Previously, slices were sometimes marked as non-contiguous when they
were actually contiguous. This occurred when the vector type had leading
unit dimensions, e.g., `vector<1x1x...x1xd0xd1x...xdn-1xT>`. In such
cases, only the trailing `n` dimensions of the memref need to be
contiguous, not the entire vector rank.
This affects how `FlattenContiguousRowMajorTransfer{Read,Write}Pattern`
flattens `transfer_read` and `transfer_write` ops.
The patterns used to collapse a number of dimensions equal to the vector
rank which missed some opportunities when the leading unit dimensions of
the vector span non-contiguous dimensions of the memref.
Now that the contiguity of the slice is determined correctly, there is a
choice how many dimensions of the
memref to collapse, ranging from
a) the number of vector dimensions after ignoring the leading unit
dimensions, up to
b) the maximum number of contiguous memref dimensions
This patch makes a choice to do minimal memref collapsing. The rationale
behind this decision is that
this way the least amount of information is discarded.
(It follows that in some cases where the patterns used to trigger and
collapse some memref dimensions, after this patch the patterns may
collapse less dimensions).
391 lines
16 KiB
C++
391 lines
16 KiB
C++
//===- VectorUtils.cpp - MLIR Utilities for VectorOps ------------------===//
|
|
//
|
|
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utility methods for working with the Vector dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
|
|
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/IntegerSet.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/Support/InterleavedRange.h"
|
|
|
|
#define DEBUG_TYPE "vector-utils"
|
|
|
|
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
|
|
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
|
|
|
|
using namespace mlir;
|
|
|
|
/// Helper function that creates a memref::DimOp or tensor::DimOp depending on
|
|
/// the type of `source`.
|
|
Value mlir::vector::createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
|
|
int64_t dim) {
|
|
if (isa<UnrankedMemRefType, MemRefType>(source.getType()))
|
|
return b.createOrFold<memref::DimOp>(loc, source, dim);
|
|
if (isa<UnrankedTensorType, RankedTensorType>(source.getType()))
|
|
return b.createOrFold<tensor::DimOp>(loc, source, dim);
|
|
llvm_unreachable("Expected MemRefType or TensorType");
|
|
}
|
|
|
|
/// Given the n-D transpose pattern 'transp', return true if 'dim0' and 'dim1'
|
|
/// should be transposed with each other within the context of their 2D
|
|
/// transposition slice.
|
|
///
|
|
/// Example 1: dim0 = 0, dim1 = 2, transp = [2, 1, 0]
|
|
/// Return true: dim0 and dim1 are transposed within the context of their 2D
|
|
/// transposition slice ([1, 0]).
|
|
///
|
|
/// Example 2: dim0 = 0, dim1 = 1, transp = [2, 1, 0]
|
|
/// Return true: dim0 and dim1 are transposed within the context of their 2D
|
|
/// transposition slice ([1, 0]). Paradoxically, note how dim1 (1) is *not*
|
|
/// transposed within the full context of the transposition.
|
|
///
|
|
/// Example 3: dim0 = 0, dim1 = 1, transp = [2, 0, 1]
|
|
/// Return false: dim0 and dim1 are *not* transposed within the context of
|
|
/// their 2D transposition slice ([0, 1]). Paradoxically, note how dim0 (0)
|
|
/// and dim1 (1) are transposed within the full context of the of the
|
|
/// transposition.
|
|
static bool areDimsTransposedIn2DSlice(int64_t dim0, int64_t dim1,
|
|
ArrayRef<int64_t> transp) {
|
|
// Perform a linear scan along the dimensions of the transposed pattern. If
|
|
// dim0 is found first, dim0 and dim1 are not transposed within the context of
|
|
// their 2D slice. Otherwise, 'dim1' is found first and they are transposed.
|
|
for (int64_t permDim : transp) {
|
|
if (permDim == dim0)
|
|
return false;
|
|
if (permDim == dim1)
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("Ill-formed transpose pattern");
|
|
}
|
|
|
|
FailureOr<std::pair<int, int>>
|
|
mlir::vector::isTranspose2DSlice(vector::TransposeOp op) {
|
|
VectorType srcType = op.getSourceVectorType();
|
|
SmallVector<int64_t> srcGtOneDims;
|
|
for (auto [index, size] : llvm::enumerate(srcType.getShape()))
|
|
if (size > 1)
|
|
srcGtOneDims.push_back(index);
|
|
|
|
if (srcGtOneDims.size() != 2)
|
|
return failure();
|
|
|
|
// Check whether the two source vector dimensions that are greater than one
|
|
// must be transposed with each other so that we can apply one of the 2-D
|
|
// transpose pattens. Otherwise, these patterns are not applicable.
