Use the newly introduced CalleeGuids in CallSiteInfo to annotate the IR where necessary with value profile metadata. Use a synthetic count of 1 since we don't have actual counts in the profile collection.
1370 lines
52 KiB
C++
1370 lines
52 KiB
C++
//===- MemProfiler.cpp - memory allocation and access profiler ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of MemProfiler. Memory accesses are instrumented
|
|
// to increment the access count held in a shadow memory location, or
|
|
// alternatively to call into the runtime. Memory intrinsic calls (memmove,
|
|
// memcpy, memset) are changed to call the memory profiling runtime version
|
|
// instead.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/MemoryProfileInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/ProfileData/MemProfCommon.h"
|
|
#include "llvm/Support/BLAKE3.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/HashBuilder.h"
|
|
#include "llvm/Support/VirtualFileSystem.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/LongestCommonSequence.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <map>
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::memprof;
|
|
|
|
#define DEBUG_TYPE "memprof"
|
|
|
|
namespace llvm {
|
|
extern cl::opt<bool> PGOWarnMissing;
|
|
extern cl::opt<bool> NoPGOWarnMismatch;
|
|
extern cl::opt<bool> NoPGOWarnMismatchComdatWeak;
|
|
} // namespace llvm
|
|
|
|
constexpr int LLVM_MEM_PROFILER_VERSION = 1;
|
|
|
|
// Size of memory mapped to a single shadow location.
|
|
constexpr uint64_t DefaultMemGranularity = 64;
|
|
|
|
// Size of memory mapped to a single histogram bucket.
|
|
constexpr uint64_t HistogramGranularity = 8;
|
|
|
|
// Scale from granularity down to shadow size.
|
|
constexpr uint64_t DefaultShadowScale = 3;
|
|
|
|
constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
|
|
constexpr uint64_t MemProfCtorAndDtorPriority = 1;
|
|
// On Emscripten, the system needs more than one priorities for constructors.
|
|
constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
|
|
constexpr char MemProfInitName[] = "__memprof_init";
|
|
constexpr char MemProfVersionCheckNamePrefix[] =
|
|
"__memprof_version_mismatch_check_v";
|
|
|
|
constexpr char MemProfShadowMemoryDynamicAddress[] =
|
|
"__memprof_shadow_memory_dynamic_address";
|
|
|
|
constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
|
|
|
|
constexpr char MemProfHistogramFlagVar[] = "__memprof_histogram";
|
|
|
|
// Command-line flags.
|
|
|
|
static cl::opt<bool> ClInsertVersionCheck(
|
|
"memprof-guard-against-version-mismatch",
|
|
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
// This flag may need to be replaced with -f[no-]memprof-reads.
|
|
static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
|
|
cl::desc("instrument read instructions"),
|
|
cl::Hidden, cl::init(true));
|
|
|
|
static cl::opt<bool>
|
|
ClInstrumentWrites("memprof-instrument-writes",
|
|
cl::desc("instrument write instructions"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClInstrumentAtomics(
|
|
"memprof-instrument-atomics",
|
|
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
|
|
cl::init(true));
|
|
|
|
static cl::opt<bool> ClUseCalls(
|
|
"memprof-use-callbacks",
|
|
cl::desc("Use callbacks instead of inline instrumentation sequences."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<std::string>
|
|
ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
|
|
cl::desc("Prefix for memory access callbacks"),
|
|
cl::Hidden, cl::init("__memprof_"));
|
|
|
|
// These flags allow to change the shadow mapping.
|
|
// The shadow mapping looks like
|
|
// Shadow = ((Mem & mask) >> scale) + offset
|
|
|
|
static cl::opt<int> ClMappingScale("memprof-mapping-scale",
|
|
cl::desc("scale of memprof shadow mapping"),
|
|
cl::Hidden, cl::init(DefaultShadowScale));
|
|
|
|
static cl::opt<int>
|
|
ClMappingGranularity("memprof-mapping-granularity",
|
|
cl::desc("granularity of memprof shadow mapping"),
|
|
cl::Hidden, cl::init(DefaultMemGranularity));
|
|
|
|
static cl::opt<bool> ClStack("memprof-instrument-stack",
|
|
cl::desc("Instrument scalar stack variables"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
// Debug flags.
|
|
|
|
static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
|
|
cl::init(0));
|
|
|
|
static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
|
|
cl::desc("Debug func"));
|
|
|
|
static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
// By default disable matching of allocation profiles onto operator new that
|
|
// already explicitly pass a hot/cold hint, since we don't currently
|
|
// override these hints anyway.
|
|
static cl::opt<bool> ClMemProfMatchHotColdNew(
|
|
"memprof-match-hot-cold-new",
|
|
cl::desc(
|
|
"Match allocation profiles onto existing hot/cold operator new calls"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> ClHistogram("memprof-histogram",
|
|
cl::desc("Collect access count histograms"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
ClPrintMemProfMatchInfo("memprof-print-match-info",
|
|
cl::desc("Print matching stats for each allocation "
|
|
"context in this module's profiles"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<std::string>
|
|
MemprofRuntimeDefaultOptions("memprof-runtime-default-options",
|
|
cl::desc("The default memprof options"),
|
|
cl::Hidden, cl::init(""));
|
|
|
|
static cl::opt<bool>
|
|
SalvageStaleProfile("memprof-salvage-stale-profile",
|
|
cl::desc("Salvage stale MemProf profile"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> ClMemProfAttachCalleeGuids(
|
|
"memprof-attach-calleeguids",
|
|
cl::desc(
|
|
"Attach calleeguids as value profile metadata for indirect calls."),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
extern cl::opt<bool> MemProfReportHintedSizes;
|
|
extern cl::opt<unsigned> MinClonedColdBytePercent;
|
|
extern cl::opt<unsigned> MinCallsiteColdBytePercent;
|
|
|
|
static cl::opt<unsigned> MinMatchedColdBytePercent(
|
|
"memprof-matching-cold-threshold", cl::init(100), cl::Hidden,
|
|
cl::desc("Min percent of cold bytes matched to hint allocation cold"));
|
|
|
|
// Instrumentation statistics
|
|
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
|
|
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
|
|
STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads");
|
|
STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes");
|
|
|
|
// Matching statistics
|
|
STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile.");
|
|
STATISTIC(NumOfMemProfMismatch,
|
|
"Number of functions having mismatched memory profile hash.");
|
|
STATISTIC(NumOfMemProfFunc, "Number of functions having valid memory profile.");
|
|
STATISTIC(NumOfMemProfAllocContextProfiles,
|
|
"Number of alloc contexts in memory profile.");
|
|
STATISTIC(NumOfMemProfCallSiteProfiles,
|
|
"Number of callsites in memory profile.");
|
|
STATISTIC(NumOfMemProfMatchedAllocContexts,
|
|
"Number of matched memory profile alloc contexts.");
|
|
STATISTIC(NumOfMemProfMatchedAllocs,
|
|
"Number of matched memory profile allocs.");
|
|
STATISTIC(NumOfMemProfMatchedCallSites,
|
|
"Number of matched memory profile callsites.");
|
|
|
|
namespace {
|
|
|
|
/// This struct defines the shadow mapping using the rule:
|
|
/// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
|
|
struct ShadowMapping {
|
|
ShadowMapping() {
|
|
Scale = ClMappingScale;
|
|
Granularity = ClHistogram ? HistogramGranularity : ClMappingGranularity;
|
|
Mask = ~(Granularity - 1);
|
|
}
|
|
|
|
int Scale;
|
|
int Granularity;
|
|
uint64_t Mask; // Computed as ~(Granularity-1)
|
|
};
|
|
|
|
static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
|
|
return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
|
|
: MemProfCtorAndDtorPriority;
|
|
}
|
|
|
|
struct InterestingMemoryAccess {
|
|
Value *Addr = nullptr;
|
|
bool IsWrite;
|
|
Type *AccessTy;
|
|
Value *MaybeMask = nullptr;
|
|
};
|
|
|
|
/// Instrument the code in module to profile memory accesses.
