This is work towards: https://github.com/llvm/llvm-project/issues/51652 This differential sets up the options and threads them through everywhere, but doesn't actually use them yet. The differential that finally makes use of them is D122061, which is the final differential in the chain that fixes bug 51652. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D122054
188 lines
7.0 KiB
C++
188 lines
7.0 KiB
C++
//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes declaration.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GEN_PASS_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
|
|
|
|
SparsificationPass() = default;
|
|
SparsificationPass(const SparsificationPass &pass) = default;
|
|
SparsificationPass(const SparsificationOptions &options) {
|
|
parallelization = static_cast<int32_t>(options.parallelizationStrategy);
|
|
vectorization = static_cast<int32_t>(options.vectorizationStrategy);
|
|
vectorLength = options.vectorLength;
|
|
enableSIMDIndex32 = options.enableSIMDIndex32;
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
// Translate strategy flags to strategy options.
|
|
SparsificationOptions options(
|
|
sparseParallelizationStrategy(parallelization),
|
|
sparseVectorizationStrategy(vectorization), vectorLength,
|
|
enableSIMDIndex32);
|
|
// Apply rewriting.
|
|
populateSparsificationPatterns(patterns, options);
|
|
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
|
|
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
|
|
}
|
|
};
|
|
|
|
class SparseTensorTypeConverter : public TypeConverter {
|
|
public:
|
|
SparseTensorTypeConverter() {
|
|
addConversion([](Type type) { return type; });
|
|
addConversion(convertSparseTensorTypes);
|
|
}
|
|
// Maps each sparse tensor type to an opaque pointer.
|
|
static Optional<Type> convertSparseTensorTypes(Type type) {
|
|
if (getSparseTensorEncoding(type) != nullptr)
|
|
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
|
|
return llvm::None;
|
|
}
|
|
};
|
|
|
|
struct SparseTensorConversionPass
|
|
: public SparseTensorConversionBase<SparseTensorConversionPass> {
|
|
|
|
SparseTensorConversionPass() = default;
|
|
SparseTensorConversionPass(const SparseTensorConversionPass &pass) = default;
|
|
SparseTensorConversionPass(const SparseTensorConversionOptions &options) {
|
|
sparseToSparse = static_cast<int32_t>(options.sparseToSparseStrategy);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
SparseTensorTypeConverter converter;
|
|
ConversionTarget target(*ctx);
|
|
// Everything in the sparse dialect must go!
|
|
target.addIllegalDialect<SparseTensorDialect>();
|
|
// All dynamic rules below accept new function, call, return, and tensor
|
|
// dim and cast operations as legal output of the rewriting provided that
|
|
// all sparse tensor types have been fully rewritten.
|
|
target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
|
|
return converter.isSignatureLegal(op.getFunctionType());
|
|
});
|
|
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
|
|
return converter.isSignatureLegal(op.getCalleeType());
|
|
});
|
|
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
|
|
return converter.isLegal(op.getOperandTypes());
|
|
});
|
|
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
|
|
return converter.isLegal(op.getOperandTypes());
|
|
});
|
|
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
|
|
return converter.isLegal(op.getOperand().getType());
|
|
});
|
|
// The following operations and dialects may be introduced by the
|
|
// rewriting rules, and are therefore marked as legal.
|
|
target.addLegalOp<arith::CmpFOp, arith::CmpIOp, arith::ConstantOp,
|
|
arith::IndexCastOp, linalg::FillOp, linalg::YieldOp,
|
|
tensor::ExtractOp>();
|
|
target
|
|
.addLegalDialect<bufferization::BufferizationDialect, LLVM::LLVMDialect,
|
|
memref::MemRefDialect, scf::SCFDialect>();
|
|
// Translate strategy flags to strategy options.
|
|
SparseTensorConversionOptions options(
|
|
sparseToSparseConversionStrategy(sparseToSparse));
|
|
// Populate with rules and apply rewriting rules.
|
|
populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns,
|
|
converter);
|
|
populateCallOpTypeConversionPattern(patterns, converter);
|
|
populateSparseTensorConversionPatterns(converter, patterns, options);
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
SparseParallelizationStrategy
|
|
mlir::sparseParallelizationStrategy(int32_t flag) {
|
|
switch (flag) {
|
|
default:
|
|
return SparseParallelizationStrategy::kNone;
|
|
case 1:
|
|
return SparseParallelizationStrategy::kDenseOuterLoop;
|
|
case 2:
|
|
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
|
|
case 3:
|
|
return SparseParallelizationStrategy::kDenseAnyLoop;
|
|
case 4:
|
|
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
|
|
}
|
|
}
|
|
|
|
SparseVectorizationStrategy mlir::sparseVectorizationStrategy(int32_t flag) {
|
|
switch (flag) {
|
|
default:
|
|
return SparseVectorizationStrategy::kNone;
|
|
case 1:
|
|
return SparseVectorizationStrategy::kDenseInnerLoop;
|
|
case 2:
|
|
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
|
|
}
|
|
}
|
|
|
|
SparseToSparseConversionStrategy
|
|
mlir::sparseToSparseConversionStrategy(int32_t flag) {
|
|
switch (flag) {
|
|
default:
|
|
return SparseToSparseConversionStrategy::kAuto;
|
|
case 1:
|
|
return SparseToSparseConversionStrategy::kViaCOO;
|
|
case 2:
|
|
return SparseToSparseConversionStrategy::kDirect;
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparsificationPass() {
|
|
return std::make_unique<SparsificationPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass>
|
|
mlir::createSparsificationPass(const SparsificationOptions &options) {
|
|
return std::make_unique<SparsificationPass>(options);
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
|
|
return std::make_unique<SparseTensorConversionPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass(
|
|
const SparseTensorConversionOptions &options) {
|
|
return std::make_unique<SparseTensorConversionPass>(options);
|
|
}
|