|
|
if (!areDimsTransposedIn2DSlice(srcGtOneDims[0], srcGtOneDims[1],
|
|
op.getPermutation()))
|
|
return failure();
|
|
|
|
return std::pair<int, int>(srcGtOneDims[0], srcGtOneDims[1]);
|
|
}
|
|
|
|
/// Constructs a permutation map from memref indices to vector dimension.
|
|
///
|
|
/// The implementation uses the knowledge of the mapping of enclosing loop to
|
|
/// vector dimension. `enclosingLoopToVectorDim` carries this information as a
|
|
/// map with:
|
|
/// - keys representing "vectorized enclosing loops";
|
|
/// - values representing the corresponding vector dimension.
|
|
/// The algorithm traverses "vectorized enclosing loops" and extracts the
|
|
/// at-most-one MemRef index that is invariant along said loop. This index is
|
|
/// guaranteed to be at most one by construction: otherwise the MemRef is not
|
|
/// vectorizable.
|
|
/// If this invariant index is found, it is added to the permutation_map at the
|
|
/// proper vector dimension.
|
|
/// If no index is found to be invariant, 0 is added to the permutation_map and
|
|
/// corresponds to a vector broadcast along that dimension.
|
|
///
|
|
/// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty,
|
|
/// signalling that no permutation map can be constructed given
|
|
/// `enclosingLoopToVectorDim`.
|
|
///
|
|
/// Examples can be found in the documentation of `makePermutationMap`, in the
|
|
/// header file.
|
|
static AffineMap makePermutationMap(
|
|
ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &enclosingLoopToVectorDim) {
|
|
if (enclosingLoopToVectorDim.empty())
|
|
return AffineMap();
|
|
MLIRContext *context =
|
|
enclosingLoopToVectorDim.begin()->getFirst()->getContext();
|
|
SmallVector<AffineExpr> perm(enclosingLoopToVectorDim.size(),
|
|
getAffineConstantExpr(0, context));
|
|
|
|
for (auto kvp : enclosingLoopToVectorDim) {
|
|
assert(kvp.second < perm.size());
|
|
auto invariants = affine::getInvariantAccesses(
|
|
cast<affine::AffineForOp>(kvp.first).getInductionVar(), indices);
|
|
unsigned numIndices = indices.size();
|
|
unsigned countInvariantIndices = 0;
|
|
for (unsigned dim = 0; dim < numIndices; ++dim) {
|
|
if (!invariants.count(indices[dim])) {
|
|
assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
|
|
"permutationMap already has an entry along dim");
|
|
perm[kvp.second] = getAffineDimExpr(dim, context);
|
|
} else {
|
|
++countInvariantIndices;
|
|
}
|
|
}
|
|
assert((countInvariantIndices == numIndices ||
|
|
countInvariantIndices == numIndices - 1) &&
|
|
"Vectorization prerequisite violated: at most 1 index may be "
|
|
"invariant wrt a vectorized loop");
|
|
(void)countInvariantIndices;
|
|
}
|
|
return AffineMap::get(indices.size(), 0, perm, context);
|
|
}
|
|
|
|
/// Implementation detail that walks up the parents and records the ones with
|
|
/// the specified type.
|
|
/// TODO: could also be implemented as a collect parents followed by a
|
|
/// filter and made available outside this file.
|
|
template <typename T>
|
|
static SetVector<Operation *> getParentsOfType(Block *block) {
|
|
SetVector<Operation *> res;
|
|
auto *current = block->getParentOp();
|
|
while (current) {
|
|
if ([[maybe_unused]] auto typedParent = dyn_cast<T>(current)) {
|
|
assert(res.count(current) == 0 && "Already inserted");
|
|
res.insert(current);
|
|
}
|
|
current = current->getParentOp();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Returns the enclosing AffineForOp, from closest to farthest.
|
|
static SetVector<Operation *> getEnclosingforOps(Block *block) {
|
|
return getParentsOfType<affine::AffineForOp>(block);
|
|
}
|
|
|
|
AffineMap mlir::makePermutationMap(
|
|
Block *insertPoint, ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
|
|
DenseMap<Operation *, unsigned> enclosingLoopToVectorDim;
|
|
auto enclosingLoops = getEnclosingforOps(insertPoint);
|
|
for (auto *forInst : enclosingLoops) {
|
|
auto it = loopToVectorDim.find(forInst);
|
|
if (it != loopToVectorDim.end()) {
|
|
enclosingLoopToVectorDim.insert(*it);
|
|
}
|
|
}
|
|
return ::makePermutationMap(indices, enclosingLoopToVectorDim);
|
|
}
|
|
|
|
AffineMap mlir::makePermutationMap(
|
|
Operation *op, ArrayRef<Value> indices,
|
|
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
|
|
return makePermutationMap(op->getBlock(), indices, loopToVectorDim);
|
|
}
|
|
|
|
bool matcher::operatesOnSuperVectorsOf(Operation &op,
|
|
VectorType subVectorType) {
|
|
// First, extract the vector type and distinguish between:
|
|
// a. ops that *must* lower a super-vector (i.e. vector.transfer_read,
|
|
// vector.transfer_write); and
|
|
// b. ops that *may* lower a super-vector (all other ops).
