Files
clang-p2996/clang/lib/StaticAnalyzer/Checkers/ArrayBoundChecker.cpp
Michael Flanders cbd3801acf [analyzer] Allow overriding Unknown memspaces using a ProgramState trait (#123003)
In general, if we see an allocation, we associate the immutable memory
space with the constructed memory region.
This works fine if we see the allocation.
However, with symbolic regions it's not great because there we don't
know anything about their memory spaces, thus put them into the Unknown
space.

The unfortunate consequence is that once we learn about some aliasing
with this Symbolic Region, we can't change the memory space to the
deduced one.

In this patch, we open up the memory spaces as a trait, basically
allowing associating a better memory space with a memregion that
was created with the Unknown memory space.

As a side effect, this means that now queriing the memory space of a
region depends on the State, but many places in the analyzer, such as
the Store, doesn't have (and cannot have) access to the State by design.

This means that some uses must solely rely on the memspaces of the
region, but any other users should use the getter taking a State.

Co-authored-by: Balazs Benics <benicsbalazs@gmail.com>
2025-02-22 12:37:00 +01:00

834 lines
34 KiB
C++

//== ArrayBoundChecker.cpp -------------------------------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines security.ArrayBound, which is a path-sensitive checker
// that looks for out of bounds access of memory regions.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::formatv;
namespace {
/// If `E` is an array subscript expression with a base that is "clean" (= not
/// modified by pointer arithmetic = the beginning of a memory region), return
/// it as a pointer to ArraySubscriptExpr; otherwise return nullptr.
/// This helper function is used by two separate heuristics that are only valid
/// in these "clean" cases.
static const ArraySubscriptExpr *
getAsCleanArraySubscriptExpr(const Expr *E, const CheckerContext &C) {
const auto *ASE = dyn_cast<ArraySubscriptExpr>(E);
if (!ASE)
return nullptr;
const MemRegion *SubscriptBaseReg = C.getSVal(ASE->getBase()).getAsRegion();
if (!SubscriptBaseReg)
return nullptr;
// The base of the subscript expression is affected by pointer arithmetics,
// so we want to report byte offsets instead of indices and we don't want to
// activate the "index is unsigned -> cannot be negative" shortcut.
if (isa<ElementRegion>(SubscriptBaseReg->StripCasts()))
return nullptr;
return ASE;
}
/// If `E` is a "clean" array subscript expression, return the type of the
/// accessed element; otherwise return std::nullopt because that's the best (or
/// least bad) option for the diagnostic generation that relies on this.
static std::optional<QualType> determineElementType(const Expr *E,
const CheckerContext &C) {
const auto *ASE = getAsCleanArraySubscriptExpr(E, C);
if (!ASE)
return std::nullopt;
return ASE->getType();
}
static std::optional<int64_t>
determineElementSize(const std::optional<QualType> T, const CheckerContext &C) {
if (!T)
return std::nullopt;
return C.getASTContext().getTypeSizeInChars(*T).getQuantity();
}
class StateUpdateReporter {
const MemSpaceRegion *Space;
const SubRegion *Reg;
const NonLoc ByteOffsetVal;
const std::optional<QualType> ElementType;
const std::optional<int64_t> ElementSize;
bool AssumedNonNegative = false;
std::optional<NonLoc> AssumedUpperBound = std::nullopt;
public:
StateUpdateReporter(const SubRegion *R, NonLoc ByteOffsVal, const Expr *E,
CheckerContext &C)
: Space(R->getMemorySpace(C.getState())), Reg(R),
ByteOffsetVal(ByteOffsVal), ElementType(determineElementType(E, C)),
ElementSize(determineElementSize(ElementType, C)) {}
void recordNonNegativeAssumption() { AssumedNonNegative = true; }
void recordUpperBoundAssumption(NonLoc UpperBoundVal) {
AssumedUpperBound = UpperBoundVal;
}
bool assumedNonNegative() { return AssumedNonNegative; }
const NoteTag *createNoteTag(CheckerContext &C) const;
private:
std::string getMessage(PathSensitiveBugReport &BR) const;
/// Return true if information about the value of `Sym` can put constraints
/// on some symbol which is interesting within the bug report `BR`.
