Files
clang-p2996/mlir/lib/Dialect/SCF/TransformOps/SCFTransformOps.cpp
Groverkss 9aaf007a98 [SCF][Transform] Add transform.loop.fuse_sibling
This patch adds a new transform operation `transform.loop.fuse_sibling`,
which given two loops, fuses them, assuming that they are independent.
The transform operation itself performs very basic checks to ensure
IR legality, and leaves the responsibility of ensuring independence on the user.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D157069
2023-08-19 15:24:23 +05:30

491 lines
20 KiB
C++

//===- SCFTransformOps.cpp - Implementation of SCF transformation ops -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Transform/IR/TransformOps.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Dominance.h"
using namespace mlir;
using namespace mlir::affine;
//===----------------------------------------------------------------------===//
// Apply...PatternsOp
//===----------------------------------------------------------------------===//
void transform::ApplyForLoopCanonicalizationPatternsOp::populatePatterns(
RewritePatternSet &patterns) {
scf::populateSCFForLoopCanonicalizationPatterns(patterns);
}
//===----------------------------------------------------------------------===//
// GetParentForOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::GetParentForOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
SetVector<Operation *> parents;
for (Operation *target : state.getPayloadOps(getTarget())) {
Operation *loop, *current = target;
for (unsigned i = 0, e = getNumLoops(); i < e; ++i) {
loop = getAffine()
? current->getParentOfType<AffineForOp>().getOperation()
: current->getParentOfType<scf::ForOp>().getOperation();
if (!loop) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "could not find an '"
<< (getAffine() ? AffineForOp::getOperationName()
: scf::ForOp::getOperationName())
<< "' parent";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
current = loop;
}
parents.insert(loop);
}
results.set(cast<OpResult>(getResult()), parents.getArrayRef());
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopOutlineOp
//===----------------------------------------------------------------------===//
/// Wraps the given operation `op` into an `scf.execute_region` operation. Uses
/// the provided rewriter for all operations to remain compatible with the
/// rewriting infra, as opposed to just splicing the op in place.
static scf::ExecuteRegionOp wrapInExecuteRegion(RewriterBase &b,
Operation *op) {
if (op->getNumRegions() != 1)
return nullptr;
OpBuilder::InsertionGuard g(b);
b.setInsertionPoint(op);
scf::ExecuteRegionOp executeRegionOp =
b.create<scf::ExecuteRegionOp>(op->getLoc(), op->getResultTypes());
{
OpBuilder::InsertionGuard g(b);
b.setInsertionPointToStart(&executeRegionOp.getRegion().emplaceBlock());
Operation *clonedOp = b.cloneWithoutRegions(*op);
Region &clonedRegion = clonedOp->getRegions().front();
assert(clonedRegion.empty() && "expected empty region");
b.inlineRegionBefore(op->getRegions().front(), clonedRegion,
clonedRegion.end());
b.create<scf::YieldOp>(op->getLoc(), clonedOp->getResults());
}
b.replaceOp(op, executeRegionOp.getResults());
return executeRegionOp;
}
DiagnosedSilenceableFailure
transform::LoopOutlineOp::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
SmallVector<Operation *> functions;
SmallVector<Operation *> calls;
DenseMap<Operation *, SymbolTable> symbolTables;
for (Operation *target : state.getPayloadOps(getTarget())) {
Location location = target->getLoc();
Operation *symbolTableOp = SymbolTable::getNearestSymbolTable(target);
scf::ExecuteRegionOp exec = wrapInExecuteRegion(rewriter, target);
if (!exec) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to outline";
diag.attachNote(target->getLoc()) << "target op";
return diag;
}
func::CallOp call;
FailureOr<func::FuncOp> outlined = outlineSingleBlockRegion(
rewriter, location, exec.getRegion(), getFuncName(), &call);
if (failed(outlined))
return emitDefaultDefiniteFailure(target);
if (symbolTableOp) {
SymbolTable &symbolTable =
symbolTables.try_emplace(symbolTableOp, symbolTableOp)
.first->getSecond();
symbolTable.insert(*outlined);
call.setCalleeAttr(FlatSymbolRefAttr::get(*outlined));
}
functions.push_back(*outlined);
calls.push_back(call);
}
results.set(cast<OpResult>(getFunction()), functions);
results.set(cast<OpResult>(getCall()), calls);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopPeelOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::LoopPeelOp::applyToOne(transform::TransformRewriter &rewriter,
scf::ForOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
scf::ForOp result;
// This helper returns failure when peeling does not occur (i.e. when the IR
// is not modified). This is not a failure for the op as the postcondition:
// "the loop trip count is divisible by the step"
// is valid.
