Files
clang-p2996/clang/test/SemaTemplate/alias-templates.cpp
Richard Smith d784e6893c PR14858: Initial support for proper sizeof... handling within alias templates.
This doesn't quite get alias template equivalence right yet, but handles the
egregious cases where we would silently give the wrong answers.

llvm-svn: 248431
2015-09-23 21:41:42 +00:00

224 lines
6.6 KiB
C++

// RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
template<typename S>
struct A {
typedef S B;
template<typename T> using C = typename T::B;
template<typename T> struct D {
template<typename U> using E = typename A<U>::template C<A<T>>;
template<typename U> using F = A<E<U>>;
template<typename U> using G = C<F<U>>;
G<T> g;
};
typedef decltype(D<B>().g) H;
D<H> h;
template<typename T> using I = A<decltype(h.g)>;
template<typename T> using J = typename A<decltype(h.g)>::template C<I<T>>;
};
A<int> a;
A<char>::D<double> b;
template<typename T> T make();
namespace X {
template<typename T> struct traits {
typedef T thing;
typedef decltype(val(make<thing>())) inner_ptr;
template<typename U> using rebind_thing = typename thing::template rebind<U>;
template<typename U> using rebind = traits<rebind_thing<U>>;
inner_ptr &&alloc();
void free(inner_ptr&&);
};
template<typename T> struct ptr_traits {
typedef T *type;
};
template<typename T> using ptr = typename ptr_traits<T>::type;
template<typename T> struct thing {
typedef T inner;
typedef ptr<inner> inner_ptr;
typedef traits<thing<inner>> traits_type;
template<typename U> using rebind = thing<U>;
thing(traits_type &traits) : traits(traits), val(traits.alloc()) {}
~thing() { traits.free(static_cast<inner_ptr&&>(val)); }
traits_type &traits;
inner_ptr val;
friend inner_ptr val(const thing &t) { return t.val; }
};
template<> struct ptr_traits<bool> {
typedef bool &type;
};
template<> bool &traits<thing<bool>>::alloc() { static bool b; return b; }
template<> void traits<thing<bool>>::free(bool&) {}
}
typedef X::traits<X::thing<int>> itt;
itt::thing::traits_type itr;
itt::thing ith(itr);
itt::rebind<bool> btr;
itt::rebind_thing<bool> btt(btr);
namespace PR11848 {
template<typename T> using U = int;
template<typename T, typename ...Ts>
void f1(U<T> i, U<Ts> ...is) { // expected-note 2{{couldn't infer template argument 'T'}}
return i + f1<Ts...>(is...);
}
// FIXME: This note is technically correct, but could be better. We
// should really say that we couldn't infer template argument 'Ts'.
template<typename ...Ts>
void f2(U<Ts> ...is) { } // expected-note {{requires 0 arguments, but 1 was provided}}
template<typename...> struct type_tuple {};
template<typename ...Ts>
void f3(type_tuple<Ts...>, U<Ts> ...is) {} // expected-note {{requires 4 arguments, but 3 were provided}}
void g() {
f1(U<void>()); // expected-error {{no match}}
f1(1, 2, 3, 4, 5); // expected-error {{no match}}
f2(); // ok
f2(1); // expected-error {{no match}}
f3(type_tuple<>());
f3(type_tuple<void, void, void>(), 1, 2); // expected-error {{no match}}
f3(type_tuple<void, void, void>(), 1, 2, 3);
}
template<typename ...Ts>
struct S {
S(U<Ts>...ts);
};
template<typename T>
struct Hidden1 {
template<typename ...Ts>
Hidden1(typename T::template U<Ts> ...ts);
};
template<typename T, typename ...Ts>
struct Hidden2 {
Hidden2(typename T::template U<Ts> ...ts);
};
struct Hide {
template<typename T> using U = int;
};
Hidden1<Hide> h1;
Hidden2<Hide, double, char> h2(1, 2);
}
namespace Core22036 {
struct X {};
void h(...);
template<typename T> using Y = X;
template<typename T, typename ...Ts> struct S {
// An expression can contain an unexpanded pack without being type or
// value dependent. This is true even if the expression's type is a pack
// expansion type.
void f1(Y<T> a) { h(g(a)); } // expected-error {{undeclared identifier 'g'}}
void f2(Y<Ts>...as) { h(g(as)...); } // expected-error {{undeclared identifier 'g'}}
void f3(Y<Ts>...as) { g(as...); } // ok
void f4(Ts ...ts) { h(g(sizeof(ts))...); } // expected-error {{undeclared identifier 'g'}}
// FIXME: We can reject this, since it has no valid instantiations because
// 'g' never has any associated namespaces.
void f5(Ts ...ts) { g(sizeof(ts)...); } // ok
};
}
namespace PR13243 {
template<typename A> struct X {};
template<int I> struct C {};
template<int I> using Ci = C<I>;
template<typename A, int I> void f(X<A>, Ci<I>) {}
template void f(X<int>, C<0>);
}
namespace PR13136 {
template <typename T, T... Numbers>
struct NumberTuple { };
template <unsigned int... Numbers>
using MyNumberTuple = NumberTuple<unsigned int, Numbers...>;
template <typename U, unsigned int... Numbers>
void foo(U&&, MyNumberTuple<Numbers...>);
template <typename U, unsigned int... Numbers>
void bar(U&&, NumberTuple<unsigned int, Numbers...>);
int main() {
foo(1, NumberTuple<unsigned int, 0, 1>());
bar(1, NumberTuple<unsigned int, 0, 1>());
return 0;
}
}
namespace PR16646 {
namespace test1 {
template <typename T> struct DefaultValue { const T value=0;};
template <typename ... Args> struct tuple {};
template <typename ... Args> using Zero = tuple<DefaultValue<Args> ...>;
template <typename ... Args> void f(const Zero<Args ...> &t);
void f() {
f(Zero<int,double,double>());
}
}
namespace test2 {
template<int x> struct X {};
template <template<int x> class temp> struct DefaultValue { const temp<0> value; };
template <typename ... Args> struct tuple {};
template <template<int x> class... Args> using Zero = tuple<DefaultValue<Args> ...>;
template <template<int x> class... Args> void f(const Zero<Args ...> &t);
void f() {
f(Zero<X,X,X>());
}
}
}
namespace PR16904 {
template <typename,typename>
struct base {
template <typename> struct derived;
};
// FIXME: The diagnostics here are terrible.
template <typename T, typename U, typename V>
using derived = base<T, U>::template derived<V>; // expected-error {{expected a type}} expected-error {{expected ';'}}
template <typename T, typename U, typename V>
using derived2 = ::PR16904::base<T, U>::template derived<V>; // expected-error {{expected a type}} expected-error {{expected ';'}}
}
namespace PR14858 {
template<typename ...T> using X = int[sizeof...(T)];
template<typename ...U> struct Y {
using Z = X<U...>;
};
using A = Y<int, int, int, int>::Z;
using A = int[4];
// FIXME: These should be treated as being redeclarations.
template<typename ...T> void f(X<T...> &) {}
template<typename ...T> void f(int(&)[sizeof...(T)]) {}
template<typename ...T> void g(X<typename T::type...> &) {}
template<typename ...T> void g(int(&)[sizeof...(T)]) {} // ok, different
template<typename ...T, typename ...U> void h(X<T...> &) {}
template<typename ...T, typename ...U> void h(X<U...> &) {} // ok, different
}