|
|
class MemProfiler {
|
|
public:
|
|
MemProfiler(Module &M) {
|
|
C = &(M.getContext());
|
|
LongSize = M.getDataLayout().getPointerSizeInBits();
|
|
IntptrTy = Type::getIntNTy(*C, LongSize);
|
|
PtrTy = PointerType::getUnqual(*C);
|
|
}
|
|
|
|
/// If it is an interesting memory access, populate information
|
|
/// about the access and return a InterestingMemoryAccess struct.
|
|
/// Otherwise return std::nullopt.
|
|
std::optional<InterestingMemoryAccess>
|
|
isInterestingMemoryAccess(Instruction *I) const;
|
|
|
|
void instrumentMop(Instruction *I, const DataLayout &DL,
|
|
InterestingMemoryAccess &Access);
|
|
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
|
|
Value *Addr, bool IsWrite);
|
|
void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
|
|
Instruction *I, Value *Addr, Type *AccessTy,
|
|
bool IsWrite);
|
|
void instrumentMemIntrinsic(MemIntrinsic *MI);
|
|
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
|
|
bool instrumentFunction(Function &F);
|
|
bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
|
|
bool insertDynamicShadowAtFunctionEntry(Function &F);
|
|
|
|
private:
|
|
void initializeCallbacks(Module &M);
|
|
|
|
LLVMContext *C;
|
|
int LongSize;
|
|
Type *IntptrTy;
|
|
PointerType *PtrTy;
|
|
ShadowMapping Mapping;
|
|
|
|
// These arrays is indexed by AccessIsWrite
|
|
FunctionCallee MemProfMemoryAccessCallback[2];
|
|
|
|
FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
|
|
Value *DynamicShadowOffset = nullptr;
|
|
};
|
|
|
|
class ModuleMemProfiler {
|
|
public:
|
|
ModuleMemProfiler(Module &M) { TargetTriple = M.getTargetTriple(); }
|
|
|
|
bool instrumentModule(Module &);
|
|
|
|
private:
|
|
Triple TargetTriple;
|
|
ShadowMapping Mapping;
|
|
Function *MemProfCtorFunction = nullptr;
|
|
};
|
|
|
|
// Options under which we need to record the context size info in the alloc trie
|
|
// used to build metadata.
|
|
bool recordContextSizeInfo() {
|
|
return MemProfReportHintedSizes || MinClonedColdBytePercent < 100 ||
|
|
MinCallsiteColdBytePercent < 100;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemProfilerPass::MemProfilerPass() = default;
|
|
|
|
PreservedAnalyses MemProfilerPass::run(Function &F,
|
|
AnalysisManager<Function> &AM) {
|
|
assert((!ClHistogram || ClMappingGranularity == DefaultMemGranularity) &&
|
|
"Memprof with histogram only supports default mapping granularity");
|
|
Module &M = *F.getParent();
|
|
MemProfiler Profiler(M);
|
|
if (Profiler.instrumentFunction(F))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
ModuleMemProfilerPass::ModuleMemProfilerPass() = default;
|
|
|
|
PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
|
|
AnalysisManager<Module> &AM) {
|
|
|
|
ModuleMemProfiler Profiler(M);
|
|
if (Profiler.instrumentModule(M))
|
|
return PreservedAnalyses::none();
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
|
|
// (Shadow & mask) >> scale
|
|
Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
|
|
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
|
|
// (Shadow >> scale) | offset
|
|
assert(DynamicShadowOffset);
|
|
return IRB.CreateAdd(Shadow, DynamicShadowOffset);
|
|
}
|
|
|
|
// Instrument memset/memmove/memcpy
|
|
void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
|
|
IRBuilder<> IRB(MI);
|
|
if (isa<MemTransferInst>(MI)) {
|
|
IRB.CreateCall(isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
|
|
{MI->getOperand(0), MI->getOperand(1),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
} else if (isa<MemSetInst>(MI)) {
|
|
IRB.CreateCall(
|
|
MemProfMemset,
|
|
{MI->getOperand(0),
|
|
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
|
|
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
|
|
}
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
std::optional<InterestingMemoryAccess>
|
|
MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
|
|
// Do not instrument the load fetching the dynamic shadow address.
|
|
if (DynamicShadowOffset == I)
|
|
return std::nullopt;
|
|
|
|
InterestingMemoryAccess Access;
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (!ClInstrumentReads)
|
|
return std::nullopt;
|
|
Access.IsWrite = false;
|
|
Access.AccessTy = LI->getType();
|
|
Access.Addr = LI->getPointerOperand();
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (!ClInstrumentWrites)
|
|
return std::nullopt;
|
|
Access.IsWrite = true;
|
|
Access.AccessTy = SI->getValueOperand()->getType();
|
|
Access.Addr = SI->getPointerOperand();
|
|
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
|
|
if (!ClInstrumentAtomics)
|
|
return std::nullopt;
|
|
Access.IsWrite = true;
|
|
Access.AccessTy = RMW->getValOperand()->getType();
|
|
Access.Addr = RMW->getPointerOperand();
|
|
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
if (!ClInstrumentAtomics)
|
|
return std::nullopt;
|
|
Access.IsWrite = true;
|
|
Access.AccessTy = XCHG->getCompareOperand()->getType();
|
|
Access.Addr = XCHG->getPointerOperand();
|
|
} else if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
auto *F = CI->getCalledFunction();
|
|
if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
|
|
F->getIntrinsicID() == Intrinsic::masked_store)) {
|
|
unsigned OpOffset = 0;
|
|
if (F->getIntrinsicID() == Intrinsic::masked_store) {
|
|
if (!ClInstrumentWrites)
|
|
return std::nullopt;
|
|
// Masked store has an initial operand for the value.
