This is a follow-up to https://reviews.llvm.org/D156889 Downstream projects may have more complicated ops than the control flow ops upstream and therefore need a more powerful interface to support the lifting process. Use cases include the propagation of (inherent) metadata that was previously on the control flow ops and now needs to be lifted to structured control flow ops. Since the lifting process is inherently non-local in respect to the function-body, we require stronger guarantees from the interface. This patch therefore makes two changes to the interface: * Passes the terminator that is being replaced to `createStructuredBranchRegionTerminatorOp` * Adds as precondition to `createCFGSwitchOp` that its predecessors are already correctly established Asserts have been added to verify these were it makes sense and to correctly state intent. I have not added tests purely because testing preconditions like these is not really feasible (and incredibly specific). Differential Revision: https://reviews.llvm.org/D157981
1338 lines
56 KiB
C++
1338 lines
56 KiB
C++
//===- CFGToSCF.h - Control Flow Graph to Structured Control Flow *- C++ -*===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This code is an implementation of:
|
|
// Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian Meyer. 2015.
|
|
// Perfect Reconstructability of Control Flow from Demand Dependence Graphs. ACM
|
|
// Trans. Archit. Code Optim. 11, 4, Article 66 (January 2015), 25 pages.
|
|
// https://doi.org/10.1145/2693261
|
|
//
|
|
// It defines an algorithm to translate any control flow graph with a single
|
|
// entry and single exit block into structured control flow operations
|
|
// consisting of regions of do-while loops and operations conditionally
|
|
// dispatching to one out of multiple regions before continuing after the
|
|
// operation. This includes control flow graphs containing irreducible
|
|
// control flow.
|
|
//
|
|
// The implementation here additionally supports the transformation on
|
|
// regions with multiple exit blocks. This is implemented by first
|
|
// transforming all occurrences of return-like operations to branch to a
|
|
// single exit block containing an instance of that return-like operation.
|
|
// If there are multiple kinds of return-like operations, multiple exit
|
|
// blocks are created. In that case the transformation leaves behind a
|
|
// conditional control flow graph operation that dispatches to the given regions
|
|
// terminating with different kinds of return-like operations each.
|
|
//
|
|
// If the function only contains a single kind of return-like operations,
|
|
// it is guaranteed that all control flow graph ops will be lifted to structured
|
|
// control flow, and that no more control flow graph ops remain after the
|
|
// operation.
|
|
//
|
|
// The algorithm to lift CFGs consists of two transformations applied after each
|
|
// other on any single-entry, single-exit region:
|
|
// 1) Lifting cycles to structured control flow loops
|
|
// 2) Lifting conditional branches to structured control flow branches
|
|
// These are then applied recursively on any new single-entry single-exit
|
|
// regions created by the transformation until no more CFG operations remain.
|
|
//
|
|
// The first part of cycle lifting is to detect any cycles in the CFG.
|
|
// This is done using an algorithm for iterating over SCCs. Every SCC
|
|
// representing a cycle is then transformed into a structured loop with a single
|
|
// entry block and a single latch containing the only back edge to the entry
|
|
// block and the only edge to an exit block outside the loop. Rerouting control
|
|
// flow to create single entry and exit blocks is achieved via a multiplexer
|
|
// construct that can be visualized as follows:
|
|
// +-----+ +-----+ +-----+
|
|
// | bb0 | | bb1 |...| bbN |
|
|
// +--+--+ +--+--+ +-+---+
|
|
// | | |
|
|
// | v |
|
|
// | +------+ |
|
|
// | ++ ++<----+
|
|
// | | Region |
|
|
// +>| |<----+
|
|
// ++ ++ |
|
|
// +------+------+
|
|
//
|
|
// The above transforms to:
|
|
// +-----+ +-----+ +-----+
|
|
// | bb0 | | bb1 |...| bbN |
|
|
// +-----+ +--|--+ ++----+
|
|
// | v |
|
|
// +->+-----+<---+
|
|
// | bbM |<-------+
|
|
// +---+-+ |
|
|
// +---+ | +----+ |
|
|
// | v | |
|
|
// | +------+ | |
|
|
// | ++ ++<-+ |
|
|
// +->| Region | |
|
|
// ++ ++ |
|
|
// +------+-------+
|
|
//
|
|
// bbM in the above is the multiplexer block, and any block previously branching
|
|
// to an entry block of the region are redirected to it. This includes any
|
|
// branches from within the region. Using a block argument, bbM then dispatches
|
|
// to the correct entry block of the region dependent on the predecessor.
|
|
//
|
|
// A similar transformation is done to create the latch block with the single
|
|
// back edge and loop exit edge.
|
|
//
|
|
// The above form has the advantage that bbM now acts as the loop header
|
|
// of the loop body. After the transformation on the latch, this results in a
|
|
// structured loop that can then be lifted to structured control flow. The
|
|
// conditional branches created in bbM are later lifted to conditional
|
|
// branches.
