Files
clang-p2996/libc/utils/gpu/loader/Loader.h
Joseph Huber 7fd9f0f4e0 [libc] Remove MAX_LANE_SIZE definition from the RPC server
This `MAX_LANE_SIZE` was a hack from the days when we used a single
instance of the server and had some GPU state handle it. Now that we
have everything templated this really shouldn't be used. This patch
removes its use and replaces it with template arguments.

Reviewed By: JonChesterfield

Differential Revision: https://reviews.llvm.org/D158633
2023-08-23 12:09:30 -05:00

228 lines
6.9 KiB
C++

//===-- Generic device loader interface -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_GPU_LOADER_LOADER_H
#define LLVM_LIBC_UTILS_GPU_LOADER_LOADER_H
#include "utils/gpu/server/rpc_server.h"
#include "include/llvm-libc-types/test_rpc_opcodes_t.h"
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
/// Generic launch parameters for configuration the number of blocks / threads.
struct LaunchParameters {
uint32_t num_threads_x;
uint32_t num_threads_y;
uint32_t num_threads_z;
uint32_t num_blocks_x;
uint32_t num_blocks_y;
uint32_t num_blocks_z;
};
/// The arguments to the '_begin' kernel.
struct begin_args_t {
int argc;
void *argv;
void *envp;
void *rpc_shared_buffer;
};
/// The arguments to the '_start' kernel.
struct start_args_t {
int argc;
void *argv;
void *envp;
void *ret;
};
/// The arguments to the '_end' kernel.
struct end_args_t {
int argc;
};
/// Generic interface to load the \p image and launch execution of the _start
/// kernel on the target device. Copies \p argc and \p argv to the device.
/// Returns the final value of the `main` function on the device.
int load(int argc, char **argv, char **evnp, void *image, size_t size,
const LaunchParameters &params);
/// Return \p V aligned "upwards" according to \p Align.
template <typename V, typename A> inline V align_up(V val, A align) {
return ((val + V(align) - 1) / V(align)) * V(align);
}
/// Copy the system's argument vector to GPU memory allocated using \p alloc.
template <typename Allocator>
void *copy_argument_vector(int argc, char **argv, Allocator alloc) {
size_t argv_size = sizeof(char *) * (argc + 1);
size_t str_size = 0;
for (int i = 0; i < argc; ++i)
str_size += strlen(argv[i]) + 1;
// We allocate enough space for a null terminated array and all the strings.
void *dev_argv = alloc(argv_size + str_size);
if (!dev_argv)
return nullptr;
// Store the strings linerally in the same memory buffer.
void *dev_str = reinterpret_cast<uint8_t *>(dev_argv) + argv_size;
for (int i = 0; i < argc; ++i) {
size_t size = strlen(argv[i]) + 1;
std::memcpy(dev_str, argv[i], size);
static_cast<void **>(dev_argv)[i] = dev_str;
dev_str = reinterpret_cast<uint8_t *>(dev_str) + size;
}
// Ensure the vector is null terminated.
reinterpret_cast<void **>(dev_argv)[argv_size] = nullptr;
return dev_argv;
};
/// Copy the system's environment to GPU memory allocated using \p alloc.
template <typename Allocator>
void *copy_environment(char **envp, Allocator alloc) {
int envc = 0;
for (char **env = envp; *env != 0; ++env)
++envc;
return copy_argument_vector(envc, envp, alloc);
};
inline void handle_error(const char *msg) {
fprintf(stderr, "%s\n", msg);
exit(EXIT_FAILURE);
}
inline void handle_error(rpc_status_t) {
handle_error("Failure in the RPC server\n");
}
template <uint32_t lane_size>
inline void register_rpc_callbacks(uint32_t device_id) {
static_assert(lane_size == 32 || lane_size == 64, "Invalid Lane size");
// Register the ping test for the `libc` tests.
rpc_register_callback(
device_id, static_cast<rpc_opcode_t>(RPC_TEST_INCREMENT),
[](rpc_port_t port, void *data) {
rpc_recv_and_send(
port,
[](rpc_buffer_t *buffer, void *data) {
reinterpret_cast<uint64_t *>(buffer->data)[0] += 1;
},
data);
},
nullptr);
// Register the interface test callbacks.
rpc_register_callback(
device_id, static_cast<rpc_opcode_t>(RPC_TEST_INTERFACE),
[](rpc_port_t port, void *data) {
uint64_t cnt = 0;
bool end_with_recv;
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<bool *>(data) = buffer->data[0];
},
&end_with_recv);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
if (end_with_recv)
rpc_recv(
port,
[](rpc_buffer_t *buffer, void *data) {
*reinterpret_cast<uint64_t *>(data) = buffer->data[0];
},
&cnt);
else
rpc_send(
port,
[](rpc_buffer_t *buffer, void *data) {
uint64_t &cnt = *reinterpret_cast<uint64_t *>(data);
buffer->data[0] = cnt = cnt + 1;
},
&cnt);
},
nullptr);
// Register the stream test handler.
rpc_register_callback(
device_id, static_cast<rpc_opcode_t>(RPC_TEST_STREAM),
[](rpc_port_t port, void *data) {
uint64_t sizes[lane_size] = {0};
void *dst[lane_size] = {nullptr};
rpc_recv_n(
port, dst, sizes,
[](uint64_t size, void *) -> void * { return new char[size]; },
nullptr);
rpc_send_n(port, dst, sizes);
for (uint64_t i = 0; i < lane_size; ++i) {
if (dst[i])
delete[] reinterpret_cast<uint8_t *>(dst[i]);
}
},
nullptr);
}
#endif