The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
207 lines
7.8 KiB
C++
207 lines
7.8 KiB
C++
//===-- MathToLibm.cpp - conversion from Math to libm calls ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Conversion/MathToLibm/MathToLibm.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_CONVERTMATHTOLIBM
|
|
#include "mlir/Conversion/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
// Pattern to convert vector operations to scalar operations. This is needed as
|
|
// libm calls require scalars.
|
|
template <typename Op>
|
|
struct VecOpToScalarOp : public OpRewritePattern<Op> {
|
|
public:
|
|
using OpRewritePattern<Op>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
|
|
};
|
|
// Pattern to promote an op of a smaller floating point type to F32.
|
|
template <typename Op>
|
|
struct PromoteOpToF32 : public OpRewritePattern<Op> {
|
|
public:
|
|
using OpRewritePattern<Op>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
|
|
};
|
|
// Pattern to convert scalar math operations to calls to libm functions.
|
|
// Additionally the libm function signatures are declared.
|
|
template <typename Op>
|
|
struct ScalarOpToLibmCall : public OpRewritePattern<Op> {
|
|
public:
|
|
using OpRewritePattern<Op>::OpRewritePattern;
|
|
ScalarOpToLibmCall<Op>(MLIRContext *context, StringRef floatFunc,
|
|
StringRef doubleFunc)
|
|
: OpRewritePattern<Op>(context), floatFunc(floatFunc),
|
|
doubleFunc(doubleFunc){};
|
|
|
|
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
|
|
|
|
private:
|
|
std::string floatFunc, doubleFunc;
|
|
};
|
|
|
|
template <typename OpTy>
|
|
void populatePatternsForOp(RewritePatternSet &patterns, MLIRContext *ctx,
|
|
StringRef floatFunc, StringRef doubleFunc) {
|
|
patterns.add<VecOpToScalarOp<OpTy>, PromoteOpToF32<OpTy>>(ctx);
|
|
patterns.add<ScalarOpToLibmCall<OpTy>>(ctx, floatFunc, doubleFunc);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <typename Op>
|
|
LogicalResult
|
|
VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
|
|
auto opType = op.getType();
|
|
auto loc = op.getLoc();
|
|
auto vecType = dyn_cast<VectorType>(opType);
|
|
|
|
if (!vecType)
|
|
return failure();
|
|
if (!vecType.hasRank())
|
|
return failure();
|
|
auto shape = vecType.getShape();
|
|
int64_t numElements = vecType.getNumElements();
|
|
|
|
Value result = rewriter.create<arith::ConstantOp>(
|
|
loc, DenseElementsAttr::get(
|
|
vecType, FloatAttr::get(vecType.getElementType(), 0.0)));
|
|
SmallVector<int64_t> strides = computeStrides(shape);
|
|
for (auto linearIndex = 0; linearIndex < numElements; ++linearIndex) {
|
|
SmallVector<int64_t> positions = delinearize(linearIndex, strides);
|
|
SmallVector<Value> operands;
|
|
for (auto input : op->getOperands())
|
|
operands.push_back(
|
|
rewriter.create<vector::ExtractOp>(loc, input, positions));
|
|
Value scalarOp =
|
|
rewriter.create<Op>(loc, vecType.getElementType(), operands);
|
|
result =
|
|
rewriter.create<vector::InsertOp>(loc, scalarOp, result, positions);
|
|
}
|
|
rewriter.replaceOp(op, {result});
|
|
return success();
|
|
}
|
|
|
|
template <typename Op>
|
|
LogicalResult
|
|
PromoteOpToF32<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
|
|
auto opType = op.getType();
|
|
if (!isa<Float16Type, BFloat16Type>(opType))
|
|
return failure();
|
|
|
|
auto loc = op.getLoc();
|
|
auto f32 = rewriter.getF32Type();
|
|
auto extendedOperands = llvm::to_vector(
|
|
llvm::map_range(op->getOperands(), [&](Value operand) -> Value {
|
|
return rewriter.create<arith::ExtFOp>(loc, f32, operand);
|
|
}));
|
|
auto newOp = rewriter.create<Op>(loc, f32, extendedOperands);
|
|
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, opType, newOp);
|
|
return success();
|
|
}
|
|
|
|
template <typename Op>
|
|
LogicalResult
|
|
ScalarOpToLibmCall<Op>::matchAndRewrite(Op op,
|
|
PatternRewriter &rewriter) const {
|
|
auto module = SymbolTable::getNearestSymbolTable(op);
|
|
auto type = op.getType();
|
|
if (!isa<Float32Type, Float64Type>(type))
|
|
return failure();
|
|
|
|
auto name = type.getIntOrFloatBitWidth() == 64 ? doubleFunc : floatFunc;
|
|
auto opFunc = dyn_cast_or_null<SymbolOpInterface>(
|
|
SymbolTable::lookupSymbolIn(module, name));
|
|
// Forward declare function if it hasn't already been
|
|
if (!opFunc) {
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&module->getRegion(0).front());
|
|
auto opFunctionTy = FunctionType::get(
|
|
rewriter.getContext(), op->getOperandTypes(), op->getResultTypes());
|
|
opFunc = rewriter.create<func::FuncOp>(rewriter.getUnknownLoc(), name,
|
|
opFunctionTy);
|
|
opFunc.setPrivate();
|
|
|
|
// By definition Math dialect operations imply LLVM's "readnone"
|
|
// function attribute, so we can set it here to provide more
|
|
// optimization opportunities (e.g. LICM) for backends targeting LLVM IR.