|
|
//
|
|
// Lifting conditional branches is done by analyzing the *first* conditional
|
|
// branch encountered in the entry region. The algorithm then identifies
|
|
// all blocks that are dominated by a specific control flow edge and
|
|
// the region where control flow continues:
|
|
// +-----+
|
|
// +-----+ bb0 +----+
|
|
// v +-----+ v
|
|
// Region 1 +-+-+ ... +-+-+ Region n
|
|
// +---+ +---+
|
|
// ... ...
|
|
// | |
|
|
// | +---+ |
|
|
// +---->++ ++<---+
|
|
// | |
|
|
// ++ ++ Region T
|
|
// +---+
|
|
// Every region following bb0 consists of 0 or more blocks that eventually
|
|
// branch to Region T. If there are multiple entry blocks into Region T, a
|
|
// single entry block is created using a multiplexer block as shown above.
|
|
// Region 1 to Region n are then lifted together with the conditional control
|
|
// flow operation terminating bb0 into a structured conditional operation
|
|
// followed by the operations of the entry block of Region T.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/CFGToSCF.h"
|
|
|
|
#include "mlir/IR/RegionGraphTraits.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Returns the mutable operand range used to transfer operands from `block` to
|
|
/// its successor with the given index. The returned range being mutable allows
|
|
/// us to modify the operands being transferred.
|
|
static MutableOperandRange
|
|
getMutableSuccessorOperands(Block *block, unsigned successorIndex) {
|
|
auto branchOpInterface = cast<BranchOpInterface>(block->getTerminator());
|
|
SuccessorOperands succOps =
|
|
branchOpInterface.getSuccessorOperands(successorIndex);
|
|
return succOps.getMutableForwardedOperands();
|
|
}
|
|
|
|
/// Appends all the block arguments from `other` to the block arguments of
|
|
/// `block`, copying their types and locations.
|
|
static void addBlockArgumentsFromOther(Block *block, Block *other) {
|
|
for (BlockArgument arg : other->getArguments())
|
|
block->addArgument(arg.getType(), arg.getLoc());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Class representing an edge in the CFG. Consists of a from-block, a successor
|
|
/// and corresponding successor operands passed to the block arguments of the
|
|
/// successor.
|
|
class Edge {
|
|
Block *fromBlock;
|
|
unsigned successorIndex;
|
|
|
|
public:
|
|
/// Constructs a new edge from `fromBlock` to the successor corresponding to
|
|
/// `successorIndex`.
|
|
Edge(Block *fromBlock, unsigned int successorIndex)
|
|
: fromBlock(fromBlock), successorIndex(successorIndex) {}
|
|
|
|
/// Returns the from-block.
|
|
Block *getFromBlock() const { return fromBlock; }
|
|
|
|
/// Returns the successor of the edge.
|
|
Block *getSuccessor() const {
|
|
return fromBlock->getSuccessor(successorIndex);
|
|
}
|
|
|
|
/// Sets the successor of the edge, adjusting the terminator in the
|
|
/// from-block.
|
|
void setSuccessor(Block *block) const {
|
|
fromBlock->getTerminator()->setSuccessor(block, successorIndex);
|
|
}
|
|
|
|
/// Returns the arguments of this edge that are passed to the block arguments
|
|
/// of the successor.
|
|
MutableOperandRange getSuccessorOperands() const {
|
|
return getMutableSuccessorOperands(fromBlock, successorIndex);
|
|
}
|
|
};
|
|
|
|
/// Structure containing the entry, exit and back edges of a cycle. A cycle is a
|
|
/// generalization of a loop that may have multiple entry edges. See also
|
|
/// https://llvm.org/docs/CycleTerminology.html.
|
|
struct CycleEdges {
|
|
/// All edges from a block outside the cycle to a block inside the cycle.
|
|
/// The targets of these edges are entry blocks.
|
|
SmallVector<Edge> entryEdges;
|
|
/// All edges from a block inside the cycle to a block outside the cycle.
|
|
SmallVector<Edge> exitEdges;
|
|
/// All edges from a block inside the cycle to an entry block.
|
|
SmallVector<Edge> backEdges;
|
|
};
|
|
|
|
/// Class used to orchestrate creation of so-called edge multiplexers.
|
|
/// This class creates a new basic block and routes all inputs edges
|
|
/// to this basic block before branching to their original target.
|
|
/// The purpose of this transformation is to create single-entry,
|
|
/// single-exit regions.
|
|
class EdgeMultiplexer {
|
|
public:
|
|
/// Creates a new edge multiplexer capable of redirecting all edges to one of
|
|
/// the `entryBlocks`. This creates the multiplexer basic block with
|
|
/// appropriate block arguments after the first entry block. `extraArgs`
|
|
/// contains the types of possible extra block arguments passed to the
|
|
/// multiplexer block that are added to the successor operands of every
|
|
/// outgoing edge.
|
|
///
|
|
/// NOTE: This does not yet redirect edges to branch to the
|
|
/// multiplexer block nor code dispatching from the multiplexer code
|
|
/// to the original successors.
