Files
clang-p2996/lldb/source/Plugins/SymbolFile/DWARF/DWARFUnit.cpp
Pavel Labath cd5da94d80 [lldb/DWARF] Fix mixed v4+v5 location lists
Summary:
Our code was expecting that a single (symbol) file contains only one
kind of location lists. This is not correct (on non-apple platforms, at
least) as a file can compile units with different dwarf versions.

This patch moves the deteremination of location list flavour down to the
compile unit level, fixing this problem. I have also tried to rougly
align the code with the llvm DWARFUnit. Fully matching the API is not
possible because of how lldb's DWARFExpression lives separately from the
rest of the DWARF code, but this is at least a step in the right
direction.

Reviewers: JDevlieghere, aprantl, clayborg

Subscribers: dblaikie, lldb-commits

Tags: #lldb

Differential Revision: https://reviews.llvm.org/D71751
2020-01-09 13:19:29 +01:00

977 lines
32 KiB
C++

//===-- DWARFUnit.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "DWARFUnit.h"
#include "lldb/Core/Module.h"
#include "lldb/Host/StringConvert.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "llvm/Object/Error.h"
#include "DWARFCompileUnit.h"
#include "DWARFDebugAranges.h"
#include "DWARFDebugInfo.h"
#include "DWARFTypeUnit.h"
#include "LogChannelDWARF.h"
#include "SymbolFileDWARFDwo.h"
using namespace lldb;
using namespace lldb_private;
using namespace std;
extern int g_verbose;
DWARFUnit::DWARFUnit(SymbolFileDWARF &dwarf, lldb::user_id_t uid,
const DWARFUnitHeader &header,
const DWARFAbbreviationDeclarationSet &abbrevs,
DIERef::Section section, bool is_dwo)
: UserID(uid), m_dwarf(dwarf), m_header(header), m_abbrevs(&abbrevs),
m_cancel_scopes(false), m_section(section), m_is_dwo(is_dwo) {}
DWARFUnit::~DWARFUnit() = default;
// Parses first DIE of a compile unit.
void DWARFUnit::ExtractUnitDIEIfNeeded() {
{
llvm::sys::ScopedReader lock(m_first_die_mutex);
if (m_first_die)
return; // Already parsed
}
llvm::sys::ScopedWriter lock(m_first_die_mutex);
if (m_first_die)
return; // Already parsed
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%8.8x: DWARFUnit::ExtractUnitDIEIfNeeded()",
GetOffset());
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
lldb::offset_t offset = GetFirstDIEOffset();
// We are in our compile unit, parse starting at the offset we were told to
// parse
const DWARFDataExtractor &data = GetData();
if (offset < GetNextUnitOffset() &&
m_first_die.Extract(data, this, &offset)) {
AddUnitDIE(m_first_die);
return;
}
}
// Parses a compile unit and indexes its DIEs if it hasn't already been done.
// It will leave this compile unit extracted forever.
void DWARFUnit::ExtractDIEsIfNeeded() {
m_cancel_scopes = true;
{
llvm::sys::ScopedReader lock(m_die_array_mutex);
if (!m_die_array.empty())
return; // Already parsed
}
llvm::sys::ScopedWriter lock(m_die_array_mutex);
if (!m_die_array.empty())
return; // Already parsed
ExtractDIEsRWLocked();
}
// Parses a compile unit and indexes its DIEs if it hasn't already been done.
// It will clear this compile unit after returned instance gets out of scope,
// no other ScopedExtractDIEs instance is running for this compile unit
// and no ExtractDIEsIfNeeded() has been executed during this ScopedExtractDIEs
// lifetime.
DWARFUnit::ScopedExtractDIEs DWARFUnit::ExtractDIEsScoped() {
ScopedExtractDIEs scoped(*this);
{
llvm::sys::ScopedReader lock(m_die_array_mutex);
if (!m_die_array.empty())
return scoped; // Already parsed
}
llvm::sys::ScopedWriter lock(m_die_array_mutex);
if (!m_die_array.empty())
return scoped; // Already parsed
// Otherwise m_die_array would be already populated.
lldbassert(!m_cancel_scopes);
ExtractDIEsRWLocked();
scoped.m_clear_dies = true;
return scoped;
}
DWARFUnit::ScopedExtractDIEs::ScopedExtractDIEs(DWARFUnit &cu) : m_cu(&cu) {
m_cu->m_die_array_scoped_mutex.lock_shared();
}
DWARFUnit::ScopedExtractDIEs::~ScopedExtractDIEs() {
if (!m_cu)
return;
m_cu->m_die_array_scoped_mutex.unlock_shared();
if (!m_clear_dies || m_cu->m_cancel_scopes)
return;
// Be sure no other ScopedExtractDIEs is running anymore.