/// In particular, this returns true when `Sym` is interesting within `BR`;
/// but it also returns true if `Sym` is an expression that contains integer
/// constants and a single symbolic operand which is interesting (in `BR`).
/// We need to use this instead of plain `BR.isInteresting()` because if we
/// are analyzing code like
/// int array[10];
/// int f(int arg) {
/// return array[arg] && array[arg + 10];
/// }
/// then the byte offsets are `arg * 4` and `(arg + 10) * 4`, which are not
/// sub-expressions of each other (but `getSimplifiedOffsets` is smart enough
/// to detect this out of bounds access).
static bool providesInformationAboutInteresting(SymbolRef Sym,
PathSensitiveBugReport &BR);
static bool providesInformationAboutInteresting(SVal SV,
PathSensitiveBugReport &BR) {
return providesInformationAboutInteresting(SV.getAsSymbol(), BR);
}
};
struct Messages {
std::string Short, Full;
};
// NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt`
// instead of `PreStmt` because the current implementation passes the whole
// expression to `CheckerContext::getSVal()` which only works after the
// symbolic evaluation of the expression. (To turn them into `PreStmt`
// callbacks, we'd need to duplicate the logic that evaluates these
// expressions.) The `MemberExpr` callback would work as `PreStmt` but it's
// defined as `PostStmt` for the sake of consistency with the other callbacks.
class ArrayBoundChecker : public Checker<check::PostStmt<ArraySubscriptExpr>,
check::PostStmt<UnaryOperator>,
check::PostStmt<MemberExpr>> {
BugType BT{this, "Out-of-bound access"};
BugType TaintBT{this, "Out-of-bound access", categories::TaintedData};
void performCheck(const Expr *E, CheckerContext &C) const;
void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, Messages Msgs,
NonLoc Offset, std::optional<NonLoc> Extent,
bool IsTaintBug = false) const;
static void markPartsInteresting(PathSensitiveBugReport &BR,
ProgramStateRef ErrorState, NonLoc Val,
bool MarkTaint);
static bool isFromCtypeMacro(const Expr *E, ASTContext &AC);
static bool isOffsetObviouslyNonnegative(const Expr *E, CheckerContext &C);
static bool isIdiomaticPastTheEndPtr(const Expr *E, ProgramStateRef State,
NonLoc Offset, NonLoc Limit,
CheckerContext &C);
static bool isInAddressOf(const Stmt *S, ASTContext &AC);
public:
void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const {
performCheck(E, C);
}
void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const {
if (E->getOpcode() == UO_Deref)
performCheck(E, C);
}
void checkPostStmt(const MemberExpr *E, CheckerContext &C) const {
if (E->isArrow())
performCheck(E->getBase(), C);
}
};
} // anonymous namespace
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
static std::optional<std::pair<const SubRegion *, NonLoc>>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) {
QualType T = SVB.getArrayIndexType();
auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>();
};
const SubRegion *OwnerRegion = nullptr;
std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex();
const ElementRegion *CurRegion =
dyn_cast_or_null<ElementRegion>(Location.getAsRegion());
while (CurRegion) {
const auto Index = CurRegion->getIndex().getAs<NonLoc>();
if (!Index)
return std::nullopt;
QualType ElemType = CurRegion->getElementType();
// FIXME: The following early return was presumably added to safeguard the
// getTypeSizeInChars() call (which doesn't accept an incomplete type), but
// it seems that `ElemType` cannot be incomplete at this point.
if (ElemType->isIncompleteType())
return std::nullopt;
// Calculate Delta = Index * sizeof(ElemType).
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
auto Delta = EvalBinOp(BO_Mul, *Index, Size);
if (!Delta)
return std::nullopt;
// Perform Offset += Delta.
