This is mostly for test: under contextual profiling, we perform ICP for those indirect callsites which have targets marked as `alwaysinline`. This helped uncover a bug with the way the profile was updated upon ICP, where we were skipping over the update if the target wasn't called in that context. That was resulting in incorrect counts for the indirect BB. Also flyby fix to the total/direct count values, they should be 64-bit (as all counters are in the contextual profile)
740 lines
28 KiB
C++
740 lines
28 KiB
C++
//===- CallPromotionUtils.cpp - Utilities for call promotion ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities useful for promoting indirect call sites to
|
|
// direct call sites.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/CallPromotionUtils.h"
|
|
#include "llvm/Analysis/CtxProfAnalysis.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/TypeMetadataUtils.h"
|
|
#include "llvm/IR/AttributeMask.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/ProfileData/PGOCtxProfReader.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "call-promotion-utils"
|
|
|
|
/// Fix-up phi nodes in an invoke instruction's normal destination.
|
|
///
|
|
/// After versioning an invoke instruction, values coming from the original
|
|
/// block will now be coming from the "merge" block. For example, in the code
|
|
/// below:
|
|
///
|
|
/// then_bb:
|
|
/// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
|
|
///
|
|
/// else_bb:
|
|
/// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
|
|
///
|
|
/// merge_bb:
|
|
/// %t2 = phi i32 [ %t0, %then_bb ], [ %t1, %else_bb ]
|
|
/// br %normal_dst
|
|
///
|
|
/// normal_dst:
|
|
/// %t3 = phi i32 [ %x, %orig_bb ], ...
|
|
///
|
|
/// "orig_bb" is no longer a predecessor of "normal_dst", so the phi nodes in
|
|
/// "normal_dst" must be fixed to refer to "merge_bb":
|
|
///
|
|
/// normal_dst:
|
|
/// %t3 = phi i32 [ %x, %merge_bb ], ...
|
|
///
|
|
static void fixupPHINodeForNormalDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
|
|
BasicBlock *MergeBlock) {
|
|
for (PHINode &Phi : Invoke->getNormalDest()->phis()) {
|
|
int Idx = Phi.getBasicBlockIndex(OrigBlock);
|
|
if (Idx == -1)
|
|
continue;
|
|
Phi.setIncomingBlock(Idx, MergeBlock);
|
|
}
|
|
}
|
|
|
|
/// Fix-up phi nodes in an invoke instruction's unwind destination.
|
|
///
|
|
/// After versioning an invoke instruction, values coming from the original
|
|
/// block will now be coming from either the "then" block or the "else" block.
|
|
/// For example, in the code below:
|
|
///
|
|
/// then_bb:
|
|
/// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
|
|
///
|
|
/// else_bb:
|
|
/// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
|
|
///
|
|
/// unwind_dst:
|
|
/// %t3 = phi i32 [ %x, %orig_bb ], ...
|
|
///
|
|
/// "orig_bb" is no longer a predecessor of "unwind_dst", so the phi nodes in
|
|
/// "unwind_dst" must be fixed to refer to "then_bb" and "else_bb":
|
|
///
|
|
/// unwind_dst:
|
|
/// %t3 = phi i32 [ %x, %then_bb ], [ %x, %else_bb ], ...
|
|
///
|
|
static void fixupPHINodeForUnwindDest(InvokeInst *Invoke, BasicBlock *OrigBlock,
|
|
BasicBlock *ThenBlock,
|
|
BasicBlock *ElseBlock) {
|
|
for (PHINode &Phi : Invoke->getUnwindDest()->phis()) {
|
|
int Idx = Phi.getBasicBlockIndex(OrigBlock);
|
|
if (Idx == -1)
|
|
continue;
|
|
auto *V = Phi.getIncomingValue(Idx);
|
|
Phi.setIncomingBlock(Idx, ThenBlock);
|
|
Phi.addIncoming(V, ElseBlock);
|
|
}
|
|
}
|
|
|
|
/// Create a phi node for the returned value of a call or invoke instruction.
|
|
///
|
|
/// After versioning a call or invoke instruction that returns a value, we have
|
|
/// to merge the value of the original and new instructions. We do this by
|
|
/// creating a phi node and replacing uses of the original instruction with this
|
|
/// phi node.
|
|
///
|
|
/// For example, if \p OrigInst is defined in "else_bb" and \p NewInst is
|
|
/// defined in "then_bb", we create the following phi node:
|
|
///
|
|
/// ; Uses of the original instruction are replaced by uses of the phi node.
