Previously, slices were sometimes marked as non-contiguous when they
were actually contiguous. This occurred when the vector type had leading
unit dimensions, e.g., `vector<1x1x...x1xd0xd1x...xdn-1xT>`. In such
cases, only the trailing `n` dimensions of the memref need to be
contiguous, not the entire vector rank.
This affects how `FlattenContiguousRowMajorTransfer{Read,Write}Pattern`
flattens `transfer_read` and `transfer_write` ops.
The patterns used to collapse a number of dimensions equal to the vector
rank which missed some opportunities when the leading unit dimensions of
the vector span non-contiguous dimensions of the memref.
Now that the contiguity of the slice is determined correctly, there is a
choice how many dimensions of the
memref to collapse, ranging from
a) the number of vector dimensions after ignoring the leading unit
dimensions, up to
b) the maximum number of contiguous memref dimensions
This patch makes a choice to do minimal memref collapsing. The rationale
behind this decision is that
this way the least amount of information is discarded.
(It follows that in some cases where the patterns used to trigger and
collapse some memref dimensions, after this patch the patterns may
collapse less dimensions).
785 lines
32 KiB
MLIR
785 lines
32 KiB
MLIR
// RUN: mlir-opt %s -test-vector-transfer-flatten-patterns -split-input-file | FileCheck %s
|
|
// RUN: mlir-opt %s -test-vector-transfer-flatten-patterns=target-vector-bitwidth=128 -split-input-file | FileCheck %s --check-prefix=CHECK-128B
|
|
|
|
// TODO: Align naming and format with e.g. vector-transfer-permutation-lowering.mlir
|
|
|
|
///----------------------------------------------------------------------------------------
|
|
/// vector.transfer_read
|
|
/// [Pattern: FlattenContiguousRowMajorTransferReadPattern]
|
|
///
|
|
/// NOTE: Scalable vectors are not supported
|
|
///----------------------------------------------------------------------------------------
|
|
|
|
func.func @transfer_read_dims_match_contiguous(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<5x4x3x2xi8>
|
|
return %res : vector<5x4x3x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_read_dims_match_contiguous
|
|
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]
|
|
// CHECK: %[[READ1D:.+]] = vector.transfer_read %[[COLLAPSED]]
|
|
// CHECK: %[[VEC2D:.+]] = vector.shape_cast %[[READ1D]] : vector<120xi8> to vector<5x4x3x2xi8>
|
|
// CHECK: return %[[VEC2D]]
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_match_contiguous
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
func.func @transfer_read_dims_match_contiguous_scalable(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x[2]xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<5x4x3x[2]xi8>
|
|
return %res : vector<5x4x3x[2]xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_read_dims_match_contiguous_scalable
|
|
// CHECK-NOT: memref.collapse_shape
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_match_contiguous_scalable
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
func.func @transfer_read_dims_match_contiguous_empty_stride(
|
|
%mem : memref<5x4x3x2xi8>) -> vector<5x4x3x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8>, vector<5x4x3x2xi8>
|
|
return %res : vector<5x4x3x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_read_dims_match_contiguous_empty_stride(
|
|
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]
|
|
// CHECK: %[[READ1D:.+]] = vector.transfer_read %[[COLLAPSED]]
|
|
// CHECK: %[[VEC2D:.+]] = vector.shape_cast %[[READ1D]] : vector<120xi8> to vector<5x4x3x2xi8>
|
|
// CHECK: return %[[VEC2D]]
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_match_contiguous_empty_stride(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The shape of the memref and the vector don't match, but the vector is a
|
|
// contiguous subset of the memref, so "flattenable"
|
|
|
|
func.func @transfer_read_dims_mismatch_contiguous(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<2x3x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<2x3x2xi8>
|
|
return %res : vector<2x3x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_contiguous(
|
|
// CHECK-SAME: %[[MEM:.+]]: memref<5x4x3x2xi8, {{.+}}>) -> vector<2x3x2xi8> {
|
|
// CHECK: %[[C0_I8:.+]] = arith.constant 0 : i8
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED_MEM:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1, 2, 3]]
|
|
// CHECK-SAME: : memref<5x4x3x2xi8, {{.+}}> into memref<5x24xi8, {{.+}}>
|
|
// CHECK: %[[VEC_1D:.+]] = vector.transfer_read %[[COLLAPSED_MEM]][%[[C0]], %[[C0]]], %[[C0_I8]] {in_bounds = [true]}
|
|
// CHECK-SAME: : memref<5x24xi8, strided<[24, 1], offset: ?>>, vector<12xi8>
|
|
// CHECK: %[[VEC:.+]] = vector.shape_cast %[[VEC_1D]] : vector<12xi8> to vector<2x3x2xi8>
|
|
// CHECK: return %[[VEC]] : vector<2x3x2xi8>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_contiguous(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The shape of the memref and the vector don't match, but the mismatch is only
|
|
// at the leading unit dimensions of the vector.