|
|
OpOffset = 1;
|
|
Access.AccessTy = CI->getArgOperand(0)->getType();
|
|
Access.IsWrite = true;
|
|
} else {
|
|
if (!ClInstrumentReads)
|
|
return std::nullopt;
|
|
Access.AccessTy = CI->getType();
|
|
Access.IsWrite = false;
|
|
}
|
|
|
|
auto *BasePtr = CI->getOperand(0 + OpOffset);
|
|
Access.MaybeMask = CI->getOperand(2 + OpOffset);
|
|
Access.Addr = BasePtr;
|
|
}
|
|
}
|
|
|
|
if (!Access.Addr)
|
|
return std::nullopt;
|
|
|
|
// Do not instrument accesses from different address spaces; we cannot deal
|
|
// with them.
|
|
Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
|
|
if (PtrTy->getPointerAddressSpace() != 0)
|
|
return std::nullopt;
|
|
|
|
// Ignore swifterror addresses.
|
|
// swifterror memory addresses are mem2reg promoted by instruction
|
|
// selection. As such they cannot have regular uses like an instrumentation
|
|
// function and it makes no sense to track them as memory.
|
|
if (Access.Addr->isSwiftError())
|
|
return std::nullopt;
|
|
|
|
// Peel off GEPs and BitCasts.
|
|
auto *Addr = Access.Addr->stripInBoundsOffsets();
|
|
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
|
|
// Do not instrument PGO counter updates.
|
|
if (GV->hasSection()) {
|
|
StringRef SectionName = GV->getSection();
|
|
// Check if the global is in the PGO counters section.
|
|
auto OF = I->getModule()->getTargetTriple().getObjectFormat();
|
|
if (SectionName.ends_with(
|
|
getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Do not instrument accesses to LLVM internal variables.
|
|
if (GV->getName().starts_with("__llvm"))
|
|
return std::nullopt;
|
|
}
|
|
|
|
return Access;
|
|
}
|
|
|
|
void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
|
|
Instruction *I, Value *Addr,
|
|
Type *AccessTy, bool IsWrite) {
|
|
auto *VTy = cast<FixedVectorType>(AccessTy);
|
|
unsigned Num = VTy->getNumElements();
|
|
auto *Zero = ConstantInt::get(IntptrTy, 0);
|
|
for (unsigned Idx = 0; Idx < Num; ++Idx) {
|
|
Value *InstrumentedAddress = nullptr;
|
|
Instruction *InsertBefore = I;
|
|
if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
|
|
// dyn_cast as we might get UndefValue
|
|
if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
|
|
if (Masked->isZero())
|
|
// Mask is constant false, so no instrumentation needed.
|
|
continue;
|
|
// If we have a true or undef value, fall through to instrumentAddress.
|
|
// with InsertBefore == I
|
|
}
|
|
} else {
|
|
IRBuilder<> IRB(I);
|
|
Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
|
|
Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
|
|
InsertBefore = ThenTerm;
|
|
}
|
|
|
|
IRBuilder<> IRB(InsertBefore);
|
|
InstrumentedAddress =
|
|
IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
|
|
instrumentAddress(I, InsertBefore, InstrumentedAddress, IsWrite);
|
|
}
|
|
}
|
|
|
|
void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
|
|
InterestingMemoryAccess &Access) {
|
|
// Skip instrumentation of stack accesses unless requested.
|
|
if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) {
|
|
if (Access.IsWrite)
|
|
++NumSkippedStackWrites;
|
|
else
|
|
++NumSkippedStackReads;
|
|
return;
|
|
}
|
|
|
|
if (Access.IsWrite)
|
|
NumInstrumentedWrites++;
|
|
else
|
|
NumInstrumentedReads++;
|
|
|
|
if (Access.MaybeMask) {
|
|
instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
|
|
Access.AccessTy, Access.IsWrite);
|
|
} else {
|
|
// Since the access counts will be accumulated across the entire allocation,
|
|
// we only update the shadow access count for the first location and thus
|
|
// don't need to worry about alignment and type size.
|
|
instrumentAddress(I, I, Access.Addr, Access.IsWrite);
|
|
}
|
|
}
|
|
|
|
void MemProfiler::instrumentAddress(Instruction *OrigIns,
|
|
Instruction *InsertBefore, Value *Addr,
|
|
bool IsWrite) {
|
|
IRBuilder<> IRB(InsertBefore);
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
|
|
if (ClUseCalls) {
|
|
IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
|
|
return;
|
|
}
|
|
|
|
Type *ShadowTy = ClHistogram ? Type::getInt8Ty(*C) : Type::getInt64Ty(*C);
|
|
Type *ShadowPtrTy = PointerType::get(*C, 0);
|
|
|
|
Value *ShadowPtr = memToShadow(AddrLong, IRB);
|
|
Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
|
|
Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
|
|
// If we are profiling with histograms, add overflow protection at 255.
|
|
if (ClHistogram) {
|
|
Value *MaxCount = ConstantInt::get(Type::getInt8Ty(*C), 255);
|
|
Value *Cmp = IRB.CreateICmpULT(ShadowValue, MaxCount);
|
|
Instruction *IncBlock =
|
|
SplitBlockAndInsertIfThen(Cmp, InsertBefore, /*Unreachable=*/false);
|
|
IRB.SetInsertPoint(IncBlock);
|
|
}
|
|
Value *Inc = ConstantInt::get(ShadowTy, 1);
|
|
ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
|
|
IRB.CreateStore(ShadowValue, ShadowAddr);
|
|
}
|
|
|
|
// Create the variable for the profile file name.
|
|
void createProfileFileNameVar(Module &M) {
|
|
const MDString *MemProfFilename =
|
|
dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
|
|
if (!MemProfFilename)
|
|
return;
|
|
assert(!MemProfFilename->getString().empty() &&
|
|
"Unexpected MemProfProfileFilename metadata with empty string");
|
|
Constant *ProfileNameConst = ConstantDataArray::getString(
|
|
M.getContext(), MemProfFilename->getString(), true);
|
|
GlobalVariable *ProfileNameVar = new GlobalVariable(
|
|
M, ProfileNameConst->getType(), /*isConstant=*/true,
|
|
GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
|
|
const Triple &TT = M.getTargetTriple();
|
|
if (TT.supportsCOMDAT()) {
|
|
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
|
|
ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
|
|
}
|
|
}
|
|
|
|
// Set MemprofHistogramFlag as a Global veriable in IR. This makes it accessible
|
|
// to the runtime, changing shadow count behavior.