|
|
/// See `redirectEdge` and `createSwitch`.
|
|
static EdgeMultiplexer create(Location loc, ArrayRef<Block *> entryBlocks,
|
|
function_ref<Value(unsigned)> getSwitchValue,
|
|
function_ref<Value(Type)> getUndefValue,
|
|
TypeRange extraArgs = {}) {
|
|
assert(!entryBlocks.empty() && "Require at least one entry block");
|
|
|
|
auto *multiplexerBlock = new Block;
|
|
multiplexerBlock->insertAfter(entryBlocks.front());
|
|
|
|
// To implement the multiplexer block, we have to add the block arguments of
|
|
// every distinct successor block to the multiplexer block. When redirecting
|
|
// edges, block arguments designated for blocks that aren't branched to will
|
|
// be assigned the `getUndefValue`. The amount of block arguments and their
|
|
// offset is saved in the map for `redirectEdge` to transform the edges.
|
|
llvm::SmallMapVector<Block *, unsigned, 4> blockArgMapping;
|
|
for (Block *entryBlock : entryBlocks) {
|
|
auto [iter, inserted] = blockArgMapping.insert(
|
|
{entryBlock, multiplexerBlock->getNumArguments()});
|
|
if (inserted)
|
|
addBlockArgumentsFromOther(multiplexerBlock, entryBlock);
|
|
}
|
|
|
|
// If we have more than one successor, we have to additionally add a
|
|
// discriminator value, denoting which successor to jump to.
|
|
// When redirecting edges, an appropriate value will be passed using
|
|
// `getSwitchValue`.
|
|
Value discriminator;
|
|
if (blockArgMapping.size() > 1)
|
|
discriminator =
|
|
multiplexerBlock->addArgument(getSwitchValue(0).getType(), loc);
|
|
|
|
multiplexerBlock->addArguments(
|
|
extraArgs, SmallVector<Location>(extraArgs.size(), loc));
|
|
|
|
return EdgeMultiplexer(multiplexerBlock, getSwitchValue, getUndefValue,
|
|
std::move(blockArgMapping), discriminator);
|
|
}
|
|
|
|
/// Returns the created multiplexer block.
|
|
Block *getMultiplexerBlock() const { return multiplexerBlock; }
|
|
|
|
/// Redirects `edge` to branch to the multiplexer block before continuing to
|
|
/// its original target. The edges successor must have originally been part
|
|
/// of the entry blocks array passed to the `create` function. `extraArgs`
|
|
/// must be used to pass along any additional values corresponding to
|
|
/// `extraArgs` in `create`.
|
|
void redirectEdge(Edge edge, ValueRange extraArgs = {}) const {
|
|
const auto *result = blockArgMapping.find(edge.getSuccessor());
|
|
assert(result != blockArgMapping.end() &&
|
|
"Edge was not originally passed to `create` method.");
|
|
|
|
MutableOperandRange successorOperands = edge.getSuccessorOperands();
|
|
|
|
// Extra arguments are always appended at the end of the block arguments.
|
|
unsigned extraArgsBeginIndex =
|
|
multiplexerBlock->getNumArguments() - extraArgs.size();
|
|
// If a discriminator exists, it is right before the extra arguments.
|
|
std::optional<unsigned> discriminatorIndex =
|
|
discriminator ? extraArgsBeginIndex - 1 : std::optional<unsigned>{};
|
|
|
|
SmallVector<Value> newSuccOperands(multiplexerBlock->getNumArguments());
|
|
for (BlockArgument argument : multiplexerBlock->getArguments()) {
|
|
unsigned index = argument.getArgNumber();
|
|
if (index >= result->second &&
|
|
index < result->second + edge.getSuccessor()->getNumArguments()) {
|
|
// Original block arguments to the entry block.
|
|
newSuccOperands[index] = successorOperands[index - result->second];
|
|
continue;
|
|
}
|
|
|
|
// Discriminator value if it exists.
|
|
if (index == discriminatorIndex) {
|
|
newSuccOperands[index] =
|
|
getSwitchValue(result - blockArgMapping.begin());
|
|
continue;
|
|
}
|
|
|
|
// Followed by the extra arguments.
|
|
if (index >= extraArgsBeginIndex) {
|
|
newSuccOperands[index] = extraArgs[index - extraArgsBeginIndex];
|
|
continue;
|
|
}
|
|
|
|
// Otherwise undef values for any unused block arguments used by other
|
|
// entry blocks.
|
|
newSuccOperands[index] = getUndefValue(argument.getType());
|
|
}
|
|
|
|
edge.setSuccessor(multiplexerBlock);
|
|
successorOperands.assign(newSuccOperands);
|
|
}
|
|
|
|
/// Creates a switch op using `builder` which dispatches to the original
|
|
/// successors of the edges passed to `create` minus the ones in `excluded`.
|
|
/// The builder's insertion point has to be in a block dominated by the
|
|
/// multiplexer block. All edges to the multiplexer block must have already
|
|
/// been redirected using `redirectEdge`.