llvm::sys::ScopedWriter lock_scoped(m_cu->m_die_array_scoped_mutex);
llvm::sys::ScopedWriter lock(m_cu->m_die_array_mutex);
if (m_cu->m_cancel_scopes)
return;
m_cu->ClearDIEsRWLocked();
}
DWARFUnit::ScopedExtractDIEs::ScopedExtractDIEs(ScopedExtractDIEs &&rhs)
: m_cu(rhs.m_cu), m_clear_dies(rhs.m_clear_dies) {
rhs.m_cu = nullptr;
}
DWARFUnit::ScopedExtractDIEs &DWARFUnit::ScopedExtractDIEs::operator=(
DWARFUnit::ScopedExtractDIEs &&rhs) {
m_cu = rhs.m_cu;
rhs.m_cu = nullptr;
m_clear_dies = rhs.m_clear_dies;
return *this;
}
// Parses a compile unit and indexes its DIEs, m_die_array_mutex must be
// held R/W and m_die_array must be empty.
void DWARFUnit::ExtractDIEsRWLocked() {
llvm::sys::ScopedWriter first_die_lock(m_first_die_mutex);
static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
Timer scoped_timer(func_cat, "%8.8x: DWARFUnit::ExtractDIEsIfNeeded()",
GetOffset());
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
lldb::offset_t offset = GetFirstDIEOffset();
lldb::offset_t next_cu_offset = GetNextUnitOffset();
DWARFDebugInfoEntry die;
uint32_t depth = 0;
// We are in our compile unit, parse starting at the offset we were told to
// parse
const DWARFDataExtractor &data = GetData();
std::vector<uint32_t> die_index_stack;
die_index_stack.reserve(32);
die_index_stack.push_back(0);
bool prev_die_had_children = false;
while (offset < next_cu_offset && die.Extract(data, this, &offset)) {
const bool null_die = die.IsNULL();
if (depth == 0) {
assert(m_die_array.empty() && "Compile unit DIE already added");
// The average bytes per DIE entry has been seen to be around 14-20 so
// lets pre-reserve half of that since we are now stripping the NULL
// tags.
// Only reserve the memory if we are adding children of the main
// compile unit DIE. The compile unit DIE is always the first entry, so
// if our size is 1, then we are adding the first compile unit child
// DIE and should reserve the memory.
m_die_array.reserve(GetDebugInfoSize() / 24);
m_die_array.push_back(die);
if (!m_first_die)
AddUnitDIE(m_die_array.front());
// With -fsplit-dwarf-inlining, clang will emit non-empty skeleton compile
// units. We are not able to access these DIE *and* the dwo file
// simultaneously. We also don't need to do that as the dwo file will
// contain a superset of information. So, we don't even attempt to parse
// any remaining DIEs.
if (m_dwo_symbol_file) {
m_die_array.front().SetHasChildren(false);
break;
}
} else {
if (null_die) {
if (prev_die_had_children) {
// This will only happen if a DIE says is has children but all it
// contains is a NULL tag. Since we are removing the NULL DIEs from
// the list (saves up to 25% in C++ code), we need a way to let the
// DIE know that it actually doesn't have children.
if (!m_die_array.empty())
m_die_array.back().SetHasChildren(false);
}
} else {
die.SetParentIndex(m_die_array.size() - die_index_stack[depth - 1]);
if (die_index_stack.back())
m_die_array[die_index_stack.back()].SetSiblingIndex(
m_die_array.size() - die_index_stack.back());
// Only push the DIE if it isn't a NULL DIE
m_die_array.push_back(die);
}
}
if (null_die) {
// NULL DIE.
if (!die_index_stack.empty())
die_index_stack.pop_back();
if (depth > 0)
--depth;
prev_die_had_children = false;
} else {
die_index_stack.back() = m_die_array.size() - 1;
// Normal DIE
const bool die_has_children = die.HasChildren();
if (die_has_children) {
die_index_stack.push_back(0);
++depth;
}
prev_die_had_children = die_has_children;
}
if (depth == 0)
break; // We are done with this compile unit!
}
if (!m_die_array.empty()) {
if (m_first_die) {
// Only needed for the assertion.
m_first_die.SetHasChildren(m_die_array.front().HasChildren());
lldbassert(m_first_die == m_die_array.front());
}
m_first_die = m_die_array.front();
}
m_die_array.shrink_to_fit();
if (m_dwo_symbol_file) {
DWARFUnit *dwo_cu = m_dwo_symbol_file->GetCompileUnit();
dwo_cu->ExtractDIEsIfNeeded();
}
}
// This is used when a split dwarf is enabled.