Offset = EvalBinOp(BO_Add, *Offset, *Delta);
if (!Offset)
return std::nullopt;
OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>();
// When this is just another ElementRegion layer, we need to continue the
// offset calculations:
CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion);
}
if (OwnerRegion)
return std::make_pair(OwnerRegion, *Offset);
return std::nullopt;
}
// NOTE: This function is the "heart" of this checker. It simplifies
// inequalities with transformations that are valid (and very elementary) in
// pure mathematics, but become invalid if we use them in C++ number model
// where the calculations may overflow.
// Due to the overflow issues I think it's impossible (or at least not
// practical) to integrate this kind of simplification into the resolution of
// arbitrary inequalities (i.e. the code of `evalBinOp`); but this function
// produces valid results when the calculations are handling memory offsets
// and every value is well below SIZE_MAX.
// TODO: This algorithm should be moved to a central location where it's
// available for other checkers that need to compare memory offsets.
// NOTE: the simplification preserves the order of the two operands in a
// mathematical sense, but it may change the result produced by a C++
// comparison operator (and the automatic type conversions).
// For example, consider a comparison "X+1 < 0", where the LHS is stored as a
// size_t and the RHS is stored in an int. (As size_t is unsigned, this
// comparison is false for all values of "X".) However, the simplification may
// turn it into "X < -1", which is still always false in a mathematical sense,
// but can produce a true result when evaluated by `evalBinOp` (which follows
// the rules of C++ and casts -1 to SIZE_MAX).
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
const llvm::APSInt &extentVal = extent.getValue();
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant = APSIntType(extentVal).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, becasue multiplication by zero
// is simplified by the engine.
if ((extentVal % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extentVal / constant), svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extentVal - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
static bool isNegative(SValBuilder &SVB, ProgramStateRef State, NonLoc Value) {
const llvm::APSInt *MaxV = SVB.getMaxValue(State, Value);
return MaxV && MaxV->isNegative();
}
static bool isUnsigned(SValBuilder &SVB, NonLoc Value) {
QualType T = Value.getType(SVB.getContext());
return T->isUnsignedIntegerType();
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
// If the optional argument CheckEquality is true, then use BO_EQ instead of
// the default BO_LT after consistently applying the same simplification steps.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB, bool CheckEquality = false) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) =
getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
// We want to perform a _mathematical_ comparison between the numbers `Value`
// and `Threshold`; but `evalBinOpNN` evaluates a C/C++ operator that may
// perform automatic conversions. For example the number -1 is less than the
// number 1000, but -1 < `1000ull` will evaluate to `false` because the `int`
// -1 is converted to ULONGLONG_MAX.
// To avoid automatic conversions, we evaluate the "obvious" cases without
// calling `evalBinOpNN`:
if (isNegative(SVB, State, Value) && isUnsigned(SVB, Threshold)) {
if (CheckEquality) {
// negative_value == unsigned_threshold is always false
return {nullptr, State};
}
// negative_value < unsigned_threshold is always true
return {State, nullptr};
}
if (isUnsigned(SVB, Value) && isNegative(SVB, State, Threshold)) {
// unsigned_value == negative_threshold and
// unsigned_value < negative_threshold are both always false
return {nullptr, State};
}
// FIXME: These special cases are sufficient for handling real-world
// comparisons, but in theory there could be contrived situations where
// automatic conversion of a symbolic value (which can be negative and can be
// positive) leads to incorrect results.
// NOTE: We NEED to use the `evalBinOpNN` call in the "common" case, because
// we want to ensure that assumptions coming from this precondition and
// assumptions coming from regular C/C++ operator calls are represented by
// constraints on the same symbolic expression. A solution that would
// evaluate these "mathematical" comparisons through a separate pathway would
// be a step backwards in this sense.