|
|
void createMemprofHistogramFlagVar(Module &M) {
|
|
const StringRef VarName(MemProfHistogramFlagVar);
|
|
Type *IntTy1 = Type::getInt1Ty(M.getContext());
|
|
auto MemprofHistogramFlag = new GlobalVariable(
|
|
M, IntTy1, true, GlobalValue::WeakAnyLinkage,
|
|
Constant::getIntegerValue(IntTy1, APInt(1, ClHistogram)), VarName);
|
|
const Triple &TT = M.getTargetTriple();
|
|
if (TT.supportsCOMDAT()) {
|
|
MemprofHistogramFlag->setLinkage(GlobalValue::ExternalLinkage);
|
|
MemprofHistogramFlag->setComdat(M.getOrInsertComdat(VarName));
|
|
}
|
|
appendToCompilerUsed(M, MemprofHistogramFlag);
|
|
}
|
|
|
|
void createMemprofDefaultOptionsVar(Module &M) {
|
|
Constant *OptionsConst = ConstantDataArray::getString(
|
|
M.getContext(), MemprofRuntimeDefaultOptions, /*AddNull=*/true);
|
|
GlobalVariable *OptionsVar = new GlobalVariable(
|
|
M, OptionsConst->getType(), /*isConstant=*/true,
|
|
GlobalValue::WeakAnyLinkage, OptionsConst, getMemprofOptionsSymbolName());
|
|
const Triple &TT = M.getTargetTriple();
|
|
if (TT.supportsCOMDAT()) {
|
|
OptionsVar->setLinkage(GlobalValue::ExternalLinkage);
|
|
OptionsVar->setComdat(M.getOrInsertComdat(OptionsVar->getName()));
|
|
}
|
|
}
|
|
|
|
bool ModuleMemProfiler::instrumentModule(Module &M) {
|
|
|
|
// Create a module constructor.
|
|
std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
|
|
std::string VersionCheckName =
|
|
ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
|
|
: "";
|
|
std::tie(MemProfCtorFunction, std::ignore) =
|
|
createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
|
|
MemProfInitName, /*InitArgTypes=*/{},
|
|
/*InitArgs=*/{}, VersionCheckName);
|
|
|
|
const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
|
|
appendToGlobalCtors(M, MemProfCtorFunction, Priority);
|
|
|
|
createProfileFileNameVar(M);
|
|
|
|
createMemprofHistogramFlagVar(M);
|
|
|
|
createMemprofDefaultOptionsVar(M);
|
|
|
|
return true;
|
|
}
|
|
|
|
void MemProfiler::initializeCallbacks(Module &M) {
|
|
IRBuilder<> IRB(*C);
|
|
|
|
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
|
|
const std::string TypeStr = AccessIsWrite ? "store" : "load";
|
|
const std::string HistPrefix = ClHistogram ? "hist_" : "";
|
|
|
|
SmallVector<Type *, 2> Args1{1, IntptrTy};
|
|
MemProfMemoryAccessCallback[AccessIsWrite] = M.getOrInsertFunction(
|
|
ClMemoryAccessCallbackPrefix + HistPrefix + TypeStr,
|
|
FunctionType::get(IRB.getVoidTy(), Args1, false));
|
|
}
|
|
MemProfMemmove = M.getOrInsertFunction(
|
|
ClMemoryAccessCallbackPrefix + "memmove", PtrTy, PtrTy, PtrTy, IntptrTy);
|
|
MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
|
|
PtrTy, PtrTy, PtrTy, IntptrTy);
|
|
MemProfMemset =
|
|
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", PtrTy,
|
|
PtrTy, IRB.getInt32Ty(), IntptrTy);
|
|
}
|
|
|
|
bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
|
|
// For each NSObject descendant having a +load method, this method is invoked
|
|
// by the ObjC runtime before any of the static constructors is called.
|
|
// Therefore we need to instrument such methods with a call to __memprof_init
|
|
// at the beginning in order to initialize our runtime before any access to
|
|
// the shadow memory.
|
|
// We cannot just ignore these methods, because they may call other
|
|
// instrumented functions.
|
|
if (F.getName().contains(" load]")) {
|
|
FunctionCallee MemProfInitFunction =
|
|
declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
|
|
IRBuilder<> IRB(&F.front(), F.front().begin());
|
|
IRB.CreateCall(MemProfInitFunction, {});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
|
|
IRBuilder<> IRB(&F.front().front());
|
|
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
|
|
MemProfShadowMemoryDynamicAddress, IntptrTy);
|
|
if (F.getParent()->getPICLevel() == PICLevel::NotPIC)
|
|
cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true);
|
|
DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
|
|
return true;
|
|
}
|
|
|
|
bool MemProfiler::instrumentFunction(Function &F) {
|
|
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
|
|
return false;
|
|
if (ClDebugFunc == F.getName())
|
|
return false;
|
|
if (F.getName().starts_with("__memprof_"))
|
|
return false;
|
|
|
|
bool FunctionModified = false;
|
|
|
|
// If needed, insert __memprof_init.
|
|
// This function needs to be called even if the function body is not
|
|
// instrumented.
|
|
if (maybeInsertMemProfInitAtFunctionEntry(F))
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
|
|
|
|
initializeCallbacks(*F.getParent());
|
|
|
|
SmallVector<Instruction *, 16> ToInstrument;
|
|
|
|
// Fill the set of memory operations to instrument.
|
|
for (auto &BB : F) {
|
|
for (auto &Inst : BB) {
|
|
if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
|
|
ToInstrument.push_back(&Inst);
|
|
}
|
|
}
|
|
|
|
if (ToInstrument.empty()) {
|
|
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified
|
|
<< " " << F << "\n");
|
|
|
|
return FunctionModified;
|
|
}
|
|
|
|
FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
|
|
|
|
int NumInstrumented = 0;
|
|
for (auto *Inst : ToInstrument) {
|
|
if (ClDebugMin < 0 || ClDebugMax < 0 ||
|
|
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
|
|
std::optional<InterestingMemoryAccess> Access =
|
|
isInterestingMemoryAccess(Inst);
|
|
if (Access)
|
|
instrumentMop(Inst, F.getDataLayout(), *Access);
|
|
else
|
|
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
|
|
}
|
|
NumInstrumented++;
|
|
}
|
|
|
|
if (NumInstrumented > 0)
|
|
FunctionModified = true;
|
|
|
|
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
|
|
<< F << "\n");
|
|
|
|
return FunctionModified;
|
|
}
|
|
|
|
static void addCallsiteMetadata(Instruction &I,
|
|
ArrayRef<uint64_t> InlinedCallStack,
|
|
LLVMContext &Ctx) {
|
|
I.setMetadata(LLVMContext::MD_callsite,
|
|
buildCallstackMetadata(InlinedCallStack, Ctx));
|
|
}
|
|
|
|
static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset,
|
|
uint32_t Column) {
|
|
llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little>
|
|
HashBuilder;
|
|
HashBuilder.add(Function, LineOffset, Column);
|
|
llvm::BLAKE3Result<8> Hash = HashBuilder.final();
|
|
uint64_t Id;
|
|
std::memcpy(&Id, Hash.data(), sizeof(Hash));
|
|
return Id;
|
|
}
|
|
|
|
static uint64_t computeStackId(const memprof::Frame &Frame) {
|
|
return computeStackId(Frame.Function, Frame.LineOffset, Frame.Column);
|
|
}
|
|
|
|
static AllocationType addCallStack(CallStackTrie &AllocTrie,
|
|
const AllocationInfo *AllocInfo,
|
|
uint64_t FullStackId) {
|
|
SmallVector<uint64_t> StackIds;
|
|
for (const auto &StackFrame : AllocInfo->CallStack)
|
|
StackIds.push_back(computeStackId(StackFrame));
|
|
auto AllocType = getAllocType(AllocInfo->Info.getTotalLifetimeAccessDensity(),
|
|
AllocInfo->Info.getAllocCount(),
|
|
AllocInfo->Info.getTotalLifetime());
|
|
std::vector<ContextTotalSize> ContextSizeInfo;
|
|
if (recordContextSizeInfo()) {
|
|
auto TotalSize = AllocInfo->Info.getTotalSize();
|
|
assert(TotalSize);
|
|
assert(FullStackId != 0);
|
|
ContextSizeInfo.push_back({FullStackId, TotalSize});
|
|
}
|
|
AllocTrie.addCallStack(AllocType, StackIds, std::move(ContextSizeInfo));
|
|
return AllocType;
|
|
}
|
|
|
|
// Return true if InlinedCallStack, computed from a call instruction's debug
|
|
// info, is a prefix of ProfileCallStack, a list of Frames from profile data
|
|
// (either the allocation data or a callsite).