|
|
|
|
func.func @transfer_read_dims_mismatch_contiguous_unit_dims(
|
|
%mem : memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>) -> vector<1x1x4x3x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0, %c0], %cst :
|
|
memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>, vector<1x1x4x3x2xi8>
|
|
return %res : vector<1x1x4x3x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_contiguous_unit_dims(
|
|
// CHECK-SAME: %[[MEM:.+]]: memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>)
|
|
// CHECK-SAME: -> vector<1x1x4x3x2xi8>
|
|
// CHECK: %[[C0_I8:.+]] = arith.constant 0 : i8
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3, 4]]
|
|
// CHECK-SAME: : memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>
|
|
// CHECK-SAME: into memref<6x5x24xi8, strided<[120, 24, 1], offset: ?>>
|
|
// CHECK: %[[VEC_1D:.+]] = vector.transfer_read %[[COLLAPSED]][%[[C0]], %[[C0]], %[[C0]]], %[[C0_I8]]
|
|
// CHECK-SAME: {in_bounds = [true]} : memref<6x5x24xi8, strided<[120, 24, 1], offset: ?>>, vector<24xi8>
|
|
// CHECK: %[[VEC:.+]] = vector.shape_cast %[[VEC_1D]] : vector<24xi8> to vector<1x1x4x3x2xi8>
|
|
// CHECK: return %[[VEC]] : vector<1x1x4x3x2xi8>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_contiguous_unit_dims(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The memref is non-contiguous, but the vector is a contiguous subset of the
|
|
// memref, so "flattenable". The leading unit dimensions of the vector have no
|
|
// effect on the memref area read even if they span the non-contiguous part of
|
|
// the memref.
|
|
|
|
func.func @transfer_read_non_contiguous_unit_dims(
|
|
%mem : memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>>) -> vector<1x1x3x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>>, vector<1x1x3x2xi8>
|
|
return %res : vector<1x1x3x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_non_contiguous_unit_dims(
|
|
// CHECK-SAME: %[[MEM:.*]]: memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>>) -> vector<1x1x3x2xi8> {
|
|
// CHECK: %[[VAL_1:.*]] = arith.constant 0 : i8
|
|
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[VAL_3:.*]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>> into memref<5x4x6xi8, strided<[48, 6, 1], offset: ?>>
|
|
// CHECK: %[[VAL_4:.*]] = vector.transfer_read %[[VAL_3]][%[[VAL_2]], %[[VAL_2]], %[[VAL_2]]], %[[VAL_1]] {in_bounds = [true]} : memref<5x4x6xi8, strided<[48, 6, 1], offset: ?>>, vector<6xi8>
|
|
// CHECK: %[[VAL_5:.*]] = vector.shape_cast %[[VAL_4]] : vector<6xi8> to vector<1x1x3x2xi8>
|
|
// CHECK: return %[[VAL_5]] : vector<1x1x3x2xi8>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_non_contiguous_unit_dims(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
|
|
// -----
|
|
|
|
func.func @transfer_read_dims_mismatch_non_zero_indices(
|
|
%idx_1: index,
|
|
%idx_2: index,
|
|
%mem: memref<1x43x4x6xi32>) -> vector<1x2x6xi32>{
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%c0_i32 = arith.constant 0 : i32
|
|
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %c0_i32 {
|
|
in_bounds = [true, true, true]
|
|
} : memref<1x43x4x6xi32>, vector<1x2x6xi32>
|
|
return %res : vector<1x2x6xi32>
|
|
}
|
|
|
|
// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0] -> (s0 * 6)>
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_non_zero_indices(
|
|
// CHECK-SAME: %[[IDX_1:.+]]: index, %[[IDX_2:.+]]: index,
