for (int c1 = 0; c1 <= 3; c1 += 1) {
; CHECK-NEXT: for (int c3 = 0; c3 <= 1019; c3 += 1)
; CHECK-NEXT: for (int c4 = 256 * c1; c4 <= min(1019, 256 * c1 + 255); c4 += 1)
; CHECK-NEXT: CopyStmt_0(0, c3, c4);
; CHECK-NEXT: for (int c2 = 0; c2 <= 10; c2 += 1) {
; CHECK-NEXT: for (int c3 = 96 * c2; c3 <= min(1019, 96 * c2 + 95); c3 += 1)
; CHECK-NEXT: for (int c5 = 256 * c1; c5 <= min(1019, 256 * c1 + 255); c5 += 1)
; CHECK-NEXT: CopyStmt_1(c3, 0, c5);
; CHECK-NEXT: // 1st level tiling - Points
; CHECK-NEXT: // Register tiling - Tiles
; CHECK-NEXT: {
; CHECK-NEXT: for (int c3 = 0; c3 <= 126; c3 += 1)
; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + 254); c4 += 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, -256 * c1 + 1019); c5 += 1) {
; CHECK-NEXT: // Loop Vectorizer Disabled
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: {
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + 254); c4 += 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, -256 * c1 + 1019); c5 += 1) {
; CHECK-NEXT: // Loop Vectorizer Disabled
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: {
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1019, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1019, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1019, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1019, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
;
; AUTO-VECTORIZATION: fmul <4 x double>
; AUTO-VECTORIZATION: fadd <4 x double>
; AUTO-VECTORIZATION: 36 SLP - Number of vector instructions generated
; AUTO-VECTORIZATION: 146 licm - Number of instructions hoisted out of loop
; AUTO-VECTORIZATION: 1 licm - Number of load insts hoisted or sunk
; AUTO-VECTORIZATION: 32 licm - Number of memory locations promoted to registers
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-unknown"
define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, double %alpha, double %beta, [1020 x double]* %C, [1020 x double]* %A, [1020 x double]* %B) #0 {
entry:
br label %entry.split
entry.split: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.inc20, %entry.split
%indvars.iv41 = phi i64 [ 0, %entry.split ], [ %indvars.iv.next42, %for.inc20 ]
br label %for.cond4.preheader
for.cond4.preheader: ; preds = %for.inc17, %for.cond1.preheader
%indvars.iv38 = phi i64 [ 0, %for.cond1.preheader ], [ %indvars.iv.next39, %for.inc17 ]
br label %for.body6
for.body6: ; preds = %for.body6, %for.cond4.preheader
%indvars.iv = phi i64 [ 0, %for.cond4.preheader ], [ %indvars.iv.next, %for.body6 ]
%arrayidx8 = getelementptr inbounds [1020 x double], [1020 x double]* %A, i64 %indvars.iv41, i64 %indvars.iv
%tmp = load double, double* %arrayidx8, align 8
%arrayidx12 = getelementptr inbounds [1020 x double], [1020 x double]* %B, i64 %indvars.iv, i64 %indvars.iv38
%tmp1 = load double, double* %arrayidx12, align 8
%mul = fmul double %tmp, %tmp1
%arrayidx16 = getelementptr inbounds [1020 x double], [1020 x double]* %C, i64 %indvars.iv41, i64 %indvars.iv38
%tmp2 = load double, double* %arrayidx16, align 8
%add = fadd double %tmp2, %mul
store double %add, double* %arrayidx16, align 8
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp ne i64 %indvars.iv.next, 1020
br i1 %exitcond, label %for.body6, label %for.inc17
for.inc17: ; preds = %for.body6
%indvars.iv.next39 = add nuw nsw i64 %indvars.iv38, 1
%exitcond40 = icmp ne i64 %indvars.iv.next39, 1020
br i1 %exitcond40, label %for.cond4.preheader, label %for.inc20
for.inc20: ; preds = %for.inc17
%indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1
%exitcond43 = icmp ne i64 %indvars.iv.next42, 1020
br i1 %exitcond43, label %for.cond1.preheader, label %for.end22
for.end22: ; preds = %for.inc20
ret void
}
attributes #0 = { nounwind uwtable "target-cpu"="x86-64" "target-features"="+aes,+avx,+cmov,+cx16,+fxsr,+mmx,+pclmul,+popcnt,+sse,+sse2,+sse3,+sse4.1,+sse4.2,+ssse3,+x87,+xsave,+xsaveopt" }