|
|
/// %t0 = phi i32 [ %orig_inst, %else_bb ], [ %new_inst, %then_bb ],
|
|
///
|
|
static void createRetPHINode(Instruction *OrigInst, Instruction *NewInst,
|
|
BasicBlock *MergeBlock, IRBuilder<> &Builder) {
|
|
|
|
if (OrigInst->getType()->isVoidTy() || OrigInst->use_empty())
|
|
return;
|
|
|
|
Builder.SetInsertPoint(MergeBlock, MergeBlock->begin());
|
|
PHINode *Phi = Builder.CreatePHI(OrigInst->getType(), 0);
|
|
SmallVector<User *, 16> UsersToUpdate(OrigInst->users());
|
|
for (User *U : UsersToUpdate)
|
|
U->replaceUsesOfWith(OrigInst, Phi);
|
|
Phi->addIncoming(OrigInst, OrigInst->getParent());
|
|
Phi->addIncoming(NewInst, NewInst->getParent());
|
|
}
|
|
|
|
/// Cast a call or invoke instruction to the given type.
|
|
///
|
|
/// When promoting a call site, the return type of the call site might not match
|
|
/// that of the callee. If this is the case, we have to cast the returned value
|
|
/// to the correct type. The location of the cast depends on if we have a call
|
|
/// or invoke instruction.
|
|
///
|
|
/// For example, if the call instruction below requires a bitcast after
|
|
/// promotion:
|
|
///
|
|
/// orig_bb:
|
|
/// %t0 = call i32 @func()
|
|
/// ...
|
|
///
|
|
/// The bitcast is placed after the call instruction:
|
|
///
|
|
/// orig_bb:
|
|
/// ; Uses of the original return value are replaced by uses of the bitcast.
|
|
/// %t0 = call i32 @func()
|
|
/// %t1 = bitcast i32 %t0 to ...
|
|
/// ...
|
|
///
|
|
/// A similar transformation is performed for invoke instructions. However,
|
|
/// since invokes are terminating, a new block is created for the bitcast. For
|
|
/// example, if the invoke instruction below requires a bitcast after promotion:
|
|
///
|
|
/// orig_bb:
|
|
/// %t0 = invoke i32 @func() to label %normal_dst unwind label %unwind_dst
|
|
///
|
|
/// The edge between the original block and the invoke's normal destination is
|
|
/// split, and the bitcast is placed there:
|
|
///
|
|
/// orig_bb:
|
|
/// %t0 = invoke i32 @func() to label %split_bb unwind label %unwind_dst
|
|
///
|
|
/// split_bb:
|
|
/// ; Uses of the original return value are replaced by uses of the bitcast.
|
|
/// %t1 = bitcast i32 %t0 to ...
|
|
/// br label %normal_dst
|
|
///
|
|
static void createRetBitCast(CallBase &CB, Type *RetTy, CastInst **RetBitCast) {
|
|
|
|
// Save the users of the calling instruction. These uses will be changed to
|
|
// use the bitcast after we create it.
|
|
SmallVector<User *, 16> UsersToUpdate(CB.users());
|
|
|
|
// Determine an appropriate location to create the bitcast for the return
|
|
// value. The location depends on if we have a call or invoke instruction.
|
|
BasicBlock::iterator InsertBefore;
|
|
if (auto *Invoke = dyn_cast<InvokeInst>(&CB))
|
|
InsertBefore =
|
|
SplitEdge(Invoke->getParent(), Invoke->getNormalDest())->begin();
|
|
else
|
|
InsertBefore = std::next(CB.getIterator());
|
|
|
|
// Bitcast the return value to the correct type.
|
|
auto *Cast = CastInst::CreateBitOrPointerCast(&CB, RetTy, "", InsertBefore);
|
|
if (RetBitCast)
|
|
*RetBitCast = Cast;
|
|
|
|
// Replace all the original uses of the calling instruction with the bitcast.
|
|
for (User *U : UsersToUpdate)
|
|
U->replaceUsesOfWith(&CB, Cast);
|
|
}
|
|
|
|
/// Predicate and clone the given call site.
|
|
///
|
|
/// This function creates an if-then-else structure at the location of the call
|
|
/// site. The "if" condition is specified by `Cond`.
|
|
/// The original call site is moved into the "else" block, and a clone of the
|
|
/// call site is placed in the "then" block. The cloned instruction is returned.
|
|
///
|
|
/// For example, the call instruction below:
|
|
///
|
|
/// orig_bb:
|
|
/// %t0 = call i32 %ptr()
|
|
/// ...