|
|
// CHECK-SAME: %[[MEM:.+]]: memref<1x43x4x6xi32>
|
|
// CHECK: %[[C0_I32:.+]] = arith.constant 0 : i32
|
|
// CHECK: %[[C_0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED_IN:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<1x43x4x6xi32> into memref<1x43x24xi32>
|
|
// CHECK: %[[COLLAPSED_IDX:.+]] = affine.apply #[[$ATTR_0]]()[%[[IDX_2]]]
|
|
// CHECK: %[[READ:.+]] = vector.transfer_read %[[COLLAPSED_IN]][%[[C_0]], %[[IDX_1]], %[[COLLAPSED_IDX]]], %[[C0_I32]] {in_bounds = [true]} : memref<1x43x24xi32>, vector<12xi32>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_non_zero_indices(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// Overall, the source memref is non-contiguous. However, the slice from which
|
|
// the output vector is to be read _is_ contiguous. Hence the flattening works fine.
|
|
|
|
func.func @transfer_read_dims_mismatch_non_contiguous_non_zero_indices(
|
|
%mem : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>,
|
|
%idx_1 : index,
|
|
%idx_2 : index) -> vector<2x2xf32> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst_1 = arith.constant 0.000000e+00 : f32
|
|
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %cst_1 {
|
|
in_bounds = [true, true]
|
|
} : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>, vector<2x2xf32>
|
|
return %res : vector<2x2xf32>
|
|
}
|
|
|
|
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 * 2)>
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_non_contiguous_non_zero_indices(
|
|
// CHECK: %[[COLLAPSE:.+]] = memref.collapse_shape %{{.*}} {{\[}}[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>> into memref<1x3x6xf32, strided<[40, 10, 1], offset: ?>>
|
|
// CHECK: %[[APPLY:.*]] = affine.apply #[[$MAP]]()
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_non_contiguous_non_zero_indices(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The leading dynamic shapes don't affect whether this example is flattenable
|
|
// or not. Indeed, those dynamic shapes are not candidates for flattening anyway.
|
|
|
|
func.func @transfer_read_leading_dynamic_dims(
|
|
%mem : memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>,
|
|
%idx_1 : index,
|
|
%idx_2 : index) -> vector<8x4xi8> {
|
|
|
|
%c0_i8 = arith.constant 0 : i8
|
|
%c0 = arith.constant 0 : index
|
|
%res = vector.transfer_read %mem[%idx_1, %idx_2, %c0, %c0], %c0_i8 {
|
|
in_bounds = [true, true]
|
|
} : memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>, vector<8x4xi8>
|
|
return %res : vector<8x4xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_read_leading_dynamic_dims
|
|
// CHECK-SAME: %[[MEM:.+]]: memref<?x?x8x4xi8, {{.+}}>, %[[IDX_1:.+]]: index, %[[IDX_2:.+]]: index
|
|
// CHECK: %[[C0_I8:.+]] = arith.constant 0 : i8
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<?x?x8x4xi8, {{.+}}> into memref<?x?x32xi8, {{.+}}>
|
|
// CHECK: %[[VEC1D:.+]] = vector.transfer_read %[[COLLAPSED]]
|
|
// CHECK-SAME: [%[[IDX_1]], %[[IDX_2]], %[[C0]]], %[[C0_I8]]
|
|
// CHECK-SAME: {in_bounds = [true]} : memref<?x?x32xi8, {{.+}}>, vector<32xi8>
|
|
// CHECK: %[[RES:.+]] = vector.shape_cast %[[VEC1D]] : vector<32xi8> to vector<8x4xi8>
|
|
// CHECK: return %[[RES]] : vector<8x4xi8>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_leading_dynamic_dims
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The vector is a non-contiguous slice of the input
|
|
// memref.