// A skeleton compilation unit may contain the DW_AT_str_offsets_base attribute
// that points to the first string offset of the CU contribution to the
// .debug_str_offsets. At the same time, the corresponding split debug unit also
// may use DW_FORM_strx* forms pointing to its own .debug_str_offsets.dwo and
// for that case, we should find the offset (skip the section header).
static void SetDwoStrOffsetsBase(DWARFUnit *dwo_cu) {
lldb::offset_t baseOffset = 0;
const DWARFDataExtractor &strOffsets =
dwo_cu->GetSymbolFileDWARF().GetDWARFContext().getOrLoadStrOffsetsData();
uint64_t length = strOffsets.GetU32(&baseOffset);
if (length == 0xffffffff)
length = strOffsets.GetU64(&baseOffset);
// Check version.
if (strOffsets.GetU16(&baseOffset) < 5)
return;
// Skip padding.
baseOffset += 2;
dwo_cu->SetStrOffsetsBase(baseOffset);
}
// m_die_array_mutex must be already held as read/write.
void DWARFUnit::AddUnitDIE(const DWARFDebugInfoEntry &cu_die) {
llvm::Optional<uint64_t> addr_base, gnu_addr_base, ranges_base,
gnu_ranges_base;
DWARFAttributes attributes;
size_t num_attributes = cu_die.GetAttributes(this, attributes);
// Extract DW_AT_addr_base first, as other attributes may need it.
for (size_t i = 0; i < num_attributes; ++i) {
if (attributes.AttributeAtIndex(i) != DW_AT_addr_base)
continue;
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(i, form_value)) {
addr_base = form_value.Unsigned();
SetAddrBase(*addr_base);
break;
}
}
for (size_t i = 0; i < num_attributes; ++i) {
dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (!attributes.ExtractFormValueAtIndex(i, form_value))
continue;
switch (attr) {
case DW_AT_loclists_base:
SetLoclistsBase(form_value.Unsigned());
break;
case DW_AT_rnglists_base:
ranges_base = form_value.Unsigned();
SetRangesBase(*ranges_base);
break;
case DW_AT_str_offsets_base:
SetStrOffsetsBase(form_value.Unsigned());
break;
case DW_AT_low_pc:
SetBaseAddress(form_value.Address());
break;
case DW_AT_entry_pc:
// If the value was already set by DW_AT_low_pc, don't update it.
if (m_base_addr == LLDB_INVALID_ADDRESS)
SetBaseAddress(form_value.Address());
break;
case DW_AT_stmt_list:
m_line_table_offset = form_value.Unsigned();
break;
case DW_AT_GNU_addr_base:
gnu_addr_base = form_value.Unsigned();
break;
case DW_AT_GNU_ranges_base:
gnu_ranges_base = form_value.Unsigned();
break;
}
}
if (m_is_dwo)
return;
std::unique_ptr<SymbolFileDWARFDwo> dwo_symbol_file =
m_dwarf.GetDwoSymbolFileForCompileUnit(*this, cu_die);
if (!dwo_symbol_file)
return;
DWARFUnit *dwo_cu = dwo_symbol_file->GetCompileUnit();
if (!dwo_cu)
return; // Can't fetch the compile unit from the dwo file.
DWARFBaseDIE dwo_cu_die = dwo_cu->GetUnitDIEOnly();
if (!dwo_cu_die.IsValid())
return; // Can't fetch the compile unit DIE from the dwo file.
uint64_t main_dwo_id =
cu_die.GetAttributeValueAsUnsigned(this, DW_AT_GNU_dwo_id, 0);
uint64_t sub_dwo_id =
dwo_cu_die.GetAttributeValueAsUnsigned(DW_AT_GNU_dwo_id, 0);
if (main_dwo_id != sub_dwo_id)
return; // The 2 dwo ID isn't match. Don't use the dwo file as it belongs to
// a differectn compilation.
m_dwo_symbol_file = std::move(dwo_symbol_file);
// Here for DWO CU we want to use the address base set in the skeleton unit
// (DW_AT_addr_base) if it is available and use the DW_AT_GNU_addr_base
// otherwise. We do that because pre-DWARF v5 could use the DW_AT_GNU_*
// attributes which were applicable to the DWO units. The corresponding
// DW_AT_* attributes standardized in DWARF v5 are also applicable to the main
// unit in contrast.