|
|
void createSwitch(
|
|
Location loc, OpBuilder &builder, CFGToSCFInterface &interface,
|
|
const SmallPtrSetImpl<Block *> &excluded = SmallPtrSet<Block *, 1>{}) {
|
|
// We create the switch by creating a case for all entries and then
|
|
// splitting of the last entry as a default case.
|
|
|
|
SmallVector<ValueRange> caseArguments;
|
|
SmallVector<unsigned> caseValues;
|
|
SmallVector<Block *> caseDestinations;
|
|
for (auto &&[index, pair] : llvm::enumerate(blockArgMapping)) {
|
|
auto &&[succ, offset] = pair;
|
|
if (excluded.contains(succ))
|
|
continue;
|
|
|
|
caseValues.push_back(index);
|
|
caseArguments.push_back(multiplexerBlock->getArguments().slice(
|
|
offset, succ->getNumArguments()));
|
|
caseDestinations.push_back(succ);
|
|
}
|
|
|
|
// If we don't have a discriminator due to only having one entry we have to
|
|
// create a dummy flag for the switch.
|
|
Value realDiscriminator = discriminator;
|
|
if (!realDiscriminator || caseArguments.size() == 1)
|
|
realDiscriminator = getSwitchValue(0);
|
|
|
|
caseValues.pop_back();
|
|
Block *defaultDest = caseDestinations.pop_back_val();
|
|
ValueRange defaultArgs = caseArguments.pop_back_val();
|
|
|
|
assert(!builder.getInsertionBlock()->hasNoPredecessors() &&
|
|
"Edges need to be redirected prior to creating switch.");
|
|
interface.createCFGSwitchOp(loc, builder, realDiscriminator, caseValues,
|
|
caseDestinations, caseArguments, defaultDest,
|
|
defaultArgs);
|
|
}
|
|
|
|
private:
|
|
/// Newly created multiplexer block.
|
|
Block *multiplexerBlock;
|
|
/// Callback used to create a constant suitable as flag for
|
|
/// the interfaces `createCFGSwitchOp`.
|
|
function_ref<Value(unsigned)> getSwitchValue;
|
|
/// Callback used to create undefined values of a given type.
|
|
function_ref<Value(Type)> getUndefValue;
|
|
|
|
/// Mapping of the block arguments of an entry block to the corresponding
|
|
/// block arguments in the multiplexer block. Block arguments of an entry
|
|
/// block are simply appended ot the multiplexer block. This map simply
|
|
/// contains the offset to the range in the multiplexer block.
|
|
llvm::SmallMapVector<Block *, unsigned, 4> blockArgMapping;
|
|
/// Discriminator value used in the multiplexer block to dispatch to the
|
|
/// correct entry block. Null value if not required due to only having one
|
|
/// entry block.
|
|
Value discriminator;
|
|
|
|
EdgeMultiplexer(Block *multiplexerBlock,
|
|
function_ref<Value(unsigned)> getSwitchValue,
|
|
function_ref<Value(Type)> getUndefValue,
|
|
llvm::SmallMapVector<Block *, unsigned, 4> &&entries,
|
|
Value dispatchFlag)
|
|
: multiplexerBlock(multiplexerBlock), getSwitchValue(getSwitchValue),
|
|
getUndefValue(getUndefValue), blockArgMapping(std::move(entries)),
|
|
discriminator(dispatchFlag) {}
|
|
};
|
|
|
|
/// Alternative implementation of DenseMapInfo<Operation*> using the operation
|
|
/// equivalence infrastructure to check whether two 'return-like' operations are
|
|
/// equivalent in the context of this transformation. This means that both
|
|
/// operations are of the same kind, have the same amount of operands and types
|
|
/// and the same attributes and properties. The operands themselves don't have
|
|
/// to be equivalent.
|
|
struct ReturnLikeOpEquivalence : public llvm::DenseMapInfo<Operation *> {
|
|
static unsigned getHashValue(const Operation *opC) {
|
|
return OperationEquivalence::computeHash(
|
|
const_cast<Operation *>(opC),
|
|
/*hashOperands=*/OperationEquivalence::ignoreHashValue,
|
|
/*hashResults=*/OperationEquivalence::ignoreHashValue,
|
|
OperationEquivalence::IgnoreLocations);
|
|
}
|
|
|
|
static bool isEqual(const Operation *lhs, const Operation *rhs) {
|
|
if (lhs == rhs)
|
|
return true;
|
|
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
|
|
rhs == getTombstoneKey() || rhs == getEmptyKey())
|
|
return false;
|
|
return OperationEquivalence::isEquivalentTo(
|
|
const_cast<Operation *>(lhs), const_cast<Operation *>(rhs),
|
|
OperationEquivalence::ignoreValueEquivalence, nullptr,
|
|
OperationEquivalence::IgnoreLocations);
|
|
}
|
|
};
|
|
|
|
/// Utility-class for transforming a region to only have one single block for
|
|
/// every return-like operation.