const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT;
auto BelowThreshold =
SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType())
.getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
static std::string getRegionName(const MemSpaceRegion *Space,
const SubRegion *Region) {
if (std::string RegName = Region->getDescriptiveName(); !RegName.empty())
return RegName;
// Field regions only have descriptive names when their parent has a
// descriptive name; so we provide a fallback representation for them:
if (const auto *FR = Region->getAs<FieldRegion>()) {
if (StringRef Name = FR->getDecl()->getName(); !Name.empty())
return formatv("the field '{0}'", Name);
return "the unnamed field";
}
if (isa<AllocaRegion>(Region))
return "the memory returned by 'alloca'";
if (isa<SymbolicRegion>(Region) && isa<HeapSpaceRegion>(Space))
return "the heap area";
if (isa<StringRegion>(Region))
return "the string literal";
return "the region";
}
static std::optional<int64_t> getConcreteValue(NonLoc SV) {
if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) {
return ConcreteVal->getValue()->tryExtValue();
}
return std::nullopt;
}
static std::optional<int64_t> getConcreteValue(std::optional<NonLoc> SV) {
return SV ? getConcreteValue(*SV) : std::nullopt;
}
static Messages getPrecedesMsgs(const MemSpaceRegion *Space,
const SubRegion *Region, NonLoc Offset) {
std::string RegName = getRegionName(Space, Region), OffsetStr = "";
if (auto ConcreteOffset = getConcreteValue(Offset))
OffsetStr = formatv(" {0}", ConcreteOffset);
return {
formatv("Out of bound access to memory preceding {0}", RegName),
formatv("Access of {0} at negative byte offset{1}", RegName, OffsetStr)};
}
/// Try to divide `Val1` and `Val2` (in place) by `Divisor` and return true if
/// it can be performed (`Divisor` is nonzero and there is no remainder). The
/// values `Val1` and `Val2` may be nullopt and in that case the corresponding
/// division is considered to be successful.
static bool tryDividePair(std::optional<int64_t> &Val1,
std::optional<int64_t> &Val2, int64_t Divisor) {
if (!Divisor)
return false;
const bool Val1HasRemainder = Val1 && *Val1 % Divisor;
const bool Val2HasRemainder = Val2 && *Val2 % Divisor;
if (Val1HasRemainder || Val2HasRemainder)
return false;
if (Val1)
*Val1 /= Divisor;
if (Val2)
*Val2 /= Divisor;
return true;
}
static Messages getExceedsMsgs(ASTContext &ACtx, const MemSpaceRegion *Space,
const SubRegion *Region, NonLoc Offset,
NonLoc Extent, SVal Location,
bool AlsoMentionUnderflow) {
std::string RegName = getRegionName(Space, Region);
const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>();
assert(EReg && "this checker only handles element access");
QualType ElemType = EReg->getElementType();
std::optional<int64_t> OffsetN = getConcreteValue(Offset);
std::optional<int64_t> ExtentN = getConcreteValue(Extent);
int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity();
bool UseByteOffsets = !tryDividePair(OffsetN, ExtentN, ElemSize);
const char *OffsetOrIndex = UseByteOffsets ? "byte offset" : "index";
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of ";
if (!ExtentN && !UseByteOffsets)
Out << "'" << ElemType.getAsString() << "' element in ";
Out << RegName << " at ";
if (AlsoMentionUnderflow) {
Out << "a negative or overflowing " << OffsetOrIndex;
} else if (OffsetN) {
Out << OffsetOrIndex << " " << *OffsetN;
} else {
Out << "an overflowing " << OffsetOrIndex;
}
if (ExtentN) {
Out << ", while it holds only ";
if (*ExtentN != 1)
Out << *ExtentN;
else
Out << "a single";
if (UseByteOffsets)
Out << " byte";
else
Out << " '" << ElemType.getAsString() << "' element";
if (*ExtentN > 1)
Out << "s";
}
return {formatv("Out of bound access to memory {0} {1}",
AlsoMentionUnderflow ? "around" : "after the end of",
RegName),
std::string(Buf)};
}
static Messages getTaintMsgs(const MemSpaceRegion *Space,
const SubRegion *Region, const char *OffsetName,
bool AlsoMentionUnderflow) {
std::string RegName = getRegionName(Space, Region);
return {formatv("Potential out of bound access to {0} with tainted {1}",
RegName, OffsetName),
formatv("Access of {0} with a tainted {1} that may be {2}too large",
RegName, OffsetName,
AlsoMentionUnderflow ? "negative or " : "")};
}
const NoteTag *StateUpdateReporter::createNoteTag(CheckerContext &C) const {
// Don't create a note tag if we didn't assume anything:
if (!AssumedNonNegative && !AssumedUpperBound)
return nullptr;
return C.getNoteTag([*this](PathSensitiveBugReport &BR) -> std::string {
return getMessage(BR);
});
}
std::string StateUpdateReporter::getMessage(PathSensitiveBugReport &BR) const {
bool ShouldReportNonNegative = AssumedNonNegative;
if (!providesInformationAboutInteresting(ByteOffsetVal, BR)) {
if (AssumedUpperBound &&
providesInformationAboutInteresting(*AssumedUpperBound, BR)) {
// Even if the byte offset isn't interesting (e.g. it's a constant value),
// the assumption can still be interesting if it provides information
// about an interesting symbolic upper bound.