if (addr_base)
dwo_cu->SetAddrBase(*addr_base);
else if (gnu_addr_base)
dwo_cu->SetAddrBase(*gnu_addr_base);
if (GetVersion() <= 4 && gnu_ranges_base)
dwo_cu->SetRangesBase(*gnu_ranges_base);
else if (m_dwo_symbol_file->GetDWARFContext()
.getOrLoadRngListsData()
.GetByteSize() > 0)
dwo_cu->SetRangesBase(llvm::DWARFListTableHeader::getHeaderSize(DWARF32));
if (GetVersion() >= 5 &&
m_dwo_symbol_file->get_debug_loclists_data().GetByteSize() > 0)
dwo_cu->SetLoclistsBase(llvm::DWARFListTableHeader::getHeaderSize(DWARF32));
dwo_cu->SetBaseAddress(GetBaseAddress());
for (size_t i = 0; i < m_dwo_symbol_file->DebugInfo()->GetNumUnits(); ++i) {
DWARFUnit *unit = m_dwo_symbol_file->DebugInfo()->GetUnitAtIndex(i);
SetDwoStrOffsetsBase(unit);
}
}
DWARFDIE DWARFUnit::LookupAddress(const dw_addr_t address) {
if (DIE()) {
const DWARFDebugAranges &func_aranges = GetFunctionAranges();
// Re-check the aranges auto pointer contents in case it was created above
if (!func_aranges.IsEmpty())
return GetDIE(func_aranges.FindAddress(address));
}
return DWARFDIE();
}
size_t DWARFUnit::GetDebugInfoSize() const {
return GetLengthByteSize() + GetLength() - GetHeaderByteSize();
}
const DWARFAbbreviationDeclarationSet *DWARFUnit::GetAbbreviations() const {
return m_abbrevs;
}
dw_offset_t DWARFUnit::GetAbbrevOffset() const {
return m_abbrevs ? m_abbrevs->GetOffset() : DW_INVALID_OFFSET;
}
dw_offset_t DWARFUnit::GetLineTableOffset() {
ExtractUnitDIEIfNeeded();
return m_line_table_offset;
}
void DWARFUnit::SetAddrBase(dw_addr_t addr_base) { m_addr_base = addr_base; }
// Parse the rangelist table header, including the optional array of offsets
// following it (DWARF v5 and later).
template <typename ListTableType>
static llvm::Expected<ListTableType>
ParseListTableHeader(const llvm::DWARFDataExtractor &data, uint64_t offset,
DwarfFormat format) {
// We are expected to be called with Offset 0 or pointing just past the table
// header. Correct Offset in the latter case so that it points to the start
// of the header.
if (offset > 0) {
uint64_t HeaderSize = llvm::DWARFListTableHeader::getHeaderSize(format);
if (offset < HeaderSize)
return llvm::createStringError(errc::invalid_argument,
"did not detect a valid"
" list table with base = 0x%" PRIx64 "\n",
offset);
offset -= HeaderSize;
}
ListTableType Table;
if (llvm::Error E = Table.extractHeaderAndOffsets(data, &offset))
return std::move(E);
return Table;
}
void DWARFUnit::SetLoclistsBase(dw_addr_t loclists_base) {
m_loclists_base = loclists_base;
uint64_t header_size = llvm::DWARFListTableHeader::getHeaderSize(DWARF32);
if (loclists_base < header_size)
return;
m_loclist_table_header.emplace(".debug_loclists", "locations");
uint64_t offset = loclists_base - header_size;
if (llvm::Error E = m_loclist_table_header->extract(
m_dwarf.get_debug_loclists_data().GetAsLLVM(), &offset)) {
GetSymbolFileDWARF().GetObjectFile()->GetModule()->ReportError(
"Failed to extract location list table at offset 0x%" PRIx64 ": %s",
loclists_base, toString(std::move(E)).c_str());
}
}
std::unique_ptr<llvm::DWARFLocationTable>
DWARFUnit::GetLocationTable(const DataExtractor &data) const {
llvm::DWARFDataExtractor llvm_data(
toStringRef(data.GetData()),
data.GetByteOrder() == lldb::eByteOrderLittle, data.GetAddressByteSize());
if (m_is_dwo || GetVersion() >= 5)
return std::make_unique<llvm::DWARFDebugLoclists>(llvm_data, GetVersion());
return std::make_unique<llvm::DWARFDebugLoc>(llvm_data);
}
const DWARFDataExtractor &DWARFUnit::GetLocationData() const {
return GetVersion() >= 5 ? GetSymbolFileDWARF().get_debug_loclists_data()
: GetSymbolFileDWARF().get_debug_loc_data();
}
void DWARFUnit::SetRangesBase(dw_addr_t ranges_base) {
m_ranges_base = ranges_base;
if (GetVersion() < 5)
return;
if (auto table_or_error = ParseListTableHeader<llvm::DWARFDebugRnglistTable>(
m_dwarf.GetDWARFContext().getOrLoadRngListsData().GetAsLLVM(),
ranges_base, DWARF32))
m_rnglist_table = std::move(table_or_error.get());
else
GetSymbolFileDWARF().GetObjectFile()->GetModule()->ReportError(
"Failed to extract range list table at offset 0x%" PRIx64 ": %s",
ranges_base, toString(table_or_error.takeError()).c_str());
}
void DWARFUnit::SetStrOffsetsBase(dw_offset_t str_offsets_base) {
m_str_offsets_base = str_offsets_base;
}
// It may be called only with m_die_array_mutex held R/W.