|
|
class ReturnLikeExitCombiner {
|
|
public:
|
|
ReturnLikeExitCombiner(Region &topLevelRegion, CFGToSCFInterface &interface)
|
|
: topLevelRegion(topLevelRegion), interface(interface) {}
|
|
|
|
/// Transforms `returnLikeOp` to a branch to the only block in the
|
|
/// region with an instance of `returnLikeOp`s kind.
|
|
void combineExit(Operation *returnLikeOp,
|
|
function_ref<Value(unsigned)> getSwitchValue) {
|
|
auto [iter, inserted] =
|
|
returnLikeToCombinedExit.insert({returnLikeOp, nullptr});
|
|
if (!inserted && iter->first == returnLikeOp)
|
|
return;
|
|
|
|
Block *exitBlock = iter->second;
|
|
if (inserted) {
|
|
exitBlock = new Block;
|
|
iter->second = exitBlock;
|
|
topLevelRegion.push_back(exitBlock);
|
|
exitBlock->addArguments(
|
|
returnLikeOp->getOperandTypes(),
|
|
SmallVector<Location>(returnLikeOp->getNumOperands(),
|
|
returnLikeOp->getLoc()));
|
|
}
|
|
|
|
auto builder = OpBuilder::atBlockTerminator(returnLikeOp->getBlock());
|
|
interface.createSingleDestinationBranch(returnLikeOp->getLoc(), builder,
|
|
getSwitchValue(0), exitBlock,
|
|
returnLikeOp->getOperands());
|
|
|
|
if (!inserted) {
|
|
returnLikeOp->erase();
|
|
return;
|
|
}
|
|
|
|
returnLikeOp->moveBefore(exitBlock, exitBlock->end());
|
|
returnLikeOp->setOperands(exitBlock->getArguments());
|
|
}
|
|
|
|
private:
|
|
/// Mapping of return-like operation to block. All return-like operations
|
|
/// of the same kind with the same attributes, properties and types are seen
|
|
/// as equivalent. First occurrence seen is kept in the map.
|
|
llvm::SmallDenseMap<Operation *, Block *, 4, ReturnLikeOpEquivalence>
|
|
returnLikeToCombinedExit;
|
|
Region &topLevelRegion;
|
|
CFGToSCFInterface &interface;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Returns a range of all edges from `block` to each of its successors.
|
|
static auto successorEdges(Block *block) {
|
|
return llvm::map_range(llvm::seq(block->getNumSuccessors()),
|
|
[=](unsigned index) { return Edge(block, index); });
|
|
}
|
|
|
|
/// Calculates entry, exit and back edges of the given cycle.
|
|
static CycleEdges
|
|
calculateCycleEdges(const llvm::SmallSetVector<Block *, 4> &cycles) {
|
|
CycleEdges result;
|
|
SmallPtrSet<Block *, 8> entryBlocks;
|
|
|
|
// First identify all exit and entry edges by checking whether any successors
|
|
// or predecessors are from outside the cycles.
|
|
for (Block *block : cycles) {
|
|
for (auto pred = block->pred_begin(); pred != block->pred_end(); pred++) {
|
|
if (cycles.contains(*pred))
|
|
continue;
|
|
|
|
result.entryEdges.emplace_back(*pred, pred.getSuccessorIndex());
|
|
entryBlocks.insert(block);
|
|
}
|
|
|
|
for (auto &&[succIndex, succ] : llvm::enumerate(block->getSuccessors())) {
|
|
if (cycles.contains(succ))
|
|
continue;
|
|
|
|
result.exitEdges.emplace_back(block, succIndex);
|
|
}
|
|
}
|
|
|
|
// With the entry blocks identified, find all the back edges.
|
|
for (Block *block : cycles) {
|
|
for (auto &&[succIndex, succ] : llvm::enumerate(block->getSuccessors())) {
|
|
if (!entryBlocks.contains(succ))
|
|
continue;
|
|
|
|
result.backEdges.emplace_back(block, succIndex);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Creates a single entry block out of multiple entry edges using an edge
|
|
/// multiplexer and returns it.
|
|
static EdgeMultiplexer
|
|
createSingleEntryBlock(Location loc, ArrayRef<Edge> entryEdges,
|
|
function_ref<Value(unsigned)> getSwitchValue,
|
|
function_ref<Value(Type)> getUndefValue,
|
|
CFGToSCFInterface &interface) {
|
|
auto result = EdgeMultiplexer::create(
|
|
loc, llvm::map_to_vector(entryEdges, std::mem_fn(&Edge::getSuccessor)),
|
|
getSwitchValue, getUndefValue);
|
|
|
|
// Redirect the edges prior to creating the switch op.
|
|
// We guarantee that predecessors are up to date.
|
|
for (Edge edge : entryEdges)
|
|
result.redirectEdge(edge);
|
|
|
|
auto builder = OpBuilder::atBlockBegin(result.getMultiplexerBlock());
|
|
result.createSwitch(loc, builder, interface);
|
|
|
|
return result;
|
|
}
|
|
|
|
namespace {
|
|
/// Special loop properties of a structured loop.