LogicalResult status =
scf::peelForLoopAndSimplifyBounds(rewriter, target, result);
// TODO: Return both the peeled loop and the remainder loop.
results.push_back(failed(status) ? target : result);
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopPipelineOp
//===----------------------------------------------------------------------===//
/// Callback for PipeliningOption. Populates `schedule` with the mapping from an
/// operation to its logical time position given the iteration interval and the
/// read latency. The latter is only relevant for vector transfers.
static void
loopScheduling(scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &schedule,
unsigned iterationInterval, unsigned readLatency) {
auto getLatency = [&](Operation *op) -> unsigned {
if (isa<vector::TransferReadOp>(op))
return readLatency;
return 1;
};
DenseMap<Operation *, unsigned> opCycles;
std::map<unsigned, std::vector<Operation *>> wrappedSchedule;
for (Operation &op : forOp.getBody()->getOperations()) {
if (isa<scf::YieldOp>(op))
continue;
unsigned earlyCycle = 0;
for (Value operand : op.getOperands()) {
Operation *def = operand.getDefiningOp();
if (!def)
continue;
earlyCycle = std::max(earlyCycle, opCycles[def] + getLatency(def));
}
opCycles[&op] = earlyCycle;
wrappedSchedule[earlyCycle % iterationInterval].push_back(&op);
}
for (const auto &it : wrappedSchedule) {
for (Operation *op : it.second) {
unsigned cycle = opCycles[op];
schedule.emplace_back(op, cycle / iterationInterval);
}
}
}
DiagnosedSilenceableFailure
transform::LoopPipelineOp::applyToOne(transform::TransformRewriter &rewriter,
scf::ForOp target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
scf::PipeliningOption options;
options.getScheduleFn =
[this](scf::ForOp forOp,
std::vector<std::pair<Operation *, unsigned>> &schedule) mutable {
loopScheduling(forOp, schedule, getIterationInterval(),
getReadLatency());
};
scf::ForLoopPipeliningPattern pattern(options, target->getContext());
rewriter.setInsertionPoint(target);
FailureOr<scf::ForOp> patternResult =
scf::pipelineForLoop(rewriter, target, options);
if (succeeded(patternResult)) {
results.push_back(*patternResult);
return DiagnosedSilenceableFailure::success();
}
return emitDefaultSilenceableFailure(target);
}
//===----------------------------------------------------------------------===//
// LoopPromoteIfOneIterationOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure transform::LoopPromoteIfOneIterationOp::applyToOne(
transform::TransformRewriter &rewriter, LoopLikeOpInterface target,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
(void)target.promoteIfSingleIteration(rewriter);
return DiagnosedSilenceableFailure::success();
}
void transform::LoopPromoteIfOneIterationOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
consumesHandle(getTarget(), effects);
modifiesPayload(effects);
}
//===----------------------------------------------------------------------===//
// LoopUnrollOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::LoopUnrollOp::applyToOne(transform::TransformRewriter &rewriter,
Operation *op,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
LogicalResult result(failure());
if (scf::ForOp scfFor = dyn_cast<scf::ForOp>(op))
result = loopUnrollByFactor(scfFor, getFactor());
else if (AffineForOp affineFor = dyn_cast<AffineForOp>(op))
result = loopUnrollByFactor(affineFor, getFactor());
if (failed(result)) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to unroll";
return diag;
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// LoopCoalesceOp
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure
transform::LoopCoalesceOp::applyToOne(transform::TransformRewriter &rewriter,
Operation *op,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
LogicalResult result(failure());
if (scf::ForOp scfForOp = dyn_cast<scf::ForOp>(op))
result = coalescePerfectlyNestedLoops(scfForOp);
else if (AffineForOp affineForOp = dyn_cast<AffineForOp>(op))
result = coalescePerfectlyNestedLoops(affineForOp);
results.push_back(op);
if (failed(result)) {
DiagnosedSilenceableFailure diag = emitSilenceableError()
<< "failed to coalesce";
return diag;
}
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// TakeAssumedBranchOp
//===----------------------------------------------------------------------===//
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(RewriterBase &rewriter, Operation *op,
Region &region) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = &region.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.inlineBlockBefore(block, op, /*blockArgs=*/{});
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
DiagnosedSilenceableFailure transform::TakeAssumedBranchOp::applyToOne(
transform::TransformRewriter &rewriter, scf::IfOp ifOp,
transform::ApplyToEachResultList &results,
transform::TransformState &state) {
rewriter.setInsertionPoint(ifOp);
Region &region =
getTakeElseBranch() ? ifOp.getElseRegion() : ifOp.getThenRegion();
if (!llvm::hasSingleElement(region)) {
return emitDefiniteFailure()
<< "requires an scf.if op with a single-block "
<< ((getTakeElseBranch()) ? "`else`" : "`then`") << " region";
}
replaceOpWithRegion(rewriter, ifOp, region);
return DiagnosedSilenceableFailure::success();
}
void transform::TakeAssumedBranchOp::getEffects(
SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
onlyReadsHandle(getTarget(), effects);
modifiesPayload(effects);
}
//===----------------------------------------------------------------------===//
// LoopFuseSibling
//===----------------------------------------------------------------------===//
/// Check if `target` and `source` are siblings, in the context that `target`
/// is being fused into `source`.