|
|
static bool
|
|
stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack,
|
|
ArrayRef<uint64_t> InlinedCallStack) {
|
|
return ProfileCallStack.size() >= InlinedCallStack.size() &&
|
|
llvm::equal(ProfileCallStack.take_front(InlinedCallStack.size()),
|
|
InlinedCallStack, [](const Frame &F, uint64_t StackId) {
|
|
return computeStackId(F) == StackId;
|
|
});
|
|
}
|
|
|
|
static bool isAllocationWithHotColdVariant(const Function *Callee,
|
|
const TargetLibraryInfo &TLI) {
|
|
if (!Callee)
|
|
return false;
|
|
LibFunc Func;
|
|
if (!TLI.getLibFunc(*Callee, Func))
|
|
return false;
|
|
switch (Func) {
|
|
case LibFunc_Znwm:
|
|
case LibFunc_ZnwmRKSt9nothrow_t:
|
|
case LibFunc_ZnwmSt11align_val_t:
|
|
case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
|
|
case LibFunc_Znam:
|
|
case LibFunc_ZnamRKSt9nothrow_t:
|
|
case LibFunc_ZnamSt11align_val_t:
|
|
case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
|
|
case LibFunc_size_returning_new:
|
|
case LibFunc_size_returning_new_aligned:
|
|
return true;
|
|
case LibFunc_Znwm12__hot_cold_t:
|
|
case LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t:
|
|
case LibFunc_ZnwmSt11align_val_t12__hot_cold_t:
|
|
case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
|
|
case LibFunc_Znam12__hot_cold_t:
|
|
case LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t:
|
|
case LibFunc_ZnamSt11align_val_t12__hot_cold_t:
|
|
case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t:
|
|
case LibFunc_size_returning_new_hot_cold:
|
|
case LibFunc_size_returning_new_aligned_hot_cold:
|
|
return ClMemProfMatchHotColdNew;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
struct AllocMatchInfo {
|
|
uint64_t TotalSize = 0;
|
|
size_t NumFramesMatched = 0;
|
|
AllocationType AllocType = AllocationType::None;
|
|
bool Matched = false;
|
|
};
|
|
|
|
DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>>
|
|
memprof::extractCallsFromIR(Module &M, const TargetLibraryInfo &TLI,
|
|
function_ref<bool(uint64_t)> IsPresentInProfile) {
|
|
DenseMap<uint64_t, SmallVector<CallEdgeTy, 0>> Calls;
|
|
|
|
auto GetOffset = [](const DILocation *DIL) {
|
|
return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
|
|
0xffff;
|
|
};
|
|
|
|
for (Function &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB) {
|
|
if (!isa<CallBase>(&I) || isa<IntrinsicInst>(&I))
|
|
continue;
|
|
|
|
auto *CB = dyn_cast<CallBase>(&I);
|
|
auto *CalledFunction = CB->getCalledFunction();
|
|
// Disregard indirect calls and intrinsics.
|
|
if (!CalledFunction || CalledFunction->isIntrinsic())
|
|
continue;
|
|
|
|
StringRef CalleeName = CalledFunction->getName();
|
|
// True if we are calling a heap allocation function that supports
|
|
// hot/cold variants.
|
|
bool IsAlloc = isAllocationWithHotColdVariant(CalledFunction, TLI);
|
|
// True for the first iteration below, indicating that we are looking at
|
|
// a leaf node.
|
|
bool IsLeaf = true;
|
|
for (const DILocation *DIL = I.getDebugLoc(); DIL;
|
|
DIL = DIL->getInlinedAt()) {
|
|
StringRef CallerName = DIL->getSubprogramLinkageName();
|
|
assert(!CallerName.empty() &&
|
|
"Be sure to enable -fdebug-info-for-profiling");
|
|
uint64_t CallerGUID = memprof::getGUID(CallerName);
|
|
uint64_t CalleeGUID = memprof::getGUID(CalleeName);
|
|
// Pretend that we are calling a function with GUID == 0 if we are
|
|
// in the inline stack leading to a heap allocation function.
|
|
if (IsAlloc) {
|
|
if (IsLeaf) {
|
|
// For leaf nodes, set CalleeGUID to 0 without consulting
|
|
// IsPresentInProfile.
|
|
CalleeGUID = 0;
|
|
} else if (!IsPresentInProfile(CalleeGUID)) {
|
|
// In addition to the leaf case above, continue to set CalleeGUID
|
|
// to 0 as long as we don't see CalleeGUID in the profile.
|
|
CalleeGUID = 0;
|
|
} else {
|
|
// Once we encounter a callee that exists in the profile, stop
|
|
// setting CalleeGUID to 0.
|
|
IsAlloc = false;
|
|
}
|
|
}
|
|
|
|
LineLocation Loc = {GetOffset(DIL), DIL->getColumn()};
|
|
Calls[CallerGUID].emplace_back(Loc, CalleeGUID);
|
|
CalleeName = CallerName;
|
|
IsLeaf = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort each call list by the source location.
|
|
for (auto &[CallerGUID, CallList] : Calls) {
|
|
llvm::sort(CallList);
|
|
CallList.erase(llvm::unique(CallList), CallList.end());
|
|
}
|
|
|
|
return Calls;
|
|
}
|
|
|
|
DenseMap<uint64_t, LocToLocMap>
|
|
memprof::computeUndriftMap(Module &M, IndexedInstrProfReader *MemProfReader,
|
|
const TargetLibraryInfo &TLI) {
|
|
DenseMap<uint64_t, LocToLocMap> UndriftMaps;
|
|
|
|
DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromProfile =
|
|
MemProfReader->getMemProfCallerCalleePairs();
|
|
DenseMap<uint64_t, SmallVector<memprof::CallEdgeTy, 0>> CallsFromIR =
|
|
extractCallsFromIR(M, TLI, [&](uint64_t GUID) {
|
|
return CallsFromProfile.contains(GUID);
|
|
});
|
|
|
|
// Compute an undrift map for each CallerGUID.