ShouldReportNonNegative = false;
} else {
// We don't have anything interesting, don't report the assumption.
return "";
}
}
std::optional<int64_t> OffsetN = getConcreteValue(ByteOffsetVal);
std::optional<int64_t> ExtentN = getConcreteValue(AssumedUpperBound);
const bool UseIndex =
ElementSize && tryDividePair(OffsetN, ExtentN, *ElementSize);
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Assuming ";
if (UseIndex) {
Out << "index ";
if (OffsetN)
Out << "'" << OffsetN << "' ";
} else if (AssumedUpperBound) {
Out << "byte offset ";
if (OffsetN)
Out << "'" << OffsetN << "' ";
} else {
Out << "offset ";
}
Out << "is";
if (ShouldReportNonNegative) {
Out << " non-negative";
}
if (AssumedUpperBound) {
if (ShouldReportNonNegative)
Out << " and";
Out << " less than ";
if (ExtentN)
Out << *ExtentN << ", ";
if (UseIndex && ElementType)
Out << "the number of '" << ElementType->getAsString()
<< "' elements in ";
else
Out << "the extent of ";
Out << getRegionName(Space, Reg);
}
return std::string(Out.str());
}
bool StateUpdateReporter::providesInformationAboutInteresting(
SymbolRef Sym, PathSensitiveBugReport &BR) {
if (!Sym)
return false;
for (SymbolRef PartSym : Sym->symbols()) {
// The interestingess mark may appear on any layer as we're stripping off
// the SymIntExpr, UnarySymExpr etc. layers...
if (BR.isInteresting(PartSym))
return true;
// ...but if both sides of the expression are symbolic, then there is no
// practical algorithm to produce separate constraints for the two
// operands (from the single combined result).
if (isa<SymSymExpr>(PartSym))
return false;
}
return false;
}
void ArrayBoundChecker::performCheck(const Expr *E, CheckerContext &C) const {
const SVal Location = C.getSVal(E);
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(E, C.getASTContext()))
return;
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset =
computeOffset(State, SVB, Location);
if (!RawOffset)
return;
auto [Reg, ByteOffset] = *RawOffset;
// The state updates will be reported as a single note tag, which will be
// composed by this helper class.
StateUpdateReporter SUR(Reg, ByteOffset, E, C);
// CHECK LOWER BOUND
const MemSpaceRegion *Space = Reg->getMemorySpace(State);
if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
// A symbolic region in unknown space represents an unknown pointer that
// may point into the middle of an array, so we don't look for underflows.
// Both conditions are significant because we want to check underflows in
// symbolic regions on the heap (which may be introduced by checkers like
// MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
// non-symbolic regions (e.g. a field subregion of a symbolic region) in
// unknown space.
auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold(
State, ByteOffset, SVB.makeZeroArrayIndex(), SVB);
if (PrecedesLowerBound) {
// The analyzer thinks that the offset may be invalid (negative)...
if (isOffsetObviouslyNonnegative(E, C)) {
// ...but the offset is obviously non-negative (clear array subscript
// with an unsigned index), so we're in a buggy situation.