|
|
///
|
|
/// Is replace by the following:
|
|
///
|
|
/// orig_bb:
|
|
/// %cond = Cond
|
|
/// br i1 %cond, %then_bb, %else_bb
|
|
///
|
|
/// then_bb:
|
|
/// ; The clone of the original call instruction is placed in the "then"
|
|
/// ; block. It is not yet promoted.
|
|
/// %t1 = call i32 %ptr()
|
|
/// br merge_bb
|
|
///
|
|
/// else_bb:
|
|
/// ; The original call instruction is moved to the "else" block.
|
|
/// %t0 = call i32 %ptr()
|
|
/// br merge_bb
|
|
///
|
|
/// merge_bb:
|
|
/// ; Uses of the original call instruction are replaced by uses of the phi
|
|
/// ; node.
|
|
/// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
|
|
/// ...
|
|
///
|
|
/// A similar transformation is performed for invoke instructions. However,
|
|
/// since invokes are terminating, more work is required. For example, the
|
|
/// invoke instruction below:
|
|
///
|
|
/// orig_bb:
|
|
/// %t0 = invoke %ptr() to label %normal_dst unwind label %unwind_dst
|
|
///
|
|
/// Is replace by the following:
|
|
///
|
|
/// orig_bb:
|
|
/// %cond = Cond
|
|
/// br i1 %cond, %then_bb, %else_bb
|
|
///
|
|
/// then_bb:
|
|
/// ; The clone of the original invoke instruction is placed in the "then"
|
|
/// ; block, and its normal destination is set to the "merge" block. It is
|
|
/// ; not yet promoted.
|
|
/// %t1 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
|
|
///
|
|
/// else_bb:
|
|
/// ; The original invoke instruction is moved into the "else" block, and
|
|
/// ; its normal destination is set to the "merge" block.
|
|
/// %t0 = invoke i32 %ptr() to label %merge_bb unwind label %unwind_dst
|
|
///
|
|
/// merge_bb:
|
|
/// ; Uses of the original invoke instruction are replaced by uses of the
|
|
/// ; phi node, and the merge block branches to the normal destination.
|
|
/// %t2 = phi i32 [ %t0, %else_bb ], [ %t1, %then_bb ]
|
|
/// br %normal_dst
|
|
///
|
|
/// An indirect musttail call is processed slightly differently in that:
|
|
/// 1. No merge block needed for the orginal and the cloned callsite, since
|
|
/// either one ends the flow. No phi node is needed either.
|
|
/// 2. The return statement following the original call site is duplicated too
|
|
/// and placed immediately after the cloned call site per the IR convention.
|
|
///
|
|
/// For example, the musttail call instruction below:
|
|
///
|
|
/// orig_bb:
|
|
/// %t0 = musttail call i32 %ptr()
|
|
/// ...
|
|
///
|
|
/// Is replaced by the following:
|
|
///
|
|
/// cond_bb:
|
|
/// %cond = Cond
|
|
/// br i1 %cond, %then_bb, %orig_bb
|
|
///
|
|
/// then_bb:
|
|
/// ; The clone of the original call instruction is placed in the "then"
|
|
/// ; block. It is not yet promoted.
|
|
/// %t1 = musttail call i32 %ptr()
|
|
/// ret %t1
|
|
///
|
|
/// orig_bb:
|
|
/// ; The original call instruction stays in its original block.
|
|
/// %t0 = musttail call i32 %ptr()
|
|
/// ret %t0
|
|
static CallBase &versionCallSiteWithCond(CallBase &CB, Value *Cond,
|
|
MDNode *BranchWeights) {
|
|
|
|
IRBuilder<> Builder(&CB);
|
|
CallBase *OrigInst = &CB;
|
|
BasicBlock *OrigBlock = OrigInst->getParent();
|
|
|
|
if (OrigInst->isMustTailCall()) {
|
|
// Create an if-then structure. The original instruction stays in its block,
|
|
// and a clone of the original instruction is placed in the "then" block.
|
|
Instruction *ThenTerm =
|
|
SplitBlockAndInsertIfThen(Cond, &CB, false, BranchWeights);
|
|
BasicBlock *ThenBlock = ThenTerm->getParent();
|
|
ThenBlock->setName("if.true.direct_targ");
|
|
CallBase *NewInst = cast<CallBase>(OrigInst->clone());
|
|
NewInst->insertBefore(ThenTerm);
|
|
|
|
// Place a clone of the optional bitcast after the new call site.