|
|
for (const auto &[CallerGUID, IRAnchors] : CallsFromIR) {
|
|
auto It = CallsFromProfile.find(CallerGUID);
|
|
if (It == CallsFromProfile.end())
|
|
continue;
|
|
const auto &ProfileAnchors = It->second;
|
|
|
|
LocToLocMap Matchings;
|
|
longestCommonSequence<LineLocation, GlobalValue::GUID>(
|
|
ProfileAnchors, IRAnchors, std::equal_to<GlobalValue::GUID>(),
|
|
[&](LineLocation A, LineLocation B) { Matchings.try_emplace(A, B); });
|
|
[[maybe_unused]] bool Inserted =
|
|
UndriftMaps.try_emplace(CallerGUID, std::move(Matchings)).second;
|
|
|
|
// The insertion must succeed because we visit each GUID exactly once.
|
|
assert(Inserted);
|
|
}
|
|
|
|
return UndriftMaps;
|
|
}
|
|
|
|
// Given a MemProfRecord, undrift all the source locations present in the
|
|
// record in place.
|
|
static void
|
|
undriftMemProfRecord(const DenseMap<uint64_t, LocToLocMap> &UndriftMaps,
|
|
memprof::MemProfRecord &MemProfRec) {
|
|
// Undrift a call stack in place.
|
|
auto UndriftCallStack = [&](std::vector<Frame> &CallStack) {
|
|
for (auto &F : CallStack) {
|
|
auto I = UndriftMaps.find(F.Function);
|
|
if (I == UndriftMaps.end())
|
|
continue;
|
|
auto J = I->second.find(LineLocation(F.LineOffset, F.Column));
|
|
if (J == I->second.end())
|
|
continue;
|
|
auto &NewLoc = J->second;
|
|
F.LineOffset = NewLoc.LineOffset;
|
|
F.Column = NewLoc.Column;
|
|
}
|
|
};
|
|
|
|
for (auto &AS : MemProfRec.AllocSites)
|
|
UndriftCallStack(AS.CallStack);
|
|
|
|
for (auto &CS : MemProfRec.CallSites)
|
|
UndriftCallStack(CS.Frames);
|
|
}
|
|
|
|
// Helper function to process CalleeGuids and create value profile metadata
|
|
static void addVPMetadata(Module &M, Instruction &I,
|
|
ArrayRef<GlobalValue::GUID> CalleeGuids) {
|
|
if (!ClMemProfAttachCalleeGuids || CalleeGuids.empty())
|
|
return;
|
|
|
|
if (I.getMetadata(LLVMContext::MD_prof)) {
|
|
uint64_t Unused;
|
|
// TODO: When merging is implemented, increase this to a typical ICP value
|
|
// (e.g., 3-6) For now, we only need to check if existing data exists, so 1
|
|
// is sufficient
|
|
auto ExistingVD = getValueProfDataFromInst(I, IPVK_IndirectCallTarget,
|
|
/*MaxNumValueData=*/1, Unused);
|
|
// We don't know how to merge value profile data yet.
|
|
if (!ExistingVD.empty()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
SmallVector<InstrProfValueData, 4> VDs;
|
|
uint64_t TotalCount = 0;
|
|
|
|
for (const GlobalValue::GUID CalleeGUID : CalleeGuids) {
|
|
InstrProfValueData VD;
|
|
VD.Value = CalleeGUID;
|
|
// For MemProf, we don't have actual call counts, so we assign
|
|
// a weight of 1 to each potential target.
|
|
// TODO: Consider making this weight configurable or increasing it to
|
|
// improve effectiveness for ICP.
|
|
VD.Count = 1;
|
|
VDs.push_back(VD);
|
|
TotalCount += VD.Count;
|
|
}
|
|
|
|
if (!VDs.empty()) {
|
|
annotateValueSite(M, I, VDs, TotalCount, IPVK_IndirectCallTarget,
|
|
VDs.size());
|
|
}
|
|
}
|
|
|
|
static void
|
|
readMemprof(Module &M, Function &F, IndexedInstrProfReader *MemProfReader,
|
|
const TargetLibraryInfo &TLI,
|
|
std::map<uint64_t, AllocMatchInfo> &FullStackIdToAllocMatchInfo,
|
|
std::set<std::vector<uint64_t>> &MatchedCallSites,
|
|
DenseMap<uint64_t, LocToLocMap> &UndriftMaps,
|
|
OptimizationRemarkEmitter &ORE) {
|
|
auto &Ctx = M.getContext();
|
|
// Previously we used getIRPGOFuncName() here. If F is local linkage,
|
|
// getIRPGOFuncName() returns FuncName with prefix 'FileName;'. But
|
|
// llvm-profdata uses FuncName in dwarf to create GUID which doesn't
|
|
// contain FileName's prefix. It caused local linkage function can't
|
|
// find MemProfRecord. So we use getName() now.
|
|
// 'unique-internal-linkage-names' can make MemProf work better for local
|
|
// linkage function.
|
|
auto FuncName = F.getName();
|
|
auto FuncGUID = Function::getGUIDAssumingExternalLinkage(FuncName);
|
|
std::optional<memprof::MemProfRecord> MemProfRec;
|
|
auto Err = MemProfReader->getMemProfRecord(FuncGUID).moveInto(MemProfRec);
|
|
if (Err) {
|
|
handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
|
|
auto Err = IPE.get();
|
|
bool SkipWarning = false;
|
|
LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName
|
|
<< ": ");
|
|
if (Err == instrprof_error::unknown_function) {
|
|
NumOfMemProfMissing++;
|
|
SkipWarning = !PGOWarnMissing;
|
|
LLVM_DEBUG(dbgs() << "unknown function");
|
|
} else if (Err == instrprof_error::hash_mismatch) {
|
|
NumOfMemProfMismatch++;
|
|
SkipWarning =
|
|
NoPGOWarnMismatch ||
|
|
(NoPGOWarnMismatchComdatWeak &&
|
|
(F.hasComdat() ||
|
|
F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
|
|
LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
|
|
}
|
|
|
|
if (SkipWarning)
|
|
return;
|
|
|
|
std::string Msg = (IPE.message() + Twine(" ") + F.getName().str() +
|
|
Twine(" Hash = ") + std::to_string(FuncGUID))
|
|
.str();
|
|
|
|
Ctx.diagnose(
|
|
DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
|
|
});
|
|
return;
|
|
}
|
|
|
|
NumOfMemProfFunc++;
|
|
|
|
// If requested, undrfit MemProfRecord so that the source locations in it
|
|
// match those in the IR.
|
|
if (SalvageStaleProfile)
|
|
undriftMemProfRecord(UndriftMaps, *MemProfRec);
|
|
|
|
// Detect if there are non-zero column numbers in the profile. If not,
|
|
// treat all column numbers as 0 when matching (i.e. ignore any non-zero
|
|
// columns in the IR). The profiled binary might have been built with
|
|
// column numbers disabled, for example.
|
|
bool ProfileHasColumns = false;
|
|
|
|
// Build maps of the location hash to all profile data with that leaf location
|
|
// (allocation info and the callsites).