|
|
|
|
func.func @negative_transfer_read_dynamic_dim_to_flatten(
|
|
%mem : memref<4x?x?x2xi8>) -> vector<2x2x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<4x?x?x2xi8>, vector<2x2x2xi8>
|
|
return %res : vector<2x2x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @negative_transfer_read_dynamic_dim_to_flatten(
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @negative_transfer_read_dynamic_dim_to_flatten(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// When collapsing memref dimensions, we may include the rightmost dynamic
|
|
// dimension (e.g., at position `k`) provided that the strides for dimensions
|
|
// `k+1`, `k+2`, etc., ensure contiguity in memory. The stride at position `k`
|
|
// itself does not factor into this. (Here "strides" mean both explicit and
|
|
// implied by identity map)
|
|
|
|
func.func @transfer_read_dynamic_dim_to_flatten(
|
|
%idx_1: index,
|
|
%idx_2: index,
|
|
%mem: memref<1x?x4x6xi32>) -> vector<1x2x6xi32> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%c0_i32 = arith.constant 0 : i32
|
|
%res = vector.transfer_read %mem[%c0, %idx_1, %idx_2, %c0], %c0_i32 {
|
|
in_bounds = [true, true, true]
|
|
} : memref<1x?x4x6xi32>, vector<1x2x6xi32>
|
|
return %res : vector<1x2x6xi32>
|
|
}
|
|
|
|
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 * 6)>
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_dynamic_dim_to_flatten
|
|
// CHECK-SAME: %[[IDX_1:arg0]]
|
|
// CHECK-SAME: %[[IDX_2:arg1]]
|
|
// CHECK-SAME: %[[MEM:arg2]]
|
|
// CHECK: %[[C0_I32:.+]] = arith.constant 0 : i32
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: memref<1x?x4x6xi32> into memref<1x?x24xi32>
|
|
// CHECK: %[[COLLAPSED_IDX:.+]] = affine.apply #[[$MAP]]()[%[[IDX_2]]]
|
|
// CHECK: %[[VEC_1D:.+]] = vector.transfer_read %[[COLLAPSED]][%[[C0]], %[[IDX_1]], %[[COLLAPSED_IDX]]],
|
|
// CHECK-SAME: %[[C0_I32]] {in_bounds = [true]} : memref<1x?x24xi32>, vector<12xi32>
|
|
// CHECK: %[[RESULT:.+]] = vector.shape_cast %[[VEC_1D]] : vector<12xi32> to vector<1x2x6xi32>
|
|
// CHECK: return %[[RESULT]] : vector<1x2x6xi32>
|
|
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dynamic_dim_to_flatten
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The vector to be read represents a _non-contiguous_ slice of the input
|
|
// memref.
|
|
|
|
func.func @transfer_read_dims_mismatch_non_contiguous_slice(
|
|
%mem : memref<5x4x3x2xi8>) -> vector<2x1x2x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8>, vector<2x1x2x2xi8>
|
|
return %res : vector<2x1x2x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_dims_mismatch_non_contiguous_slice(
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_dims_mismatch_non_contiguous_slice(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
func.func @transfer_read_0d(
|
|
%mem : memref<i8>) -> vector<i8> {
|
|
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[], %cst : memref<i8>, vector<i8>
|
|
return %res : vector<i8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_0d
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_0d(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
// CHECK-128B-NOT: vector.shape_cast
|
|
|
|
// -----
|
|
|
|
// Strides make the input memref non-contiguous, hence non-flattenable.