|
|
Value *NewRetVal = NewInst;
|
|
auto Next = OrigInst->getNextNode();
|
|
if (auto *BitCast = dyn_cast_or_null<BitCastInst>(Next)) {
|
|
assert(BitCast->getOperand(0) == OrigInst &&
|
|
"bitcast following musttail call must use the call");
|
|
auto NewBitCast = BitCast->clone();
|
|
NewBitCast->replaceUsesOfWith(OrigInst, NewInst);
|
|
NewBitCast->insertBefore(ThenTerm);
|
|
NewRetVal = NewBitCast;
|
|
Next = BitCast->getNextNode();
|
|
}
|
|
|
|
// Place a clone of the return instruction after the new call site.
|
|
ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
|
|
assert(Ret && "musttail call must precede a ret with an optional bitcast");
|
|
auto NewRet = Ret->clone();
|
|
if (Ret->getReturnValue())
|
|
NewRet->replaceUsesOfWith(Ret->getReturnValue(), NewRetVal);
|
|
NewRet->insertBefore(ThenTerm);
|
|
|
|
// A return instructions is terminating, so we don't need the terminator
|
|
// instruction just created.
|
|
ThenTerm->eraseFromParent();
|
|
|
|
return *NewInst;
|
|
}
|
|
|
|
// Create an if-then-else structure. The original instruction is moved into
|
|
// the "else" block, and a clone of the original instruction is placed in the
|
|
// "then" block.
|
|
Instruction *ThenTerm = nullptr;
|
|
Instruction *ElseTerm = nullptr;
|
|
SplitBlockAndInsertIfThenElse(Cond, &CB, &ThenTerm, &ElseTerm, BranchWeights);
|
|
BasicBlock *ThenBlock = ThenTerm->getParent();
|
|
BasicBlock *ElseBlock = ElseTerm->getParent();
|
|
BasicBlock *MergeBlock = OrigInst->getParent();
|
|
|
|
ThenBlock->setName("if.true.direct_targ");
|
|
ElseBlock->setName("if.false.orig_indirect");
|
|
MergeBlock->setName("if.end.icp");
|
|
|
|
CallBase *NewInst = cast<CallBase>(OrigInst->clone());
|
|
OrigInst->moveBefore(ElseTerm);
|
|
NewInst->insertBefore(ThenTerm);
|
|
|
|
// If the original call site is an invoke instruction, we have extra work to
|
|
// do since invoke instructions are terminating. We have to fix-up phi nodes
|
|
// in the invoke's normal and unwind destinations.
|
|
if (auto *OrigInvoke = dyn_cast<InvokeInst>(OrigInst)) {
|
|
auto *NewInvoke = cast<InvokeInst>(NewInst);
|
|
|
|
// Invoke instructions are terminating, so we don't need the terminator
|
|
// instructions that were just created.
|
|
ThenTerm->eraseFromParent();
|
|
ElseTerm->eraseFromParent();
|
|
|
|
// Branch from the "merge" block to the original normal destination.
|
|
Builder.SetInsertPoint(MergeBlock);
|
|
Builder.CreateBr(OrigInvoke->getNormalDest());
|
|
|
|
// Fix-up phi nodes in the original invoke's normal and unwind destinations.
|
|
fixupPHINodeForNormalDest(OrigInvoke, OrigBlock, MergeBlock);
|
|
fixupPHINodeForUnwindDest(OrigInvoke, MergeBlock, ThenBlock, ElseBlock);
|
|
|
|
// Now set the normal destinations of the invoke instructions to be the
|
|
// "merge" block.
|
|
OrigInvoke->setNormalDest(MergeBlock);
|
|
NewInvoke->setNormalDest(MergeBlock);
|
|
}
|
|
|
|
// Create a phi node for the returned value of the call site.
|
|
createRetPHINode(OrigInst, NewInst, MergeBlock, Builder);
|
|
|
|
return *NewInst;
|
|
}
|
|
|
|
// Predicate and clone the given call site using condition `CB.callee ==
|
|
// Callee`. See the comment `versionCallSiteWithCond` for the transformation.
|
|
CallBase &llvm::versionCallSite(CallBase &CB, Value *Callee,
|
|
MDNode *BranchWeights) {
|
|
|
|
IRBuilder<> Builder(&CB);
|
|
|
|
// Create the compare. The called value and callee must have the same type to
|
|
// be compared.