///
/// This is a simple check that just checks if both operations are in the same
/// block and some checks to ensure that the fused IR does not violate
/// dominance.
static DiagnosedSilenceableFailure isOpSibling(Operation *target,
Operation *source) {
// Check if both operations are same.
if (target == source)
return emitSilenceableFailure(source)
<< "target and source need to be different loops";
// Check if both operations are in the same block.
if (target->getBlock() != source->getBlock())
return emitSilenceableFailure(source)
<< "target and source are not in the same block";
// Check if fusion will violate dominance.
DominanceInfo domInfo(source);
if (target->isBeforeInBlock(source)) {
// Since, `target` is before `source`, all users of results of `target`
// need to be dominated by `source`.
for (Operation *user : target->getUsers()) {
if (!domInfo.properlyDominates(source, user, /*enclosingOpOk=*/false)) {
return emitSilenceableFailure(target)
<< "user of results of target should be properly dominated by "
"source";
}
}
} else {
// Since `target` is after `source`, all values used by `target` need
// to dominate `source`.
// Check if operands of `target` are dominated by `source`.
for (Value operand : target->getOperands()) {
Operation *operandOp = operand.getDefiningOp();
// If operand does not have a defining operation, it is a block arguement,
// which will always dominate `source`, since `target` and `source` are in
// the same block and the operand dominated `source` before.
if (!operandOp)
continue;
// Operand's defining operation should properly dominate `source`.
if (!domInfo.properlyDominates(operandOp, source,
/*enclosingOpOk=*/false))
return emitSilenceableFailure(target)
<< "operands of target should be properly dominated by source";
}
// Check if values used by `target` are dominated by `source`.
bool failed = false;
OpOperand *failedValue = nullptr;
visitUsedValuesDefinedAbove(target->getRegions(), [&](OpOperand *operand) {
if (!domInfo.properlyDominates(operand->getOwner(), source,
/*enclosingOpOk=*/false)) {
failed = true;
failedValue = operand;
}
});
if (failed)
return emitSilenceableFailure(failedValue->getOwner())
<< "values used inside regions of target should be properly "
"dominated by source";
}
return DiagnosedSilenceableFailure::success();
}
/// Check if `target` can be fused into `source`.
///
/// This is a simple check that just checks if both loops have same
/// bounds, steps and mapping. This check does not ensure that the side effects
/// of `target` are independent of `source` or vice-versa. It is the
/// responsibility of the caller to ensure that.
static bool isForallWithIdenticalConfiguration(Operation *target,
Operation *source) {
auto targetOp = dyn_cast<scf::ForallOp>(target);
auto sourceOp = dyn_cast<scf::ForallOp>(source);
if (!targetOp || !sourceOp)
return false;
return targetOp.getMixedLowerBound() == sourceOp.getMixedLowerBound() &&
targetOp.getMixedUpperBound() == sourceOp.getMixedUpperBound() &&
targetOp.getMixedStep() == sourceOp.getMixedStep() &&
targetOp.getMapping() == sourceOp.getMapping();
}
/// Fuse `target` into `source` assuming they are siblings and indepndent.
/// TODO: Add fusion for more operations. Currently, we handle only scf.forall.
static Operation *fuseSiblings(Operation *target, Operation *source,
RewriterBase &rewriter) {
auto targetOp = dyn_cast<scf::ForallOp>(target);
auto sourceOp = dyn_cast<scf::ForallOp>(source);
if (!targetOp || !sourceOp)
return nullptr;
return fuseIndependentSiblingForallLoops(targetOp, sourceOp, rewriter);
}
DiagnosedSilenceableFailure
transform::LoopFuseSibling::apply(transform::TransformRewriter &rewriter,
transform::TransformResults &results,
transform::TransformState &state) {
auto targetOps = state.getPayloadOps(getTarget());
auto sourceOps = state.getPayloadOps(getSource());
if (!llvm::hasSingleElement(targetOps) ||
!llvm::hasSingleElement(sourceOps)) {
return emitDefiniteFailure()
<< "requires exactly one target handle (got "
<< llvm::range_size(targetOps) << ") and exactly one "
<< "source handle (got " << llvm::range_size(sourceOps) << ")";
}
Operation *target = *targetOps.begin();
Operation *source = *sourceOps.begin();
// Check if the target and source are siblings.
DiagnosedSilenceableFailure diag = isOpSibling(target, source);
if (!diag.succeeded())
return diag;
// Check if the target can be fused into source.
if (!isForallWithIdenticalConfiguration(target, source)) {
return emitSilenceableFailure(target->getLoc())
<< "operations cannot be fused";
}
Operation *fusedLoop = fuseSiblings(target, source, rewriter);
assert(fusedLoop && "failed to fuse operations");
results.set(cast<OpResult>(getFusedLoop()), {fusedLoop});
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
class SCFTransformDialectExtension
: public transform::TransformDialectExtension<
SCFTransformDialectExtension> {
public:
using Base::Base;
void init() {
declareGeneratedDialect<affine::AffineDialect>();
declareGeneratedDialect<func::FuncDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.cpp.inc"
>();
}
};
} // namespace
#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/TransformOps/SCFTransformOps.cpp.inc"
void mlir::scf::registerTransformDialectExtension(DialectRegistry &registry) {
registry.addExtensions<SCFTransformDialectExtension>();
}