void DWARFUnit::ClearDIEsRWLocked() {
m_die_array.clear();
m_die_array.shrink_to_fit();
if (m_dwo_symbol_file)
m_dwo_symbol_file->GetCompileUnit()->ClearDIEsRWLocked();
}
lldb::ByteOrder DWARFUnit::GetByteOrder() const {
return m_dwarf.GetObjectFile()->GetByteOrder();
}
llvm::Expected<TypeSystem &> DWARFUnit::GetTypeSystem() {
return m_dwarf.GetTypeSystemForLanguage(GetLanguageType());
}
void DWARFUnit::SetBaseAddress(dw_addr_t base_addr) { m_base_addr = base_addr; }
// Compare function DWARFDebugAranges::Range structures
static bool CompareDIEOffset(const DWARFDebugInfoEntry &die,
const dw_offset_t die_offset) {
return die.GetOffset() < die_offset;
}
// GetDIE()
//
// Get the DIE (Debug Information Entry) with the specified offset by first
// checking if the DIE is contained within this compile unit and grabbing the
// DIE from this compile unit. Otherwise we grab the DIE from the DWARF file.
DWARFDIE
DWARFUnit::GetDIE(dw_offset_t die_offset) {
if (die_offset != DW_INVALID_OFFSET) {
if (GetDwoSymbolFile())
return GetDwoSymbolFile()->GetCompileUnit()->GetDIE(die_offset);
if (ContainsDIEOffset(die_offset)) {
ExtractDIEsIfNeeded();
DWARFDebugInfoEntry::const_iterator end = m_die_array.cend();
DWARFDebugInfoEntry::const_iterator pos =
lower_bound(m_die_array.cbegin(), end, die_offset, CompareDIEOffset);
if (pos != end) {
if (die_offset == (*pos).GetOffset())
return DWARFDIE(this, &(*pos));
}
} else
GetSymbolFileDWARF().GetObjectFile()->GetModule()->ReportError(
"GetDIE for DIE 0x%" PRIx32 " is outside of its CU 0x%" PRIx32,
die_offset, GetOffset());
}
return DWARFDIE(); // Not found
}
DWARFUnit &DWARFUnit::GetNonSkeletonUnit() {
if (SymbolFileDWARFDwo *dwo = GetDwoSymbolFile())
return *dwo->GetCompileUnit();
return *this;
}
uint8_t DWARFUnit::GetAddressByteSize(const DWARFUnit *cu) {
if (cu)
return cu->GetAddressByteSize();
return DWARFUnit::GetDefaultAddressSize();
}
uint8_t DWARFUnit::GetDefaultAddressSize() { return 4; }
void *DWARFUnit::GetUserData() const { return m_user_data; }
void DWARFUnit::SetUserData(void *d) {
m_user_data = d;
if (m_dwo_symbol_file)
m_dwo_symbol_file->GetCompileUnit()->SetUserData(d);
}
bool DWARFUnit::Supports_DW_AT_APPLE_objc_complete_type() {
return GetProducer() != eProducerLLVMGCC;
}
bool DWARFUnit::DW_AT_decl_file_attributes_are_invalid() {
// llvm-gcc makes completely invalid decl file attributes and won't ever be
// fixed, so we need to know to ignore these.