|
|
// This will have to be changed, when strict FP behavior is supported
|
|
// by Math dialect.
|
|
opFunc->setAttr(LLVM::LLVMDialect::getReadnoneAttrName(),
|
|
UnitAttr::get(rewriter.getContext()));
|
|
}
|
|
assert(isa<FunctionOpInterface>(SymbolTable::lookupSymbolIn(module, name)));
|
|
|
|
rewriter.replaceOpWithNewOp<func::CallOp>(op, name, op.getType(),
|
|
op->getOperands());
|
|
|
|
return success();
|
|
}
|
|
|
|
void mlir::populateMathToLibmConversionPatterns(RewritePatternSet &patterns) {
|
|
MLIRContext *ctx = patterns.getContext();
|
|
|
|
populatePatternsForOp<math::Atan2Op>(patterns, ctx, "atan2f", "atan2");
|
|
populatePatternsForOp<math::AtanOp>(patterns, ctx, "atanf", "atan");
|
|
populatePatternsForOp<math::CbrtOp>(patterns, ctx, "cbrtf", "cbrt");
|
|
populatePatternsForOp<math::CeilOp>(patterns, ctx, "ceilf", "ceil");
|
|
populatePatternsForOp<math::CosOp>(patterns, ctx, "cosf", "cos");
|
|
populatePatternsForOp<math::ErfOp>(patterns, ctx, "erff", "erf");
|
|
populatePatternsForOp<math::ExpM1Op>(patterns, ctx, "expm1f", "expm1");
|
|
populatePatternsForOp<math::FloorOp>(patterns, ctx, "floorf", "floor");
|
|
populatePatternsForOp<math::Log1pOp>(patterns, ctx, "log1pf", "log1p");
|
|
populatePatternsForOp<math::RoundEvenOp>(patterns, ctx, "roundevenf",
|
|
"roundeven");
|
|
populatePatternsForOp<math::RoundOp>(patterns, ctx, "roundf", "round");
|
|
populatePatternsForOp<math::SinOp>(patterns, ctx, "sinf", "sin");
|
|
populatePatternsForOp<math::TanOp>(patterns, ctx, "tanf", "tan");
|
|
populatePatternsForOp<math::TanhOp>(patterns, ctx, "tanhf", "tanh");
|
|
populatePatternsForOp<math::TruncOp>(patterns, ctx, "truncf", "trunc");
|
|
}
|
|
|
|
namespace {
|
|
struct ConvertMathToLibmPass
|
|
: public impl::ConvertMathToLibmBase<ConvertMathToLibmPass> {
|
|
void runOnOperation() override;
|
|
};
|
|
} // namespace
|
|
|
|
void ConvertMathToLibmPass::runOnOperation() {
|
|
auto module = getOperation();
|
|
|
|
RewritePatternSet patterns(&getContext());
|
|
populateMathToLibmConversionPatterns(patterns);
|
|
|
|
ConversionTarget target(getContext());
|
|
target.addLegalDialect<arith::ArithDialect, BuiltinDialect, func::FuncDialect,
|
|
vector::VectorDialect>();
|
|
target.addIllegalDialect<math::MathDialect>();
|
|
if (failed(applyPartialConversion(module, target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertMathToLibmPass() {
|
|
return std::make_unique<ConvertMathToLibmPass>();
|
|
}
|