|
|
/// A structured loop is a loop satisfying all of the following:
|
|
/// * Has at most one entry, one exit and one back edge.
|
|
/// * The back edge originates from the same block as the exit edge.
|
|
struct StructuredLoopProperties {
|
|
/// Block containing both the single exit edge and the single back edge.
|
|
Block *latch;
|
|
/// Loop condition of type equal to a value returned by `getSwitchValue`.
|
|
Value condition;
|
|
/// Exit block which is the only successor of the loop.
|
|
Block *exitBlock;
|
|
};
|
|
} // namespace
|
|
|
|
/// Transforms a loop into a structured loop with only a single back edge and
|
|
/// exiting edge, originating from the same block.
|
|
static FailureOr<StructuredLoopProperties> createSingleExitingLatch(
|
|
Location loc, ArrayRef<Edge> backEdges, ArrayRef<Edge> exitEdges,
|
|
function_ref<Value(unsigned)> getSwitchValue,
|
|
function_ref<Value(Type)> getUndefValue, CFGToSCFInterface &interface,
|
|
ReturnLikeExitCombiner &exitCombiner) {
|
|
assert(llvm::all_equal(
|
|
llvm::map_range(backEdges, std::mem_fn(&Edge::getSuccessor))) &&
|
|
"All repetition edges must lead to the single loop header");
|
|
|
|
// First create the multiplexer block, which will be our latch, for all back
|
|
// edges and exit edges. We pass an additional argument to the multiplexer
|
|
// block which indicates whether the latch was reached from what was
|
|
// originally a back edge or an exit block.
|
|
// This is later used to branch using the new only back edge.
|
|
SmallVector<Block *> successors;
|
|
llvm::append_range(
|
|
successors, llvm::map_range(backEdges, std::mem_fn(&Edge::getSuccessor)));
|
|
llvm::append_range(
|
|
successors, llvm::map_range(exitEdges, std::mem_fn(&Edge::getSuccessor)));
|
|
auto multiplexer =
|
|
EdgeMultiplexer::create(loc, successors, getSwitchValue, getUndefValue,
|
|
/*extraArgs=*/getSwitchValue(0).getType());
|
|
|
|
auto *latchBlock = multiplexer.getMultiplexerBlock();
|
|
|
|
// Create a separate exit block that comes right after the latch.
|
|
auto *exitBlock = new Block;
|
|
exitBlock->insertAfter(latchBlock);
|
|
|
|
// Since this is a loop, all back edges point to the same loop header.
|
|
Block *loopHeader = backEdges.front().getSuccessor();
|
|
|
|
// Redirect the edges prior to creating the switch op.
|
|
// We guarantee that predecessors are up to date.
|
|
|
|
// Redirecting back edges with `shouldRepeat` as 1.
|
|
for (Edge backEdge : backEdges)
|
|
multiplexer.redirectEdge(backEdge, /*extraArgs=*/getSwitchValue(1));
|
|
|
|
// Redirecting exits edges with `shouldRepeat` as 0.
|
|
for (Edge exitEdge : exitEdges)
|
|
multiplexer.redirectEdge(exitEdge, /*extraArgs=*/getSwitchValue(0));
|
|
|
|
// Create the new only back edge to the loop header. Branch to the
|
|
// exit block otherwise.
|
|
Value shouldRepeat = latchBlock->getArguments().back();
|
|
{
|
|
auto builder = OpBuilder::atBlockBegin(latchBlock);
|
|
interface.createConditionalBranch(
|
|
builder.getUnknownLoc(), builder, shouldRepeat, loopHeader,
|
|
latchBlock->getArguments().take_front(loopHeader->getNumArguments()),
|
|
/*falseDest=*/exitBlock,
|
|
/*falseArgs=*/{});
|
|
}
|
|
|
|
{
|
|
auto builder = OpBuilder::atBlockBegin(exitBlock);
|
|
if (!exitEdges.empty()) {
|
|
// Create the switch dispatching to what were originally the multiple exit
|
|
// blocks. The loop header has to explicitly be excluded in the below
|
|
// switch as we would otherwise be creating a new loop again. All back
|
|
// edges leading to the loop header have already been handled in the
|
|
// switch above. The remaining edges can only jump to blocks outside the
|
|
// loop.
|
|
|
|
SmallPtrSet<Block *, 1> excluded = {loopHeader};
|
|
multiplexer.createSwitch(loc, builder, interface, excluded);
|
|
} else {
|
|
// A loop without an exit edge is a statically known infinite loop.
|
|
// Since structured control flow ops are not terminator ops, the caller
|
|
// has to create a fitting return-like unreachable terminator operation.
|
|
FailureOr<Operation *> terminator = interface.createUnreachableTerminator(
|
|
loc, builder, *latchBlock->getParent());
|
|
if (failed(terminator))
|
|
return failure();
|
|
// Transform the just created transform operation in the case that an
|
|
// occurrence of it existed in input IR.