return GetProducer() == eProducerLLVMGCC;
}
bool DWARFUnit::Supports_unnamed_objc_bitfields() {
if (GetProducer() == eProducerClang) {
const uint32_t major_version = GetProducerVersionMajor();
return major_version > 425 ||
(major_version == 425 && GetProducerVersionUpdate() >= 13);
}
return true; // Assume all other compilers didn't have incorrect ObjC bitfield
// info
}
void DWARFUnit::ParseProducerInfo() {
m_producer_version_major = UINT32_MAX;
m_producer_version_minor = UINT32_MAX;
m_producer_version_update = UINT32_MAX;
const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly();
if (die) {
const char *producer_cstr =
die->GetAttributeValueAsString(this, DW_AT_producer, nullptr);
if (producer_cstr) {
RegularExpression llvm_gcc_regex(
llvm::StringRef("^4\\.[012]\\.[01] \\(Based on Apple "
"Inc\\. build [0-9]+\\) \\(LLVM build "
"[\\.0-9]+\\)$"));
if (llvm_gcc_regex.Execute(llvm::StringRef(producer_cstr))) {
m_producer = eProducerLLVMGCC;
} else if (strstr(producer_cstr, "clang")) {
static RegularExpression g_clang_version_regex(
llvm::StringRef("clang-([0-9]+)\\.([0-9]+)\\.([0-9]+)"));
llvm::SmallVector<llvm::StringRef, 4> matches;
if (g_clang_version_regex.Execute(llvm::StringRef(producer_cstr),
&matches)) {
m_producer_version_major =
StringConvert::ToUInt32(matches[1].str().c_str(), UINT32_MAX, 10);
m_producer_version_minor =
StringConvert::ToUInt32(matches[2].str().c_str(), UINT32_MAX, 10);
m_producer_version_update =
StringConvert::ToUInt32(matches[3].str().c_str(), UINT32_MAX, 10);
}
m_producer = eProducerClang;
} else if (strstr(producer_cstr, "GNU"))
m_producer = eProducerGCC;
}
}
if (m_producer == eProducerInvalid)
m_producer = eProcucerOther;
}
DWARFProducer DWARFUnit::GetProducer() {
if (m_producer == eProducerInvalid)
ParseProducerInfo();
return m_producer;
}
uint32_t DWARFUnit::GetProducerVersionMajor() {
if (m_producer_version_major == 0)
ParseProducerInfo();
return m_producer_version_major;
}
uint32_t DWARFUnit::GetProducerVersionMinor() {
if (m_producer_version_minor == 0)
ParseProducerInfo();
return m_producer_version_minor;
}
uint32_t DWARFUnit::GetProducerVersionUpdate() {
if (m_producer_version_update == 0)
ParseProducerInfo();
return m_producer_version_update;
}
LanguageType DWARFUnit::LanguageTypeFromDWARF(uint64_t val) {
// Note: user languages between lo_user and hi_user must be handled
// explicitly here.
switch (val) {
case DW_LANG_Mips_Assembler:
return eLanguageTypeMipsAssembler;
case DW_LANG_GOOGLE_RenderScript:
return eLanguageTypeExtRenderScript;
default:
return static_cast<LanguageType>(val);
}
}
LanguageType DWARFUnit::GetLanguageType() {
if (m_language_type != eLanguageTypeUnknown)
return m_language_type;
const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly();
if (die)
m_language_type = LanguageTypeFromDWARF(
die->GetAttributeValueAsUnsigned(this, DW_AT_language, 0));
return m_language_type;
}
bool DWARFUnit::GetIsOptimized() {
if (m_is_optimized == eLazyBoolCalculate) {
const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly();
if (die) {
m_is_optimized = eLazyBoolNo;
if (die->GetAttributeValueAsUnsigned(this, DW_AT_APPLE_optimized, 0) ==
1) {
m_is_optimized = eLazyBoolYes;
}
}
}
return m_is_optimized == eLazyBoolYes;
}
FileSpec::Style DWARFUnit::GetPathStyle() {
if (!m_comp_dir)
ComputeCompDirAndGuessPathStyle();
return m_comp_dir->GetPathStyle();
}
const FileSpec &DWARFUnit::GetCompilationDirectory() {
if (!m_comp_dir)
ComputeCompDirAndGuessPathStyle();
return *m_comp_dir;
}
const FileSpec &DWARFUnit::GetAbsolutePath() {
if (!m_file_spec)
ComputeAbsolutePath();
return *m_file_spec;
}
FileSpec DWARFUnit::GetFile(size_t file_idx) {
return m_dwarf.GetFile(*this, file_idx);
}
// DWARF2/3 suggests the form hostname:pathname for compilation directory.
// Remove the host part if present.
static llvm::StringRef
removeHostnameFromPathname(llvm::StringRef path_from_dwarf) {
if (!path_from_dwarf.contains(':'))
return path_from_dwarf;
llvm::StringRef host, path;
std::tie(host, path) = path_from_dwarf.split(':');
if (host.contains('/'))
return path_from_dwarf;
// check whether we have a windows path, and so the first character is a
// drive-letter not a hostname.
