Files
clang-p2996/polly/test/ScheduleOptimizer/pattern-matching-based-opts_7.ll
Roman Gareev 0956a606ff Disable the Loop Vectorizer in case of GEMM
Currently, in case of GEMM and the pattern matching based optimizations, we
use only the SLP Vectorizer out of two LLVM vectorizers. Since the Loop
Vectorizer can get in the way of optimal code generation, we disable the Loop
Vectorizer for the innermost loop using mark nodes and emitting the
corresponding metadata.

Reviewed-by: Tobias Grosser <tobias@grosser.es>

Differential Revision: https://reviews.llvm.org/D36928

llvm-svn: 311473
2017-08-22 17:38:46 +00:00

158 lines
10 KiB
LLVM

; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; RUN: -polly-target-throughput-vector-fma=1 \
; RUN: -polly-target-latency-vector-fma=8 \
; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \
; RUN: -polly-target-2nd-cache-level-associativity=8 \
; RUN: -polly-target-1st-cache-level-size=32768 \
; RUN: -polly-target-vector-register-bitwidth=256 \
; RUN: -polly-target-2nd-cache-level-size=262144 < %s \
; RUN: | FileCheck %s
;
; /* C := A * B + C */
; /* Elements of the matrices A, B, C have the float type. */
; /* The type size of elements of the matrix multiplication operands is used
; to determine the parameters of the code produced by the optimization
; of the matrix multiplication (e.g. bounds of the loops of the loop
; nest, the innermost loop body). This test checks the form of
; the generated loop nest. See getMicroKernelParams and
; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp
; for details. */
; for (i = 0; i < _PB_NI; i++)
; for (j = 0; j < _PB_NJ; j++)
; for (k = 0; k < _PB_NK; ++k)
; C[i][j] += A[i][k] * B[k][j];
;
; CHECK: // 1st level tiling - Tiles
; CHECK-NEXT: for (int c1 = 0; c1 <= 2; c1 += 1) {
; CHECK-NEXT: for (int c3 = 0; c3 <= 1023; c3 += 1)
; CHECK-NEXT: for (int c4 = 384 * c1; c4 <= min(1023, 384 * c1 + 383); c4 += 1)
; CHECK-NEXT: CopyStmt_0(0, c3, c4);
; CHECK-NEXT: for (int c2 = 0; c2 <= 7; c2 += 1) {
; CHECK-NEXT: for (int c3 = 128 * c2; c3 <= 128 * c2 + 127; c3 += 1)
; CHECK-NEXT: for (int c5 = 384 * c1; c5 <= min(1023, 384 * c1 + 383); c5 += 1)
; CHECK-NEXT: CopyStmt_1(c3, 0, c5);
; CHECK-NEXT: // 1st level tiling - Points
; CHECK-NEXT: // Register tiling - Tiles
; CHECK-NEXT: for (int c3 = 0; c3 <= 127; c3 += 1)
; CHECK-NEXT: for (int c4 = 0; c4 <= 15; c4 += 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(383, -384 * c1 + 1023); c5 += 1) {
; CHECK-NEXT: // Loop Vectorizer Disabled
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: {
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 1, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 2, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 3, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 4, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 5, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 6, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 1, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 2, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 3, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 4, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 5, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 6, 384 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(128 * c2 + 8 * c4 + 7, 8 * c3 + 7, 384 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-unknown"
; Function Attrs: noinline nounwind uwtable
define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, float %alpha, float %beta, [1024 x float]* %C, [1024 x float]* %A, [1024 x float]* %B) #0 {
entry:
br label %entry.split
entry.split: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.inc20, %entry.split
%indvars.iv41 = phi i64 [ 0, %entry.split ], [ %indvars.iv.next42, %for.inc20 ]
br label %for.cond4.preheader
for.cond4.preheader: ; preds = %for.inc17, %for.cond1.preheader
%indvars.iv38 = phi i64 [ 0, %for.cond1.preheader ], [ %indvars.iv.next39, %for.inc17 ]
br label %for.body6
for.body6: ; preds = %for.body6, %for.cond4.preheader
%indvars.iv = phi i64 [ 0, %for.cond4.preheader ], [ %indvars.iv.next, %for.body6 ]
%arrayidx8 = getelementptr inbounds [1024 x float], [1024 x float]* %A, i64 %indvars.iv41, i64 %indvars.iv
%tmp = load float, float* %arrayidx8, align 4
%arrayidx12 = getelementptr inbounds [1024 x float], [1024 x float]* %B, i64 %indvars.iv, i64 %indvars.iv38
%tmp1 = load float, float* %arrayidx12, align 4
%mul = fmul float %tmp, %tmp1
%arrayidx16 = getelementptr inbounds [1024 x float], [1024 x float]* %C, i64 %indvars.iv41, i64 %indvars.iv38
%tmp2 = load float, float* %arrayidx16, align 4
%add = fadd float %tmp2, %mul
store float %add, float* %arrayidx16, align 4
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp ne i64 %indvars.iv.next, 1024
br i1 %exitcond, label %for.body6, label %for.inc17
for.inc17: ; preds = %for.body6
%indvars.iv.next39 = add nuw nsw i64 %indvars.iv38, 1
%exitcond40 = icmp ne i64 %indvars.iv.next39, 1024
br i1 %exitcond40, label %for.cond4.preheader, label %for.inc20
for.inc20: ; preds = %for.inc17
%indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1
%exitcond43 = icmp ne i64 %indvars.iv.next42, 1024
br i1 %exitcond43, label %for.cond1.preheader, label %for.end22
for.end22: ; preds = %for.inc20
ret void
}