|
|
|
|
func.func @transfer_read_non_contiguous_src(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst :
|
|
memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>, vector<5x4x3x2xi8>
|
|
return %res : vector<5x4x3x2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_read_non_contiguous_src
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @transfer_read_non_contiguous_src
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
// CHECK-128B-NOT: vector.shape_cast
|
|
|
|
// -----
|
|
|
|
///----------------------------------------------------------------------------------------
|
|
/// vector.transfer_write
|
|
/// [Pattern: FlattenContiguousRowMajorTransferWritePattern]
|
|
///
|
|
/// NOTE: Scalable vectors are not supported
|
|
///----------------------------------------------------------------------------------------
|
|
|
|
func.func @transfer_write_dims_match_contiguous(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
|
|
%vec : vector<5x4x3x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
|
|
vector<5x4x3x2xi8>, memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_write_dims_match_contiguous(
|
|
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
|
|
// CHECK-SAME: %[[VEC:[0-9a-zA-Z]+]]: vector<5x4x3x2xi8>
|
|
// CHECK-DAG: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]{{.}} : memref<5x4x3x2xi8, {{.+}}> into memref<120xi8, {{.+}}>
|
|
// CHECK-DAG: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<5x4x3x2xi8> to vector<120xi8>
|
|
// CHECK: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_match_contiguous(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
func.func @transfer_write_dims_match_contiguous_scalable(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
|
|
%vec : vector<5x4x3x[2]xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
|
|
vector<5x4x3x[2]xi8>, memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_write_dims_match_contiguous_scalable(
|
|
// CHECK-NOT: memref.collapse_shape
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_match_contiguous_scalable
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
func.func @transfer_write_dims_match_contiguous_empty_stride(
|
|
%mem : memref<5x4x3x2xi8>,
|
|
%vec : vector<5x4x3x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
|
|
vector<5x4x3x2xi8>, memref<5x4x3x2xi8>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_write_dims_match_contiguous_empty_stride(
|
|
// CHECK-SAME: %[[MEM:[0-9a-zA-Z]+]]: memref<5x4x3x2xi8
|
|
// CHECK-SAME: %[[VEC:[0-9a-zA-Z]+]]: vector<5x4x3x2xi8>
|
|
// CHECK-DAG: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]] {{.}}[0, 1, 2, 3]{{.}} : memref<5x4x3x2xi8> into memref<120xi8>
|
|
// CHECK-DAG: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<5x4x3x2xi8> to vector<120xi8>
|
|
// CHECK: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_match_contiguous_empty_stride(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The shape of the memref and the vector don't match, but the vector is a
|
|
// contiguous subset of the memref, so "flattenable".
|
|
|
|
func.func @transfer_write_dims_mismatch_contiguous(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>,
|
|
%vec : vector<2x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
|
|
vector<2x2xi8>, memref<5x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_contiguous
|
|
// CHECK-SAME: %[[MEM:.+]]: memref<5x4x3x2xi8, {{.+}}>,
|
|
// CHECK-SAME: %[[VEC:.+]]: vector<2x2xi8>
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED_MEM:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<5x4x3x2xi8, {{.+}}> into memref<5x4x6xi8, {{.+}}>
|
|
// CHECK: %[[VEC_1D:.+]] = vector.shape_cast %[[VEC]] : vector<2x2xi8> to vector<4xi8>
|
|
// CHECK: vector.transfer_write %[[VEC_1D]], %[[COLLAPSED_MEM]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true]}
|
|
// CHECK-SAME: : vector<4xi8>, memref<5x4x6xi8, {{.+}}>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_contiguous(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The shape of the memref and the vector don't match, but the mismatch is only
|
|
// at the leading unit dimensions of the vector.
|
|
|
|
func.func @transfer_write_dims_mismatch_contiguous_unit_dims(
|
|
%mem : memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>,
|
|
%vec : vector<1x1x4x3x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0, %c0] :
|
|
vector<1x1x4x3x2xi8>, memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>
|
|
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_contiguous_unit_dims(
|
|
// CHECK-SAME: %[[MEM:.+]]: memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>
|
|
// CHECK-SAME: %[[VEC:.+]]: vector<1x1x4x3x2xi8>
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3, 4]]
|
|
// CHECK-SAME: : memref<6x5x4x3x2xi8, strided<[120, 24, 6, 2, 1], offset: ?>>
|
|
// CHECK-SAME: into memref<6x5x24xi8, strided<[120, 24, 1], offset: ?>>
|
|
// CHECK: %[[VEC_1D:.+]] = vector.shape_cast %[[VEC]] : vector<1x1x4x3x2xi8> to vector<24xi8>
|
|
// CHECK: vector.transfer_write %[[VEC_1D]], %[[COLLAPSED]][%[[C0]], %[[C0]], %[[C0]]]
|
|
// CHECK-SAME: {in_bounds = [true]} : vector<24xi8>, memref<6x5x24xi8, strided<[120, 24, 1], offset: ?>>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_contiguous_unit_dims(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The memref is non-contiguous, but the vector is a contiguous subset of the
|
|
// memref, so "flattenable". The leading unit dimensions of the vector have no
|
|
// effect on the memref area read even if they span the non-contiguous part of
|
|
// the memref.