|
|
// The ops that *may* lower a super-vector only do so if the super-vector to
|
|
// sub-vector ratio exists. The ops that *must* lower a super-vector are
|
|
// explicitly checked for this property.
|
|
/// TODO: there should be a single function for all ops to do this so we
|
|
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
|
|
bool mustDivide = false;
|
|
(void)mustDivide;
|
|
VectorType superVectorType;
|
|
if (auto transfer = dyn_cast<VectorTransferOpInterface>(op)) {
|
|
superVectorType = transfer.getVectorType();
|
|
mustDivide = true;
|
|
} else if (op.getNumResults() == 0) {
|
|
if (!isa<func::ReturnOp>(op)) {
|
|
op.emitError("NYI: assuming only return operations can have 0 "
|
|
" results at this point");
|
|
}
|
|
return false;
|
|
} else if (op.getNumResults() == 1) {
|
|
if (auto v = dyn_cast<VectorType>(op.getResult(0).getType())) {
|
|
superVectorType = v;
|
|
} else {
|
|
// Not a vector type.
|
|
return false;
|
|
}
|
|
} else {
|
|
// Not a vector.transfer and has more than 1 result, fail hard for now to
|
|
// wake us up when something changes.
|
|
op.emitError("NYI: operation has more than 1 result");
|
|
return false;
|
|
}
|
|
|
|
// Get the ratio.
|
|
auto ratio =
|
|
computeShapeRatio(superVectorType.getShape(), subVectorType.getShape());
|
|
|
|
// Sanity check.
|
|
assert((ratio || !mustDivide) &&
|
|
"vector.transfer operation in which super-vector size is not an"
|
|
" integer multiple of sub-vector size");
|
|
|
|
// This catches cases that are not strictly necessary to have multiplicity but
|
|
// still aren't divisible by the sub-vector shape.
|
|
// This could be useful information if we wanted to reshape at the level of
|
|
// the vector type (but we would have to look at the compute and distinguish
|
|
// between parallel, reduction and possibly other cases.
|
|
return ratio.has_value();
|
|
}
|
|
|
|
bool vector::isContiguousSlice(MemRefType memrefType, VectorType vectorType) {
|
|
if (vectorType.isScalable())
|
|
return false;
|
|
|
|
// Ignore a leading sequence of adjacent unit dimensions in the vector.
|
|
ArrayRef<int64_t> vectorShape =
|
|
vectorType.getShape().drop_while([](auto v) { return v == 1; });
|
|
auto vecRank = vectorShape.size();
|
|
|
|
if (!memrefType.areTrailingDimsContiguous(vecRank))
|
|
return false;
|
|
|
|
// Extract the trailing dims of the input memref
|
|
auto memrefShape = memrefType.getShape().take_back(vecRank);
|
|
|
|
// Compare the dims of `vectorType` against `memrefType`.
|
|
// All of the dimensions, except the first must match.
|
|
return llvm::equal(vectorShape.drop_front(), memrefShape.drop_front());
|
|
}
|
|
|
|
std::optional<StaticTileOffsetRange>
|
|
vector::createUnrollIterator(VectorType vType, int64_t targetRank) {
|
|
if (vType.getRank() <= targetRank)
|
|
return {};
|
|
// Attempt to unroll until targetRank or the first scalable dimension (which
|
|
// cannot be unrolled).
|
|
auto shapeToUnroll = vType.getShape().drop_back(targetRank);
|
|
auto scalableDimsToUnroll = vType.getScalableDims().drop_back(targetRank);
|
|
auto it = llvm::find(scalableDimsToUnroll, true);
|
|
auto firstScalableDim = it - scalableDimsToUnroll.begin();
|
|
if (firstScalableDim == 0)
|
|
return {};
|
|
// All scalable dimensions should be removed now.
|
|
scalableDimsToUnroll = scalableDimsToUnroll.slice(0, firstScalableDim);
|
|
assert(!llvm::is_contained(scalableDimsToUnroll, true) &&
|
|
"unexpected leading scalable dimension");
|
|
// Create an unroll iterator for leading dimensions.