|
|
exitCombiner.combineExit(*terminator, getSwitchValue);
|
|
}
|
|
}
|
|
|
|
return StructuredLoopProperties{latchBlock, /*condition=*/shouldRepeat,
|
|
exitBlock};
|
|
}
|
|
|
|
/// Transforms a structured loop into a loop in reduce form.
|
|
///
|
|
/// Reduce form is defined as a structured loop where:
|
|
/// (0) No values defined within the loop body are used outside the loop body.
|
|
/// (1) The block arguments and successor operands of the exit block are equal
|
|
/// to the block arguments of the loop header and the successor operands
|
|
/// of the back edge.
|
|
///
|
|
/// This is required for many structured control flow ops as they tend
|
|
/// to not have separate "loop result arguments" and "loop iteration arguments"
|
|
/// at the end of the block. Rather, the "loop iteration arguments" from the
|
|
/// last iteration are the result of the loop.
|
|
///
|
|
/// Note that the requirement of (0) is shared with LCSSA form in LLVM. However,
|
|
/// due to this being a structured loop instead of a general loop, we do not
|
|
/// require complicated dominance algorithms nor SSA updating making this
|
|
/// implementation easier than creating a generic LCSSA transformation pass.
|
|
static SmallVector<Value>
|
|
transformToReduceLoop(Block *loopHeader, Block *exitBlock,
|
|
const llvm::SmallSetVector<Block *, 4> &loopBlocks,
|
|
function_ref<Value(Type)> getUndefValue,
|
|
DominanceInfo &dominanceInfo) {
|
|
Block *latch = exitBlock->getSinglePredecessor();
|
|
assert(latch &&
|
|
"Exit block must have only latch as predecessor at this point");
|
|
assert(exitBlock->getNumArguments() == 0 &&
|
|
"Exit block mustn't have any block arguments at this point");
|
|
|
|
unsigned loopHeaderIndex = 0;
|
|
unsigned exitBlockIndex = 1;
|
|
if (latch->getSuccessor(loopHeaderIndex) != loopHeader)
|
|
std::swap(loopHeaderIndex, exitBlockIndex);
|
|
|
|
assert(latch->getSuccessor(loopHeaderIndex) == loopHeader);
|
|
assert(latch->getSuccessor(exitBlockIndex) == exitBlock);
|
|
|
|
MutableOperandRange exitBlockSuccessorOperands =
|
|
getMutableSuccessorOperands(latch, exitBlockIndex);
|
|
// Save the values as a vector, not a `MutableOperandRange` as the latter gets
|
|
// invalidated when mutating the operands through a different
|
|
// `MutableOperandRange` of the same operation.
|
|
SmallVector<Value> loopHeaderSuccessorOperands =
|
|
llvm::to_vector(getMutableSuccessorOperands(latch, loopHeaderIndex));
|
|
|
|
// Add all values used in the next iteration to the exit block. Replace
|
|
// any uses that are outside the loop with the newly created exit block.
|
|
for (Value arg : loopHeaderSuccessorOperands) {
|
|
BlockArgument exitArg = exitBlock->addArgument(arg.getType(), arg.getLoc());
|
|
exitBlockSuccessorOperands.append(arg);
|
|
arg.replaceUsesWithIf(exitArg, [&](OpOperand &use) {
|
|
return !loopBlocks.contains(use.getOwner()->getBlock());
|
|
});
|
|
}
|
|
|
|
// Loop below might add block arguments to the latch and loop header.
|
|
// Save the block arguments prior to the loop to not process these.
|
|
SmallVector<BlockArgument> latchBlockArgumentsPrior =
|
|
llvm::to_vector(latch->getArguments());
|
|
SmallVector<BlockArgument> loopHeaderArgumentsPrior =
|
|
llvm::to_vector(loopHeader->getArguments());
|
|
|
|
// Go over all values defined within the loop body. If any of them are used
|
|
// outside the loop body, create a block argument on the exit block and loop
|
|
// header and replace the outside uses with the exit block argument.
|
|
// The loop header block argument is added to satisfy requirement (1) in the
|
|
// reduce form condition.
|
|
for (Block *loopBlock : loopBlocks) {
|
|
// Cache dominance queries for loopBlock.
|
|
// There are likely to be many duplicate queries as there can be many value
|
|
// definitions within a block.
|
|
llvm::SmallDenseMap<Block *, bool> dominanceCache;
|
|
// Returns true if `loopBlock` dominates `block`.
|
|
auto loopBlockDominates = [&](Block *block) {
|
|
auto [iter, inserted] = dominanceCache.insert({block, false});
|
|
if (!inserted)
|
|
return iter->second;
|
|
iter->second = dominanceInfo.dominates(loopBlock, block);
|
|
return iter->second;
|
|
};
|
|
|
|
auto checkValue = [&](Value value) {
|
|
Value blockArgument;
|
|
for (OpOperand &use : llvm::make_early_inc_range(value.getUses())) {
|
|
if (loopBlocks.contains(use.getOwner()->getBlock()))
|
|
continue;
|
|
|
|
// Block argument is only created the first time it is required.