|
|
if (CB.getCalledOperand()->getType() != Callee->getType())
|
|
Callee = Builder.CreateBitCast(Callee, CB.getCalledOperand()->getType());
|
|
auto *Cond = Builder.CreateICmpEQ(CB.getCalledOperand(), Callee);
|
|
|
|
return versionCallSiteWithCond(CB, Cond, BranchWeights);
|
|
}
|
|
|
|
bool llvm::isLegalToPromote(const CallBase &CB, Function *Callee,
|
|
const char **FailureReason) {
|
|
assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
|
|
|
|
auto &DL = Callee->getDataLayout();
|
|
|
|
// Check the return type. The callee's return value type must be bitcast
|
|
// compatible with the call site's type.
|
|
Type *CallRetTy = CB.getType();
|
|
Type *FuncRetTy = Callee->getReturnType();
|
|
if (CallRetTy != FuncRetTy)
|
|
if (!CastInst::isBitOrNoopPointerCastable(FuncRetTy, CallRetTy, DL)) {
|
|
if (FailureReason)
|
|
*FailureReason = "Return type mismatch";
|
|
return false;
|
|
}
|
|
|
|
// The number of formal arguments of the callee.
|
|
unsigned NumParams = Callee->getFunctionType()->getNumParams();
|
|
|
|
// The number of actual arguments in the call.
|
|
unsigned NumArgs = CB.arg_size();
|
|
|
|
// Check the number of arguments. The callee and call site must agree on the
|
|
// number of arguments.
|
|
if (NumArgs != NumParams && !Callee->isVarArg()) {
|
|
if (FailureReason)
|
|
*FailureReason = "The number of arguments mismatch";
|
|
return false;
|
|
}
|
|
|
|
// Check the argument types. The callee's formal argument types must be
|
|
// bitcast compatible with the corresponding actual argument types of the call
|
|
// site.
|
|
unsigned I = 0;
|
|
for (; I < NumParams; ++I) {
|
|
// Make sure that the callee and call agree on byval/inalloca. The types do
|
|
// not have to match.
|
|
if (Callee->hasParamAttribute(I, Attribute::ByVal) !=
|
|
CB.getAttributes().hasParamAttr(I, Attribute::ByVal)) {
|
|
if (FailureReason)
|
|
*FailureReason = "byval mismatch";
|
|
return false;
|
|
}
|
|
if (Callee->hasParamAttribute(I, Attribute::InAlloca) !=
|
|
CB.getAttributes().hasParamAttr(I, Attribute::InAlloca)) {
|
|
if (FailureReason)
|
|
*FailureReason = "inalloca mismatch";
|
|
return false;
|
|
}
|
|
|
|
Type *FormalTy = Callee->getFunctionType()->getFunctionParamType(I);
|
|
Type *ActualTy = CB.getArgOperand(I)->getType();
|
|
if (FormalTy == ActualTy)
|
|
continue;
|
|
if (!CastInst::isBitOrNoopPointerCastable(ActualTy, FormalTy, DL)) {
|
|
if (FailureReason)
|
|
*FailureReason = "Argument type mismatch";
|
|
return false;
|
|
}
|
|
|
|
// MustTail call needs stricter type match. See
|
|
// Verifier::verifyMustTailCall().
|
|
if (CB.isMustTailCall()) {
|
|
PointerType *PF = dyn_cast<PointerType>(FormalTy);
|
|
PointerType *PA = dyn_cast<PointerType>(ActualTy);
|
|
if (!PF || !PA || PF->getAddressSpace() != PA->getAddressSpace()) {
|
|
if (FailureReason)
|
|
*FailureReason = "Musttail call Argument type mismatch";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
for (; I < NumArgs; I++) {
|
|
// Vararg functions can have more arguments than parameters.
|
|
assert(Callee->isVarArg());
|
|
if (CB.paramHasAttr(I, Attribute::StructRet)) {
|
|
if (FailureReason)
|
|
*FailureReason = "SRet arg to vararg function";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
CallBase &llvm::promoteCall(CallBase &CB, Function *Callee,
|
|
CastInst **RetBitCast) {
|
|
assert(!CB.getCalledFunction() && "Only indirect call sites can be promoted");
|
|
|
|
// Set the called function of the call site to be the given callee (but don't
|
|
// change the type).
|
|
CB.setCalledOperand(Callee);
|
|
|
|
// Since the call site will no longer be direct, we must clear metadata that
|
|
// is only appropriate for indirect calls. This includes !prof and !callees
|
|
// metadata.
|
|
CB.setMetadata(LLVMContext::MD_prof, nullptr);
|
|
CB.setMetadata(LLVMContext::MD_callees, nullptr);
|
|
|
|
// If the function type of the call site matches that of the callee, no
|
|
// additional work is required.