|
|
|
|
func.func @transfer_write_non_contiguous_unit_dims(
|
|
%mem : memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>>,
|
|
%vec : vector<1x1x3x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] :
|
|
vector<1x1x3x2xi8>, memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_non_contiguous_unit_dims
|
|
// CHECK-SAME: %[[MEM:.*]]: memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>>,
|
|
// CHECK-SAME: %[[VEC:.*]]: vector<1x1x3x2xi8>) {
|
|
// CHECK: %[[C0:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED:.*]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<5x4x3x2xi8, strided<[48, 6, 2, 1], offset: ?>> into memref<5x4x6xi8, strided<[48, 6, 1], offset: ?>>
|
|
// CHECK: %[[VEC_1D:.*]] = vector.shape_cast %[[VEC]] : vector<1x1x3x2xi8> to vector<6xi8>
|
|
// CHECK: vector.transfer_write %[[VEC_1D]], %[[COLLAPSED]][%[[C0]], %[[C0]], %[[C0]]]
|
|
// CHECK-SAME: {in_bounds = [true]} : vector<6xi8>, memref<5x4x6xi8, strided<[48, 6, 1], offset: ?>>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_non_contiguous_unit_dims(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
func.func @transfer_write_dims_mismatch_non_zero_indices(
|
|
%idx_1: index,
|
|
%idx_2: index,
|
|
%mem: memref<1x43x4x6xi32>,
|
|
%vec: vector<1x2x6xi32>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%c0_i32 = arith.constant 0 : i32
|
|
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true, true]} :
|
|
vector<1x2x6xi32>, memref<1x43x4x6xi32>
|
|
return
|
|
}
|
|
|
|
// CHECK: #[[$ATTR_0:.+]] = affine_map<()[s0] -> (s0 * 6)>
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_non_zero_indices(
|
|
// CHECK-SAME: %[[IDX_1:.*]]: index, %[[IDX_2:.*]]: index,
|
|
// CHECK-SAME: %[[MEM:.*]]: memref<1x43x4x6xi32>,
|
|
// CHECK-SAME: %[[VEC:.*]]: vector<1x2x6xi32>) {
|
|
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
|
|
// CHECK-DAG: %[[IDX:.*]] = affine.apply #[[$ATTR_0]]()[%[[IDX_2]]]
|
|
// CHECK-DAG: %[[CS:.*]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-DAG-SAME{LITERAL}: [[0], [1], [2, 3]] : memref<1x43x4x6xi32> into memref<1x43x24xi32>
|
|
// CHECK: %[[SC:.*]] = vector.shape_cast %[[VEC]] : vector<1x2x6xi32> to vector<12xi32>
|
|
// CHECK: vector.transfer_write %[[SC]], %[[CS]][%[[C0]], %[[IDX_1]], %[[IDX]]] {in_bounds = [true]} : vector<12xi32>, memref<1x43x24xi32>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_non_zero_indices(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// Overall, the destination memref is non-contiguous. However, the slice to
|
|
// which the input vector is to be written _is_ contiguous. Hence the
|
|
// flattening works fine.