// TODO: Currently the analyzer ignores many casts (e.g. signed ->
// unsigned casts), so it can easily reach states where it will load a
// signed (and negative) value from an unsigned variable. This sanity
// check is a duct tape "solution" that silences most of the ugly false
// positives that are caused by this buggy behavior. Note that this is
// not a complete solution: this cannot silence reports where pointer
// arithmetic complicates the picture and cannot ensure modeling of the
// "unsigned index is positive with highest bit set" cases which are
// "usurped" by the nonsense "unsigned index is negative" case.
// For more information about this topic, see the umbrella ticket
// https://github.com/llvm/llvm-project/issues/39492
// TODO: Remove this hack once 'SymbolCast's are modeled properly.
if (!WithinLowerBound) {
// The state is completely nonsense -- let's just sink it!
C.addSink();
return;
}
// Otherwise continue on the 'WithinLowerBound' branch where the
// unsigned index _is_ non-negative. Don't mention this assumption as a
// note tag, because it would just confuse the users!
} else {
if (!WithinLowerBound) {
// ...and it cannot be valid (>= 0), so report an error.
Messages Msgs = getPrecedesMsgs(Space, Reg, ByteOffset);
reportOOB(C, PrecedesLowerBound, Msgs, ByteOffset, std::nullopt);
return;
}
// ...but it can be valid as well, so the checker will (optimistically)
// assume that it's valid and mention this in the note tag.
SUR.recordNonNegativeAssumption();
}
}
// Actually update the state. The "if" only fails in the extremely unlikely
// case when compareValueToThreshold returns {nullptr, nullptr} because
// evalBinOpNN fails to evaluate the less-than operator.
if (WithinLowerBound)
State = WithinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB);
if (auto KnownSize = Size.getAs<NonLoc>()) {
// In a situation where both underflow and overflow are possible (but the
// index is either tainted or known to be invalid), the logic of this
// checker will first assume that the offset is non-negative, and then
// (with this additional assumption) it will detect an overflow error.
// In this situation the warning message should mention both possibilities.
bool AlsoMentionUnderflow = SUR.assumedNonNegative();
auto [WithinUpperBound, ExceedsUpperBound] =
compareValueToThreshold(State, ByteOffset, *KnownSize, SVB);
if (ExceedsUpperBound) {
// The offset may be invalid (>= Size)...
if (!WithinUpperBound) {
// ...and it cannot be within bounds, so report an error, unless we can
// definitely determine that this is an idiomatic `&array[size]`
// expression that calculates the past-the-end pointer.
if (isIdiomaticPastTheEndPtr(E, ExceedsUpperBound, ByteOffset,
*KnownSize, C)) {
C.addTransition(ExceedsUpperBound, SUR.createNoteTag(C));
return;
}
Messages Msgs =
getExceedsMsgs(C.getASTContext(), Space, Reg, ByteOffset,
*KnownSize, Location, AlsoMentionUnderflow);
reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize);
return;
}
// ...and it can be valid as well...
if (isTainted(State, ByteOffset)) {
// ...but it's tainted, so report an error.
// Diagnostic detail: saying "tainted offset" is always correct, but
// the common case is that 'idx' is tainted in 'arr[idx]' and then it's
// nicer to say "tainted index".
const char *OffsetName = "offset";
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E))
if (isTainted(State, ASE->getIdx(), C.getLocationContext()))
OffsetName = "index";
Messages Msgs =
getTaintMsgs(Space, Reg, OffsetName, AlsoMentionUnderflow);
reportOOB(C, ExceedsUpperBound, Msgs, ByteOffset, KnownSize,
/*IsTaintBug=*/true);
return;
}
// ...and it isn't tainted, so the checker will (optimistically) assume
// that the offset is in bounds and mention this in the note tag.
SUR.recordUpperBoundAssumption(*KnownSize);
}
// Actually update the state. The "if" only fails in the extremely unlikely
// case when compareValueToThreshold returns {nullptr, nullptr} because
// evalBinOpNN fails to evaluate the less-than operator.
if (WithinUpperBound)
State = WithinUpperBound;
}
// Add a transition, reporting the state updates that we accumulated.