|
|
if (CB.getFunctionType() == Callee->getFunctionType())
|
|
return CB;
|
|
|
|
// Save the return types of the call site and callee.
|
|
Type *CallSiteRetTy = CB.getType();
|
|
Type *CalleeRetTy = Callee->getReturnType();
|
|
|
|
// Change the function type of the call site the match that of the callee.
|
|
CB.mutateFunctionType(Callee->getFunctionType());
|
|
|
|
// Inspect the arguments of the call site. If an argument's type doesn't
|
|
// match the corresponding formal argument's type in the callee, bitcast it
|
|
// to the correct type.
|
|
auto CalleeType = Callee->getFunctionType();
|
|
auto CalleeParamNum = CalleeType->getNumParams();
|
|
|
|
LLVMContext &Ctx = Callee->getContext();
|
|
const AttributeList &CallerPAL = CB.getAttributes();
|
|
// The new list of argument attributes.
|
|
SmallVector<AttributeSet, 4> NewArgAttrs;
|
|
bool AttributeChanged = false;
|
|
|
|
for (unsigned ArgNo = 0; ArgNo < CalleeParamNum; ++ArgNo) {
|
|
auto *Arg = CB.getArgOperand(ArgNo);
|
|
Type *FormalTy = CalleeType->getParamType(ArgNo);
|
|
Type *ActualTy = Arg->getType();
|
|
if (FormalTy != ActualTy) {
|
|
auto *Cast =
|
|
CastInst::CreateBitOrPointerCast(Arg, FormalTy, "", CB.getIterator());
|
|
CB.setArgOperand(ArgNo, Cast);
|
|
|
|
// Remove any incompatible attributes for the argument.
|
|
AttrBuilder ArgAttrs(Ctx, CallerPAL.getParamAttrs(ArgNo));
|
|
ArgAttrs.remove(AttributeFuncs::typeIncompatible(FormalTy));
|
|
|
|
// We may have a different byval/inalloca type.
|
|
if (ArgAttrs.getByValType())
|
|
ArgAttrs.addByValAttr(Callee->getParamByValType(ArgNo));
|
|
if (ArgAttrs.getInAllocaType())
|
|
ArgAttrs.addInAllocaAttr(Callee->getParamInAllocaType(ArgNo));
|
|
|
|
NewArgAttrs.push_back(AttributeSet::get(Ctx, ArgAttrs));
|
|
AttributeChanged = true;
|
|
} else
|
|
NewArgAttrs.push_back(CallerPAL.getParamAttrs(ArgNo));
|
|
}
|
|
|
|
// If the return type of the call site doesn't match that of the callee, cast
|
|
// the returned value to the appropriate type.
|
|
// Remove any incompatible return value attribute.
|
|
AttrBuilder RAttrs(Ctx, CallerPAL.getRetAttrs());
|
|
if (!CallSiteRetTy->isVoidTy() && CallSiteRetTy != CalleeRetTy) {
|
|
createRetBitCast(CB, CallSiteRetTy, RetBitCast);
|
|
RAttrs.remove(AttributeFuncs::typeIncompatible(CalleeRetTy));
|
|
AttributeChanged = true;
|
|
}
|
|
|
|
// Set the new callsite attribute.
|
|
if (AttributeChanged)
|
|
CB.setAttributes(AttributeList::get(Ctx, CallerPAL.getFnAttrs(),
|
|
AttributeSet::get(Ctx, RAttrs),
|
|
NewArgAttrs));
|
|
|
|
return CB;
|
|
}
|
|
|
|
CallBase &llvm::promoteCallWithIfThenElse(CallBase &CB, Function *Callee,
|
|
MDNode *BranchWeights) {
|
|
|
|
// Version the indirect call site. If the called value is equal to the given
|
|
// callee, 'NewInst' will be executed, otherwise the original call site will
|
|
// be executed.
|
|
CallBase &NewInst = versionCallSite(CB, Callee, BranchWeights);
|
|
|
|
// Promote 'NewInst' so that it directly calls the desired function.