|
|
|
|
func.func @transfer_write_dims_mismatch_non_contiguous_non_zero_indices(
|
|
%vec : vector<2x2xf32>,
|
|
%mem : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>,
|
|
%idx_1 : index,
|
|
%idx_2 : index) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true]} : vector<2x2xf32>, memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 * 2)>
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_non_contiguous_non_zero_indices(
|
|
// CHECK-DAG: %[[APPLY:.*]] = affine.apply #[[$MAP]]()
|
|
// CHECK-DAG: %[[COLLAPSE:.+]] = memref.collapse_shape %{{.*}} {{\[}}[0], [1], [2, 3]] : memref<1x3x3x2xf32, strided<[40, 10, 2, 1], offset: ?>> into memref<1x3x6xf32, strided<[40, 10, 1], offset: ?>>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_non_contiguous_non_zero_indices(
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The leading dynamic shapes don't affect whether this example is flattenable
|
|
// or not. Indeed, those dynamic shapes are not candidates for flattening anyway.
|
|
|
|
func.func @transfer_write_leading_dynamic_dims(
|
|
%vec : vector<8x4xi8>,
|
|
%mem : memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>,
|
|
%idx_1 : index,
|
|
%idx_2 : index) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem[%idx_1, %idx_2, %c0, %c0] {in_bounds = [true, true]} :
|
|
vector<8x4xi8>, memref<?x?x8x4xi8, strided<[?, 32, 4, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func @transfer_write_leading_dynamic_dims
|
|
// CHECK-SAME: %[[VEC:.+]]: vector<8x4xi8>, %[[MEM:.+]]: memref<?x?x8x4xi8, {{.+}}>, %[[ARG2:.+]]: index, %[[ARG3:.+]]: index
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<?x?x8x4xi8, {{.+}}> into memref<?x?x32xi8, {{.+}}>
|
|
// CHECK: %[[VEC1D:.+]] = vector.shape_cast %[[VEC]] : vector<8x4xi8> to vector<32xi8>
|
|
// CHECK: vector.transfer_write %[[VEC1D]], %[[COLLAPSED]]
|
|
// CHECK-SAME: [%[[ARG2]], %[[ARG3]], %[[C0]]] {in_bounds = [true]}
|
|
// CHECK-SAME: : vector<32xi8>, memref<?x?x32xi8, {{.+}}>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_leading_dynamic_dims
|
|
// CHECK-128B: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The vector is a non-contiguous slice of the input
|
|
// memref.
|
|
|
|
func.func @negative_transfer_write_dynamic_to_flatten(
|
|
%mem : memref<4x?x?x2xi8>,
|
|
%vec : vector<2x2x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem[%c0, %c0, %c0, %c0]
|
|
: vector<2x2x2xi8>, memref<4x?x?x2xi8>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @negative_transfer_write_dynamic_to_flatten(
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @negative_transfer_write_dynamic_to_flatten(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// See the comment in front of @transfer_read_dynamic_dim_to_flatten.
|
|
|
|
func.func @transfer_write_dynamic_dim_to_flatten(
|
|
%idx_1: index,
|
|
%idx_2: index,
|
|
%vec : vector<1x2x6xi32>,
|
|
%mem: memref<1x?x4x6xi32>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%c0_i32 = arith.constant 0 : i32
|
|
vector.transfer_write %vec, %mem[%c0, %idx_1, %idx_2, %c0] {in_bounds = [true, true, true]} :
|
|
vector<1x2x6xi32>, memref<1x?x4x6xi32>
|
|
return
|
|
}
|
|
|
|
// CHECK: #[[$MAP:.+]] = affine_map<()[s0] -> (s0 * 6)>
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_dynamic_dim_to_flatten
|
|
// CHECK-SAME: %[[IDX_1:arg0]]: index
|
|
// CHECK-SAME: %[[IDX_2:arg1]]: index
|
|
// CHECK-SAME: %[[VEC:arg2]]: vector<1x2x6xi32>
|
|
// CHECK-SAME: %[[MEM:arg3]]: memref<1x?x4x6xi32>
|
|
// CHECK: %[[C0:.+]] = arith.constant 0 : index
|
|
// CHECK: %[[COLLAPSED_MEM:.+]] = memref.collapse_shape %[[MEM]]
|
|
// CHECK-SAME{LITERAL}: [[0], [1], [2, 3]]
|
|
// CHECK-SAME: : memref<1x?x4x6xi32> into memref<1x?x24xi32>
|
|
// CHECK: %[[COLLAPSED_IDX:.+]] = affine.apply #[[$MAP]]()[%[[IDX_2]]]
|
|
// CHECK: %[[VEC_1D:.+]] = vector.shape_cast %[[VEC]] : vector<1x2x6xi32> to vector<12xi32>
|
|
// CHECK: vector.transfer_write %[[VEC_1D]], %[[COLLAPSED_MEM]][%[[C0]], %[[IDX_1]], %[[COLLAPSED_IDX]]]
|
|
// CHECK-SAME: {in_bounds = [true]} : vector<12xi32>, memref<1x?x24xi32>
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dynamic_dim_to_flatten
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
// The vector to be written represents a _non-contiguous_ slice of the output
|
|
// memref.