if (host.size() == 1 && llvm::isAlpha(host[0]) && path.startswith("\\"))
return path_from_dwarf;
return path;
}
static FileSpec resolveCompDir(const FileSpec &path) {
bool is_symlink = SymbolFileDWARF::GetSymlinkPaths().FindFileIndex(
0, path, /*full*/ true) != UINT32_MAX;
if (!is_symlink)
return path;
namespace fs = llvm::sys::fs;
if (fs::get_file_type(path.GetPath(), false) != fs::file_type::symlink_file)
return path;
FileSpec resolved_symlink;
const auto error = FileSystem::Instance().Readlink(path, resolved_symlink);
if (error.Success())
return resolved_symlink;
return path;
}
void DWARFUnit::ComputeCompDirAndGuessPathStyle() {
m_comp_dir = FileSpec();
const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly();
if (!die)
return;
llvm::StringRef comp_dir = removeHostnameFromPathname(
die->GetAttributeValueAsString(this, DW_AT_comp_dir, nullptr));
if (!comp_dir.empty()) {
FileSpec::Style comp_dir_style =
FileSpec::GuessPathStyle(comp_dir).getValueOr(FileSpec::Style::native);
m_comp_dir = resolveCompDir(FileSpec(comp_dir, comp_dir_style));
} else {
// Try to detect the style based on the DW_AT_name attribute, but just store
// the detected style in the m_comp_dir field.
const char *name =
die->GetAttributeValueAsString(this, DW_AT_name, nullptr);
m_comp_dir = FileSpec(
"", FileSpec::GuessPathStyle(name).getValueOr(FileSpec::Style::native));
}
}
void DWARFUnit::ComputeAbsolutePath() {
m_file_spec = FileSpec();
const DWARFDebugInfoEntry *die = GetUnitDIEPtrOnly();
if (!die)
return;
m_file_spec =
FileSpec(die->GetAttributeValueAsString(this, DW_AT_name, nullptr),
GetPathStyle());
if (m_file_spec->IsRelative())
m_file_spec->MakeAbsolute(GetCompilationDirectory());
}
SymbolFileDWARFDwo *DWARFUnit::GetDwoSymbolFile() const {
return m_dwo_symbol_file.get();
}
const DWARFDebugAranges &DWARFUnit::GetFunctionAranges() {
if (m_func_aranges_up == nullptr) {
m_func_aranges_up.reset(new DWARFDebugAranges());
const DWARFDebugInfoEntry *die = DIEPtr();
if (die)
die->BuildFunctionAddressRangeTable(this, m_func_aranges_up.get());
if (m_dwo_symbol_file) {
DWARFUnit *dwo_cu = m_dwo_symbol_file->GetCompileUnit();
const DWARFDebugInfoEntry *dwo_die = dwo_cu->DIEPtr();
if (dwo_die)
dwo_die->BuildFunctionAddressRangeTable(dwo_cu,
m_func_aranges_up.get());
}
const bool minimize = false;
m_func_aranges_up->Sort(minimize);
}
return *m_func_aranges_up;
}
llvm::Expected<DWARFUnitHeader>
DWARFUnitHeader::extract(const DWARFDataExtractor &data, DIERef::Section section,
lldb::offset_t *offset_ptr) {
DWARFUnitHeader header;
header.m_offset = *offset_ptr;
header.m_length = data.GetDWARFInitialLength(offset_ptr);
header.m_version = data.GetU16(offset_ptr);
if (header.m_version == 5) {
header.m_unit_type = data.GetU8(offset_ptr);
header.m_addr_size = data.GetU8(offset_ptr);
header.m_abbr_offset = data.GetDWARFOffset(offset_ptr);
if (header.m_unit_type == llvm::dwarf::DW_UT_skeleton)
header.m_dwo_id = data.GetU64(offset_ptr);
} else {
header.m_abbr_offset = data.GetDWARFOffset(offset_ptr);
header.m_addr_size = data.GetU8(offset_ptr);
header.m_unit_type =
section == DIERef::Section::DebugTypes ? DW_UT_type : DW_UT_compile;
}
if (header.IsTypeUnit()) {
header.m_type_hash = data.GetU64(offset_ptr);
header.m_type_offset = data.GetDWARFOffset(offset_ptr);
}
bool length_OK = data.ValidOffset(header.GetNextUnitOffset() - 1);
bool version_OK = SymbolFileDWARF::SupportedVersion(header.m_version);
bool addr_size_OK = (header.m_addr_size == 4) || (header.m_addr_size == 8);
bool type_offset_OK =
!header.IsTypeUnit() || (header.m_type_offset <= header.GetLength());
if (!length_OK)
return llvm::make_error<llvm::object::GenericBinaryError>(
"Invalid unit length");
if (!version_OK)
return llvm::make_error<llvm::object::GenericBinaryError>(
"Unsupported unit version");
if (!addr_size_OK)
return llvm::make_error<llvm::object::GenericBinaryError>(