|
|
std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo;
|
|
|
|
// Helper struct for maintaining refs to callsite data. As an alternative we
|
|
// could store a pointer to the CallSiteInfo struct but we also need the frame
|
|
// index. Using ArrayRefs instead makes it a little easier to read.
|
|
struct CallSiteEntry {
|
|
// Subset of frames for the corresponding CallSiteInfo.
|
|
ArrayRef<Frame> Frames;
|
|
// Potential targets for indirect calls.
|
|
ArrayRef<GlobalValue::GUID> CalleeGuids;
|
|
|
|
// Only compare Frame contents.
|
|
// Use pointer-based equality instead of ArrayRef's operator== which does
|
|
// element-wise comparison. We want to check if it's the same slice of the
|
|
// underlying array, not just equivalent content.
|
|
bool operator==(const CallSiteEntry &Other) const {
|
|
return Frames.data() == Other.Frames.data() &&
|
|
Frames.size() == Other.Frames.size();
|
|
}
|
|
};
|
|
|
|
struct CallSiteEntryHash {
|
|
size_t operator()(const CallSiteEntry &Entry) const {
|
|
return computeFullStackId(Entry.Frames);
|
|
}
|
|
};
|
|
|
|
// For the callsites we need to record slices of the frame array (see comments
|
|
// below where the map entries are added) along with their CalleeGuids.
|
|
std::map<uint64_t, std::unordered_set<CallSiteEntry, CallSiteEntryHash>>
|
|
LocHashToCallSites;
|
|
for (auto &AI : MemProfRec->AllocSites) {
|
|
NumOfMemProfAllocContextProfiles++;
|
|
// Associate the allocation info with the leaf frame. The later matching
|
|
// code will match any inlined call sequences in the IR with a longer prefix
|
|
// of call stack frames.
|
|
uint64_t StackId = computeStackId(AI.CallStack[0]);
|
|
LocHashToAllocInfo[StackId].insert(&AI);
|
|
ProfileHasColumns |= AI.CallStack[0].Column;
|
|
}
|
|
for (auto &CS : MemProfRec->CallSites) {
|
|
NumOfMemProfCallSiteProfiles++;
|
|
// Need to record all frames from leaf up to and including this function,
|
|
// as any of these may or may not have been inlined at this point.
|
|
unsigned Idx = 0;
|
|
for (auto &StackFrame : CS.Frames) {
|
|
uint64_t StackId = computeStackId(StackFrame);
|
|
ArrayRef<Frame> FrameSlice = ArrayRef<Frame>(CS.Frames).drop_front(Idx++);
|
|
ArrayRef<GlobalValue::GUID> CalleeGuids(CS.CalleeGuids);
|
|
LocHashToCallSites[StackId].insert({FrameSlice, CalleeGuids});
|
|
|
|
ProfileHasColumns |= StackFrame.Column;
|
|
// Once we find this function, we can stop recording.
|
|
if (StackFrame.Function == FuncGUID)
|
|
break;
|
|
}
|
|
assert(Idx <= CS.Frames.size() && CS.Frames[Idx - 1].Function == FuncGUID);
|
|
}
|
|
|
|
auto GetOffset = [](const DILocation *DIL) {
|
|
return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
|
|
0xffff;
|
|
};
|
|
|
|
// Now walk the instructions, looking up the associated profile data using
|
|
// debug locations.
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB) {
|
|
if (I.isDebugOrPseudoInst())
|
|
continue;
|
|
// We are only interested in calls (allocation or interior call stack
|
|
// context calls).
|
|
auto *CI = dyn_cast<CallBase>(&I);
|
|
if (!CI)
|
|
continue;
|
|
auto *CalledFunction = CI->getCalledFunction();
|
|
if (CalledFunction && CalledFunction->isIntrinsic())
|
|
continue;
|
|
// List of call stack ids computed from the location hashes on debug
|
|
// locations (leaf to inlined at root).
|
|
SmallVector<uint64_t, 8> InlinedCallStack;
|
|
// Was the leaf location found in one of the profile maps?
|
|
bool LeafFound = false;
|
|
// If leaf was found in a map, iterators pointing to its location in both
|
|
// of the maps. It might exist in neither, one, or both (the latter case
|
|
// can happen because we don't currently have discriminators to
|
|
// distinguish the case when a single line/col maps to both an allocation
|
|
// and another callsite).
|
|
auto AllocInfoIter = LocHashToAllocInfo.end();
|
|
auto CallSitesIter = LocHashToCallSites.end();
|
|
for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr;
|
|
DIL = DIL->getInlinedAt()) {
|
|
// Use C++ linkage name if possible. Need to compile with
|
|
// -fdebug-info-for-profiling to get linkage name.
|
|
StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName();
|
|
if (Name.empty())
|
|
Name = DIL->getScope()->getSubprogram()->getName();
|
|
auto CalleeGUID = Function::getGUIDAssumingExternalLinkage(Name);
|
|
auto StackId = computeStackId(CalleeGUID, GetOffset(DIL),
|
|
ProfileHasColumns ? DIL->getColumn() : 0);
|
|
// Check if we have found the profile's leaf frame. If yes, collect
|
|
// the rest of the call's inlined context starting here. If not, see if
|
|
// we find a match further up the inlined context (in case the profile
|
|
// was missing debug frames at the leaf).
|
|
if (!LeafFound) {
|
|
AllocInfoIter = LocHashToAllocInfo.find(StackId);
|
|
CallSitesIter = LocHashToCallSites.find(StackId);
|
|
if (AllocInfoIter != LocHashToAllocInfo.end() ||
|
|
CallSitesIter != LocHashToCallSites.end())
|
|
LeafFound = true;
|
|
}
|
|
if (LeafFound)
|
|
InlinedCallStack.push_back(StackId);
|
|
}
|
|
// If leaf not in either of the maps, skip inst.
|
|
if (!LeafFound)
|
|
continue;
|
|
|
|
// First add !memprof metadata from allocation info, if we found the
|
|
// instruction's leaf location in that map, and if the rest of the
|
|
// instruction's locations match the prefix Frame locations on an
|
|
// allocation context with the same leaf.
|
|
if (AllocInfoIter != LocHashToAllocInfo.end() &&
|
|
// Only consider allocations which support hinting.
|
|
isAllocationWithHotColdVariant(CI->getCalledFunction(), TLI)) {
|
|
// We may match this instruction's location list to multiple MIB
|
|
// contexts. Add them to a Trie specialized for trimming the contexts to
|
|
// the minimal needed to disambiguate contexts with unique behavior.
|
|
CallStackTrie AllocTrie(&ORE);
|
|
uint64_t TotalSize = 0;
|
|
uint64_t TotalColdSize = 0;
|
|
for (auto *AllocInfo : AllocInfoIter->second) {
|
|
// Check the full inlined call stack against this one.
|
|
// If we found and thus matched all frames on the call, include
|
|
// this MIB.