|
|
|
|
func.func @transfer_write_dims_mismatch_non_contiguous_slice(
|
|
%mem : memref<5x4x3x2xi8>,
|
|
%vec : vector<2x1x2x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
vector.transfer_write %vec, %mem[%c0, %c0, %c0, %c0] :
|
|
vector<2x1x2x2xi8>, memref<5x4x3x2xi8>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_dims_mismatch_non_contiguous_slice(
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_dims_mismatch_non_contiguous_slice(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
|
|
// -----
|
|
|
|
func.func @transfer_write_0d(
|
|
%mem : memref<i8>,
|
|
%vec : vector<i8>) {
|
|
|
|
vector.transfer_write %vec, %mem[] : vector<i8>, memref<i8>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_0d
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_0d(
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
// CHECK-128B-NOT: vector.shape_cast
|
|
|
|
// -----
|
|
|
|
// The strides make the input memref non-contiguous, hence non-flattenable.
|
|
|
|
func.func @transfer_write_non_contiguous_src(
|
|
%mem : memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>,
|
|
%vec : vector<5x4x3x2xi8>) {
|
|
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem[%c0, %c0, %c0, %c0] :
|
|
vector<5x4x3x2xi8>, memref<5x4x3x2xi8, strided<[24, 8, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
|
|
// CHECK-LABEL: func.func @transfer_write_non_contiguous_src
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func @transfer_write_non_contiguous_src
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
// CHECK-128B-NOT: vector.shape_cast
|
|
|
|
// -----
|
|
|
|
func.func @negative_out_of_bound_transfer_read(
|
|
%mem : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>) -> vector<5x4x3x2xi8> {
|
|
%c0 = arith.constant 0 : index
|
|
%cst = arith.constant 0 : i8
|
|
%res = vector.transfer_read %mem[%c0, %c0, %c0, %c0], %cst {in_bounds = [false, true, true, true]} :
|
|
memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, vector<5x4x3x2xi8>
|
|
return %res : vector<5x4x3x2xi8>
|
|
}
|
|
// CHECK-LABEL: func.func @negative_out_of_bound_transfer_read
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func.func @negative_out_of_bound_transfer_read
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
// CHECK-128B-NOT: vector.shape_cast
|
|
|
|
// -----
|
|
|
|
func.func @negative_out_of_bound_transfer_write(
|
|
%mem : memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>, %vec : vector<1x1x3x2xi8>) {
|
|
%c0 = arith.constant 0 : index
|
|
vector.transfer_write %vec, %mem [%c0, %c0, %c0, %c0] {in_bounds = [false, true, true, true]} :
|
|
vector<1x1x3x2xi8>, memref<?x4x3x2xi8, strided<[24, 6, 2, 1], offset: ?>>
|
|
return
|
|
}
|
|
// CHECK-LABEL: func.func @negative_out_of_bound_transfer_write
|
|
// CHECK-NOT: memref.collapse_shape
|
|
// CHECK-NOT: vector.shape_cast
|
|
|
|
// CHECK-128B-LABEL: func.func @negative_out_of_bound_transfer_write
|
|
// CHECK-128B-NOT: memref.collapse_shape
|
|
// CHECK-128B-NOT: vector.shape_cast
|