|
|
return promoteCall(NewInst, Callee);
|
|
}
|
|
|
|
CallBase *llvm::promoteCallWithIfThenElse(CallBase &CB, Function &Callee,
|
|
PGOContextualProfile &CtxProf) {
|
|
assert(CB.isIndirectCall());
|
|
if (!CtxProf.isFunctionKnown(Callee))
|
|
return nullptr;
|
|
auto &Caller = *CB.getFunction();
|
|
auto *CSInstr = CtxProfAnalysis::getCallsiteInstrumentation(CB);
|
|
if (!CSInstr)
|
|
return nullptr;
|
|
const uint64_t CSIndex = CSInstr->getIndex()->getZExtValue();
|
|
|
|
CallBase &DirectCall = promoteCall(
|
|
versionCallSite(CB, &Callee, /*BranchWeights=*/nullptr), &Callee);
|
|
CSInstr->moveBefore(&CB);
|
|
const auto NewCSID = CtxProf.allocateNextCallsiteIndex(Caller);
|
|
auto *NewCSInstr = cast<InstrProfCallsite>(CSInstr->clone());
|
|
NewCSInstr->setIndex(NewCSID);
|
|
NewCSInstr->setCallee(&Callee);
|
|
NewCSInstr->insertBefore(&DirectCall);
|
|
auto &DirectBB = *DirectCall.getParent();
|
|
auto &IndirectBB = *CB.getParent();
|
|
|
|
assert((CtxProfAnalysis::getBBInstrumentation(IndirectBB) == nullptr) &&
|
|
"The ICP direct BB is new, it shouldn't have instrumentation");
|
|
assert((CtxProfAnalysis::getBBInstrumentation(DirectBB) == nullptr) &&
|
|
"The ICP indirect BB is new, it shouldn't have instrumentation");
|
|
|
|
// Allocate counters for the new basic blocks.
|
|
const uint32_t DirectID = CtxProf.allocateNextCounterIndex(Caller);
|
|
const uint32_t IndirectID = CtxProf.allocateNextCounterIndex(Caller);
|
|
auto *EntryBBIns =
|
|
CtxProfAnalysis::getBBInstrumentation(Caller.getEntryBlock());
|
|
auto *DirectBBIns = cast<InstrProfCntrInstBase>(EntryBBIns->clone());
|
|
DirectBBIns->setIndex(DirectID);
|
|
DirectBBIns->insertInto(&DirectBB, DirectBB.getFirstInsertionPt());
|
|
|
|
auto *IndirectBBIns = cast<InstrProfCntrInstBase>(EntryBBIns->clone());
|
|
IndirectBBIns->setIndex(IndirectID);
|
|
IndirectBBIns->insertInto(&IndirectBB, IndirectBB.getFirstInsertionPt());
|
|
|
|
const GlobalValue::GUID CalleeGUID = AssignGUIDPass::getGUID(Callee);
|
|
const uint32_t NewCountersSize = IndirectID + 1;
|
|
|
|
auto ProfileUpdater = [&](PGOCtxProfContext &Ctx) {
|
|
assert(Ctx.guid() == AssignGUIDPass::getGUID(Caller));
|
|
assert(NewCountersSize - 2 == Ctx.counters().size());
|
|
// All the ctx-es belonging to a function must have the same size counters.
|
|
Ctx.resizeCounters(NewCountersSize);
|
|
|
|
// Maybe in this context, the indirect callsite wasn't observed at all. That
|
|
// would make both direct and indirect BBs cold - which is what we already
|
|
// have from resising the counters.
|
|
if (!Ctx.hasCallsite(CSIndex))
|
|
return;
|
|
auto &CSData = Ctx.callsite(CSIndex);
|
|
|
|
uint64_t TotalCount = 0;
|
|
for (const auto &[_, V] : CSData)
|
|
TotalCount += V.getEntrycount();
|
|
uint64_t DirectCount = 0;
|
|
// If we called the direct target, update the DirectCount. If we didn't, we
|
|
// still want to update the indirect BB (to which the TotalCount goes, in
|
|
// that case).
|
|
if (auto It = CSData.find(CalleeGUID); It != CSData.end()) {
|
|
assert(CalleeGUID == It->second.guid());
|
|
DirectCount = It->second.getEntrycount();
|
|
// This direct target needs to be moved to this caller under the
|
|
// newly-allocated callsite index.