C.addTransition(State, SUR.createNoteTag(C));
}
void ArrayBoundChecker::markPartsInteresting(PathSensitiveBugReport &BR,
ProgramStateRef ErrorState,
NonLoc Val, bool MarkTaint) {
if (SymbolRef Sym = Val.getAsSymbol()) {
// If the offset is a symbolic value, iterate over its "parts" with
// `SymExpr::symbols()` and mark each of them as interesting.
// For example, if the offset is `x*4 + y` then we put interestingness onto
// the SymSymExpr `x*4 + y`, the SymIntExpr `x*4` and the two data symbols
// `x` and `y`.
for (SymbolRef PartSym : Sym->symbols())
BR.markInteresting(PartSym);
}
if (MarkTaint) {
// If the issue that we're reporting depends on the taintedness of the
// offset, then put interestingness onto symbols that could be the origin
// of the taint. Note that this may find symbols that did not appear in
// `Sym->symbols()` (because they're only loosely connected to `Val`).
for (SymbolRef Sym : getTaintedSymbols(ErrorState, Val))
BR.markInteresting(Sym);
}
}
void ArrayBoundChecker::reportOOB(CheckerContext &C, ProgramStateRef ErrorState,
Messages Msgs, NonLoc Offset,
std::optional<NonLoc> Extent,
bool IsTaintBug /*=false*/) const {
ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState);
if (!ErrorNode)
return;
auto BR = std::make_unique<PathSensitiveBugReport>(
IsTaintBug ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode);
// FIXME: ideally we would just call trackExpressionValue() and that would
// "do the right thing": mark the relevant symbols as interesting, track the
// control dependencies and statements storing the relevant values and add
// helpful diagnostic pieces. However, right now trackExpressionValue() is
// a heap of unreliable heuristics, so it would cause several issues:
// - Interestingness is not applied consistently, e.g. if `array[x+10]`
// causes an overflow, then `x` is not marked as interesting.
// - We get irrelevant diagnostic pieces, e.g. in the code
// `int *p = (int*)malloc(2*sizeof(int)); p[3] = 0;`
// it places a "Storing uninitialized value" note on the `malloc` call
// (which is technically true, but irrelevant).
// If trackExpressionValue() becomes reliable, it should be applied instead
// of this custom markPartsInteresting().
markPartsInteresting(*BR, ErrorState, Offset, IsTaintBug);
if (Extent)
markPartsInteresting(*BR, ErrorState, *Extent, IsTaintBug);
C.emitReport(std::move(BR));
}
bool ArrayBoundChecker::isFromCtypeMacro(const Expr *E, ASTContext &ACtx) {
SourceLocation Loc = E->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
bool ArrayBoundChecker::isOffsetObviouslyNonnegative(const Expr *E,
CheckerContext &C) {
const ArraySubscriptExpr *ASE = getAsCleanArraySubscriptExpr(E, C);
if (!ASE)
return false;
return ASE->getIdx()->getType()->isUnsignedIntegerOrEnumerationType();
}
bool ArrayBoundChecker::isInAddressOf(const Stmt *S, ASTContext &ACtx) {
ParentMapContext &ParentCtx = ACtx.getParentMapContext();
do {
const DynTypedNodeList Parents = ParentCtx.getParents(*S);
if (Parents.empty())
return false;
S = Parents[0].get<Stmt>();
} while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S));
const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S);
return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf;
}
bool ArrayBoundChecker::isIdiomaticPastTheEndPtr(const Expr *E,
ProgramStateRef State,
NonLoc Offset, NonLoc Limit,
CheckerContext &C) {
if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) {
auto [EqualsToThreshold, NotEqualToThreshold] = compareValueToThreshold(
State, Offset, Limit, C.getSValBuilder(), /*CheckEquality=*/true);
return EqualsToThreshold && !NotEqualToThreshold;
}
return false;
}
void ento::registerArrayBoundChecker(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundChecker>();
}
bool ento::shouldRegisterArrayBoundChecker(const CheckerManager &mgr) {
return true;
}