"Invalid unit address size");
if (!type_offset_OK)
return llvm::make_error<llvm::object::GenericBinaryError>(
"Type offset out of range");
return header;
}
llvm::Expected<DWARFUnitSP>
DWARFUnit::extract(SymbolFileDWARF &dwarf, user_id_t uid,
const DWARFDataExtractor &debug_info,
DIERef::Section section, lldb::offset_t *offset_ptr) {
assert(debug_info.ValidOffset(*offset_ptr));
auto expected_header =
DWARFUnitHeader::extract(debug_info, section, offset_ptr);
if (!expected_header)
return expected_header.takeError();
const DWARFDebugAbbrev *abbr = dwarf.DebugAbbrev();
if (!abbr)
return llvm::make_error<llvm::object::GenericBinaryError>(
"No debug_abbrev data");
bool abbr_offset_OK =
dwarf.GetDWARFContext().getOrLoadAbbrevData().ValidOffset(
expected_header->GetAbbrOffset());
if (!abbr_offset_OK)
return llvm::make_error<llvm::object::GenericBinaryError>(
"Abbreviation offset for unit is not valid");
const DWARFAbbreviationDeclarationSet *abbrevs =
abbr->GetAbbreviationDeclarationSet(expected_header->GetAbbrOffset());
if (!abbrevs)
return llvm::make_error<llvm::object::GenericBinaryError>(
"No abbrev exists at the specified offset.");
bool is_dwo = dwarf.GetDWARFContext().isDwo();
if (expected_header->IsTypeUnit())
return DWARFUnitSP(new DWARFTypeUnit(dwarf, uid, *expected_header, *abbrevs,
section, is_dwo));
return DWARFUnitSP(new DWARFCompileUnit(dwarf, uid, *expected_header,
*abbrevs, section, is_dwo));
}
const lldb_private::DWARFDataExtractor &DWARFUnit::GetData() const {
return m_section == DIERef::Section::DebugTypes
? m_dwarf.GetDWARFContext().getOrLoadDebugTypesData()
: m_dwarf.GetDWARFContext().getOrLoadDebugInfoData();
}
uint32_t DWARFUnit::GetHeaderByteSize() const {
switch (m_header.GetUnitType()) {
case llvm::dwarf::DW_UT_compile:
case llvm::dwarf::DW_UT_partial:
return GetVersion() < 5 ? 11 : 12;
case llvm::dwarf::DW_UT_skeleton:
case llvm::dwarf::DW_UT_split_compile:
return 20;
case llvm::dwarf::DW_UT_type:
case llvm::dwarf::DW_UT_split_type:
return GetVersion() < 5 ? 23 : 24;
}
llvm_unreachable("invalid UnitType.");
}
llvm::Expected<DWARFRangeList>
DWARFUnit::FindRnglistFromOffset(dw_offset_t offset) {
if (GetVersion() <= 4) {
const DWARFDebugRanges *debug_ranges = m_dwarf.GetDebugRanges();
if (!debug_ranges)
return llvm::make_error<llvm::object::GenericBinaryError>(
"No debug_ranges section");
DWARFRangeList ranges;
debug_ranges->FindRanges(this, offset, ranges);
return ranges;
}
if (!m_rnglist_table)
return llvm::createStringError(errc::invalid_argument,
"missing or invalid range list table");
auto range_list_or_error = m_rnglist_table->findList(
m_dwarf.GetDWARFContext().getOrLoadRngListsData().GetAsLLVM(), offset);
if (!range_list_or_error)
return range_list_or_error.takeError();
llvm::Expected<llvm::DWARFAddressRangesVector> llvm_ranges =
range_list_or_error->getAbsoluteRanges(
llvm::object::SectionedAddress{GetBaseAddress()},
[&](uint32_t index) {
uint32_t index_size = GetAddressByteSize();
dw_offset_t addr_base = GetAddrBase();
lldb::offset_t offset = addr_base + index * index_size;
return llvm::object::SectionedAddress{
m_dwarf.GetDWARFContext().getOrLoadAddrData().GetMaxU64(
&offset, index_size)};
});
if (!llvm_ranges)
return llvm_ranges.takeError();
DWARFRangeList ranges;
for (const llvm::DWARFAddressRange &llvm_range : *llvm_ranges) {
ranges.Append(DWARFRangeList::Entry(llvm_range.LowPC,
llvm_range.HighPC - llvm_range.LowPC));
}
return ranges;
}
llvm::Expected<DWARFRangeList>
DWARFUnit::FindRnglistFromIndex(uint32_t index) {
if (llvm::Optional<uint64_t> offset = GetRnglistOffset(index))
return FindRnglistFromOffset(*offset);
if (m_rnglist_table)
return llvm::createStringError(errc::invalid_argument,
"invalid range list table index %d", index);
return llvm::createStringError(errc::invalid_argument,
"missing or invalid range list table");
}