|
|
shapeToUnroll = shapeToUnroll.slice(0, firstScalableDim);
|
|
return StaticTileOffsetRange(shapeToUnroll, /*unrollStep=*/1);
|
|
}
|
|
|
|
SmallVector<OpFoldResult> vector::getMixedSizesXfer(bool hasTensorSemantics,
|
|
Operation *xfer,
|
|
RewriterBase &rewriter) {
|
|
auto loc = xfer->getLoc();
|
|
|
|
Value base = TypeSwitch<Operation *, Value>(xfer)
|
|
.Case<vector::TransferReadOp>(
|
|
[&](auto readOp) { return readOp.getBase(); })
|
|
.Case<vector::TransferWriteOp>(
|
|
[&](auto writeOp) { return writeOp.getOperand(1); });
|
|
|
|
SmallVector<OpFoldResult> mixedSourceDims =
|
|
hasTensorSemantics ? tensor::getMixedSizes(rewriter, loc, base)
|
|
: memref::getMixedSizes(rewriter, loc, base);
|
|
return mixedSourceDims;
|
|
}
|
|
|
|
bool vector::isLinearizableVector(VectorType type) {
|
|
return (type.getRank() > 1) && (type.getNumScalableDims() <= 1);
|
|
}
|
|
|
|
Value vector::createReadOrMaskedRead(OpBuilder &builder, Location loc,
|
|
Value source,
|
|
ArrayRef<int64_t> inputVectorSizes,
|
|
Value padValue,
|
|
bool useInBoundsInsteadOfMasking) {
|
|
assert(llvm::none_of(inputVectorSizes,
|
|
[](int64_t s) { return s == ShapedType::kDynamic; }) &&
|
|
"invalid input vector sizes");
|
|
auto sourceShapedType = cast<ShapedType>(source.getType());
|
|
auto sourceShape = sourceShapedType.getShape();
|
|
assert(sourceShape.size() == inputVectorSizes.size() &&
|
|
"expected same ranks.");
|
|
auto vectorType = VectorType::get(inputVectorSizes, padValue.getType());
|
|
assert(padValue.getType() == sourceShapedType.getElementType() &&
|
|
"expected same pad element type to match source element type");
|
|
int64_t readRank = inputVectorSizes.size();
|
|
auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
|
|
SmallVector<bool> inBoundsVal(readRank, true);
|
|
|
|
if (useInBoundsInsteadOfMasking) {
|
|
// Update the inBounds attribute.
|
|
// FIXME: This computation is too weak - it ignores the read indices.
|
|
for (unsigned i = 0; i < readRank; i++)
|
|
inBoundsVal[i] = (sourceShape[i] == inputVectorSizes[i]) &&
|
|
!ShapedType::isDynamic(sourceShape[i]);
|
|
}
|
|
auto transferReadOp = builder.create<vector::TransferReadOp>(
|
|
loc,
|
|
/*vectorType=*/vectorType,
|
|
/*source=*/source,
|
|
/*indices=*/SmallVector<Value>(readRank, zero),
|
|
/*padding=*/padValue,
|
|
/*inBounds=*/inBoundsVal);
|
|
|
|
if (llvm::equal(inputVectorSizes, sourceShape) || useInBoundsInsteadOfMasking)
|
|
return transferReadOp;
|
|
SmallVector<OpFoldResult> mixedSourceDims =
|
|
tensor::getMixedSizes(builder, loc, source);
|
|
|
|
auto maskType = VectorType::get(inputVectorSizes, builder.getI1Type());
|
|
Value mask =
|
|
builder.create<vector::CreateMaskOp>(loc, maskType, mixedSourceDims);
|
|
return mlir::vector::maskOperation(builder, transferReadOp, mask)
|
|
->getResult(0);
|
|
}
|
|
|
|
LogicalResult
|
|
vector::isValidMaskedInputVector(ArrayRef<int64_t> shape,
|
|
ArrayRef<int64_t> inputVectorSizes) {
|
|
LDBG("Iteration space static sizes:" << llvm::interleaved(shape));
|
|
|
|
if (inputVectorSizes.size() != shape.size()) {
|
|
LDBG("Input vector sizes don't match the number of loops");
|
|
return failure();
|
|
}
|
|
if (ShapedType::isDynamicShape(inputVectorSizes)) {
|
|
LDBG("Input vector sizes can't have dynamic dimensions");
|
|
return failure();
|
|
}
|
|
if (!llvm::all_of(llvm::zip(shape, inputVectorSizes),
|
|
[](std::tuple<int64_t, int64_t> sizePair) {
|
|
int64_t staticSize = std::get<0>(sizePair);
|
|
int64_t inputSize = std::get<1>(sizePair);
|
|
return ShapedType::isDynamic(staticSize) ||
|
|
staticSize <= inputSize;
|
|
})) {
|
|
LDBG("Input vector sizes must be greater than or equal to iteration space "
|
|
"static sizes");
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|