|
|
assert(Ctx.callsites().count(NewCSID) == 0);
|
|
Ctx.ingestContext(NewCSID, std::move(It->second));
|
|
CSData.erase(CalleeGUID);
|
|
}
|
|
|
|
assert(TotalCount >= DirectCount);
|
|
uint64_t IndirectCount = TotalCount - DirectCount;
|
|
// The ICP's effect is as-if the direct BB would have been taken DirectCount
|
|
// times, and the indirect BB, IndirectCount times
|
|
Ctx.counters()[DirectID] = DirectCount;
|
|
Ctx.counters()[IndirectID] = IndirectCount;
|
|
|
|
};
|
|
CtxProf.update(ProfileUpdater, &Caller);
|
|
return &DirectCall;
|
|
}
|
|
|
|
CallBase &llvm::promoteCallWithVTableCmp(CallBase &CB, Instruction *VPtr,
|
|
Function *Callee,
|
|
ArrayRef<Constant *> AddressPoints,
|
|
MDNode *BranchWeights) {
|
|
assert(!AddressPoints.empty() && "Caller should guarantee");
|
|
IRBuilder<> Builder(&CB);
|
|
SmallVector<Value *, 2> ICmps;
|
|
for (auto &AddressPoint : AddressPoints)
|
|
ICmps.push_back(Builder.CreateICmpEQ(VPtr, AddressPoint));
|
|
|
|
// TODO: Perform tree height reduction if the number of ICmps is high.
|
|
Value *Cond = Builder.CreateOr(ICmps);
|
|
|
|
// Version the indirect call site. If Cond is true, 'NewInst' will be
|
|
// executed, otherwise the original call site will be executed.
|
|
CallBase &NewInst = versionCallSiteWithCond(CB, Cond, BranchWeights);
|
|
|
|
// Promote 'NewInst' so that it directly calls the desired function.
|
|
return promoteCall(NewInst, Callee);
|
|
}
|
|
|
|
bool llvm::tryPromoteCall(CallBase &CB) {
|
|
assert(!CB.getCalledFunction());
|
|
Module *M = CB.getCaller()->getParent();
|
|
const DataLayout &DL = M->getDataLayout();
|
|
Value *Callee = CB.getCalledOperand();
|
|
|
|
LoadInst *VTableEntryLoad = dyn_cast<LoadInst>(Callee);
|
|
if (!VTableEntryLoad)
|
|
return false; // Not a vtable entry load.
|
|
Value *VTableEntryPtr = VTableEntryLoad->getPointerOperand();
|
|
APInt VTableOffset(DL.getTypeSizeInBits(VTableEntryPtr->getType()), 0);
|
|
Value *VTableBasePtr = VTableEntryPtr->stripAndAccumulateConstantOffsets(
|
|
DL, VTableOffset, /* AllowNonInbounds */ true);
|
|
LoadInst *VTablePtrLoad = dyn_cast<LoadInst>(VTableBasePtr);
|
|
if (!VTablePtrLoad)
|
|
return false; // Not a vtable load.
|
|
Value *Object = VTablePtrLoad->getPointerOperand();
|
|
APInt ObjectOffset(DL.getTypeSizeInBits(Object->getType()), 0);
|
|
Value *ObjectBase = Object->stripAndAccumulateConstantOffsets(
|
|
DL, ObjectOffset, /* AllowNonInbounds */ true);
|
|
if (!(isa<AllocaInst>(ObjectBase) && ObjectOffset == 0))
|
|
// Not an Alloca or the offset isn't zero.
|
|
return false;
|
|
|
|
// Look for the vtable pointer store into the object by the ctor.
|
|
BasicBlock::iterator BBI(VTablePtrLoad);
|
|
Value *VTablePtr = FindAvailableLoadedValue(
|
|
VTablePtrLoad, VTablePtrLoad->getParent(), BBI, 0, nullptr, nullptr);
|
|
if (!VTablePtr)
|
|
return false; // No vtable found.
|
|
APInt VTableOffsetGVBase(DL.getTypeSizeInBits(VTablePtr->getType()), 0);
|
|
Value *VTableGVBase = VTablePtr->stripAndAccumulateConstantOffsets(
|
|
DL, VTableOffsetGVBase, /* AllowNonInbounds */ true);
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(VTableGVBase);
|
|
if (!(GV && GV->isConstant() && GV->hasDefinitiveInitializer()))
|
|
// Not in the form of a global constant variable with an initializer.
|
|
return false;
|
|
|
|
APInt VTableGVOffset = VTableOffsetGVBase + VTableOffset;
|
|
if (!(VTableGVOffset.getActiveBits() <= 64))
|
|
return false; // Out of range.
|
|
|
|
Function *DirectCallee = nullptr;
|
|
std::tie(DirectCallee, std::ignore) =
|
|
getFunctionAtVTableOffset(GV, VTableGVOffset.getZExtValue(), *M);
|
|
if (!DirectCallee)
|
|
return false; // No function pointer found.
|
|
|
|
if (!isLegalToPromote(CB, DirectCallee))
|
|
return false;
|
|
|
|
// Success.
|
|
promoteCall(CB, DirectCallee);
|
|
return true;
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|