|
|
if (stackFrameIncludesInlinedCallStack(AllocInfo->CallStack,
|
|
InlinedCallStack)) {
|
|
NumOfMemProfMatchedAllocContexts++;
|
|
uint64_t FullStackId = 0;
|
|
if (ClPrintMemProfMatchInfo || recordContextSizeInfo())
|
|
FullStackId = computeFullStackId(AllocInfo->CallStack);
|
|
auto AllocType = addCallStack(AllocTrie, AllocInfo, FullStackId);
|
|
TotalSize += AllocInfo->Info.getTotalSize();
|
|
if (AllocType == AllocationType::Cold)
|
|
TotalColdSize += AllocInfo->Info.getTotalSize();
|
|
// Record information about the allocation if match info printing
|
|
// was requested.
|
|
if (ClPrintMemProfMatchInfo) {
|
|
assert(FullStackId != 0);
|
|
FullStackIdToAllocMatchInfo[FullStackId] = {
|
|
AllocInfo->Info.getTotalSize(), InlinedCallStack.size(),
|
|
AllocType, /*Matched=*/true};
|
|
}
|
|
}
|
|
}
|
|
// If the threshold for the percent of cold bytes is less than 100%,
|
|
// and not all bytes are cold, see if we should still hint this
|
|
// allocation as cold without context sensitivity.
|
|
if (TotalColdSize < TotalSize && MinMatchedColdBytePercent < 100 &&
|
|
TotalColdSize * 100 >= MinMatchedColdBytePercent * TotalSize) {
|
|
AllocTrie.addSingleAllocTypeAttribute(CI, AllocationType::Cold,
|
|
"dominant");
|
|
continue;
|
|
}
|
|
|
|
// We might not have matched any to the full inlined call stack.
|
|
// But if we did, create and attach metadata, or a function attribute if
|
|
// all contexts have identical profiled behavior.
|
|
if (!AllocTrie.empty()) {
|
|
NumOfMemProfMatchedAllocs++;
|
|
// MemprofMDAttached will be false if a function attribute was
|
|
// attached.
|
|
bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI);
|
|
assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof));
|
|
if (MemprofMDAttached) {
|
|
// Add callsite metadata for the instruction's location list so that
|
|
// it simpler later on to identify which part of the MIB contexts
|
|
// are from this particular instruction (including during inlining,
|
|
// when the callsite metadata will be updated appropriately).
|
|
// FIXME: can this be changed to strip out the matching stack
|
|
// context ids from the MIB contexts and not add any callsite
|
|
// metadata here to save space?
|
|
addCallsiteMetadata(I, InlinedCallStack, Ctx);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (CallSitesIter == LocHashToCallSites.end())
|
|
continue;
|
|
|
|
// Otherwise, add callsite metadata. If we reach here then we found the
|
|
// instruction's leaf location in the callsites map and not the allocation
|
|
// map.
|
|
for (const auto &CallSiteEntry : CallSitesIter->second) {
|
|
// If we found and thus matched all frames on the call, create and
|
|
// attach call stack metadata.
|
|
if (stackFrameIncludesInlinedCallStack(CallSiteEntry.Frames,
|
|
InlinedCallStack)) {
|
|
NumOfMemProfMatchedCallSites++;
|
|
addCallsiteMetadata(I, InlinedCallStack, Ctx);
|
|
|
|
// Try to attach indirect call metadata if possible.
|
|
if (!CalledFunction)
|
|
addVPMetadata(M, I, CallSiteEntry.CalleeGuids);
|
|
|
|
// Only need to find one with a matching call stack and add a single
|
|
// callsite metadata.
|
|
|
|
// Accumulate call site matching information upon request.
|
|
if (ClPrintMemProfMatchInfo) {
|
|
std::vector<uint64_t> CallStack;
|
|
append_range(CallStack, InlinedCallStack);
|
|
MatchedCallSites.insert(std::move(CallStack));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile,
|
|
IntrusiveRefCntPtr<vfs::FileSystem> FS)
|
|
: MemoryProfileFileName(MemoryProfileFile), FS(FS) {
|
|
if (!FS)
|
|
this->FS = vfs::getRealFileSystem();
|
|
}
|
|
|
|
PreservedAnalyses MemProfUsePass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
// Return immediately if the module doesn't contain any function.
|
|
if (M.empty())
|
|
return PreservedAnalyses::all();
|
|
|
|
LLVM_DEBUG(dbgs() << "Read in memory profile:");
|
|
auto &Ctx = M.getContext();
|
|
auto ReaderOrErr = IndexedInstrProfReader::create(MemoryProfileFileName, *FS);
|
|
if (Error E = ReaderOrErr.takeError()) {
|
|
handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
|
|
Ctx.diagnose(
|
|
DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), EI.message()));
|
|
});
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
std::unique_ptr<IndexedInstrProfReader> MemProfReader =
|
|
std::move(ReaderOrErr.get());
|
|
if (!MemProfReader) {
|
|
Ctx.diagnose(DiagnosticInfoPGOProfile(
|
|
MemoryProfileFileName.data(), StringRef("Cannot get MemProfReader")));
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
if (!MemProfReader->hasMemoryProfile()) {
|
|
Ctx.diagnose(DiagnosticInfoPGOProfile(MemoryProfileFileName.data(),
|
|
"Not a memory profile"));
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
|
|
TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(*M.begin());
|
|
DenseMap<uint64_t, LocToLocMap> UndriftMaps;
|
|
if (SalvageStaleProfile)
|
|
UndriftMaps = computeUndriftMap(M, MemProfReader.get(), TLI);
|
|
|
|
// Map from the stack has of each allocation context in the function profiles
|
|
// to the total profiled size (bytes), allocation type, and whether we matched
|
|
// it to an allocation in the IR.
|
|
std::map<uint64_t, AllocMatchInfo> FullStackIdToAllocMatchInfo;
|
|
|
|
// Set of the matched call sites, each expressed as a sequence of an inline
|
|
// call stack.
|
|
std::set<std::vector<uint64_t>> MatchedCallSites;
|
|
|
|
for (auto &F : M) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
readMemprof(M, F, MemProfReader.get(), TLI, FullStackIdToAllocMatchInfo,
|
|
MatchedCallSites, UndriftMaps, ORE);
|
|
}
|
|
|
|
if (ClPrintMemProfMatchInfo) {
|
|
for (const auto &[Id, Info] : FullStackIdToAllocMatchInfo)
|
|
errs() << "MemProf " << getAllocTypeAttributeString(Info.AllocType)
|
|
<< " context with id " << Id << " has total profiled size "
|
|
<< Info.TotalSize << (Info.Matched ? " is" : " not")
|
|
<< " matched with " << Info.NumFramesMatched << " frames\n";
|
|
|
|
for (const auto &CallStack : MatchedCallSites) {
|
|
errs() << "MemProf callsite match for inline call stack";
|
|
for (uint64_t StackId : CallStack)
|
|
errs() << " " << StackId;
|
|
errs() << "\n";
|
|
}
|
|
}
|
|
|
|
return PreservedAnalyses::none();
|
|
}
|