|
|
if (!blockArgument) {
|
|
blockArgument =
|
|
exitBlock->addArgument(value.getType(), value.getLoc());
|
|
loopHeader->addArgument(value.getType(), value.getLoc());
|
|
|
|
// `value` might be defined in a block that does not dominate `latch`
|
|
// but previously dominated an exit block with a use.
|
|
// In this case, add a block argument to the latch and go through all
|
|
// predecessors. If the value dominates the predecessor, pass the
|
|
// value as a successor operand, otherwise pass undef.
|
|
// The above is unnecessary if the value is a block argument of the
|
|
// latch or if `value` dominates all predecessors.
|
|
Value argument = value;
|
|
if (value.getParentBlock() != latch &&
|
|
llvm::any_of(latch->getPredecessors(), [&](Block *pred) {
|
|
return !loopBlockDominates(pred);
|
|
})) {
|
|
argument = latch->addArgument(value.getType(), value.getLoc());
|
|
for (auto iter = latch->pred_begin(); iter != latch->pred_end();
|
|
++iter) {
|
|
Value succOperand = value;
|
|
if (!loopBlockDominates(*iter))
|
|
succOperand = getUndefValue(value.getType());
|
|
|
|
getMutableSuccessorOperands(*iter, iter.getSuccessorIndex())
|
|
.append(succOperand);
|
|
}
|
|
}
|
|
|
|
loopHeaderSuccessorOperands.push_back(argument);
|
|
for (Edge edge : successorEdges(latch))
|
|
edge.getSuccessorOperands().append(argument);
|
|
}
|
|
|
|
use.set(blockArgument);
|
|
}
|
|
};
|
|
|
|
if (loopBlock == latch)
|
|
llvm::for_each(latchBlockArgumentsPrior, checkValue);
|
|
else if (loopBlock == loopHeader)
|
|
llvm::for_each(loopHeaderArgumentsPrior, checkValue);
|
|
else
|
|
llvm::for_each(loopBlock->getArguments(), checkValue);
|
|
|
|
for (Operation &op : *loopBlock)
|
|
llvm::for_each(op.getResults(), checkValue);
|
|
}
|
|
|
|
// New block arguments may have been added to the loop header.
|
|
// Adjust the entry edges to pass undef values to these.
|
|
for (auto iter = loopHeader->pred_begin(); iter != loopHeader->pred_end();
|
|
++iter) {
|
|
// Latch successor arguments have already been handled.
|
|
if (*iter == latch)
|
|
continue;
|
|
|
|
MutableOperandRange succOps =
|
|
getMutableSuccessorOperands(*iter, iter.getSuccessorIndex());
|
|
succOps.append(llvm::map_to_vector(
|
|
loopHeader->getArguments().drop_front(succOps.size()),
|
|
[&](BlockArgument arg) { return getUndefValue(arg.getType()); }));
|
|
}
|
|
|
|
return loopHeaderSuccessorOperands;
|
|
}
|
|
|
|
/// Transforms all outer-most cycles in the region with the region entry
|
|
/// `regionEntry` into structured loops. Returns the entry blocks of any newly
|
|
/// created regions potentially requiring further transformations.
|
|
static FailureOr<SmallVector<Block *>> transformCyclesToSCFLoops(
|
|
Block *regionEntry, function_ref<Value(unsigned)> getSwitchValue,
|
|
function_ref<Value(Type)> getUndefValue, CFGToSCFInterface &interface,
|
|
DominanceInfo &dominanceInfo, ReturnLikeExitCombiner &exitCombiner) {
|
|
SmallVector<Block *> newSubRegions;
|
|
auto scc = llvm::scc_begin(regionEntry);
|
|
while (!scc.isAtEnd()) {
|
|
if (!scc.hasCycle()) {
|
|
++scc;
|
|
continue;
|
|
}
|
|
|
|
// Save the set and increment the SCC iterator early to avoid our
|
|
// modifications breaking the SCC iterator.
|
|
llvm::SmallSetVector<Block *, 4> cycleBlockSet(scc->begin(), scc->end());
|
|
++scc;
|
|
|
|
CycleEdges edges = calculateCycleEdges(cycleBlockSet);
|
|
Block *loopHeader = edges.entryEdges.front().getSuccessor();
|
|
// First turn the cycle into a loop by creating a single entry block if
|
|
// needed.
|
|
if (edges.entryEdges.size() > 1) {
|
|
SmallVector<Edge> edgesToEntryBlocks;
|
|
llvm::append_range(edgesToEntryBlocks, edges.entryEdges);
|
|
llvm::append_range(edgesToEntryBlocks, edges.backEdges);
|
|
|
|
EdgeMultiplexer multiplexer = createSingleEntryBlock(
|
|
loopHeader->getTerminator()->getLoc(), edgesToEntryBlocks,
|
|
getSwitchValue, getUndefValue, interface);
|
|
|
|
loopHeader = multiplexer.getMultiplexerBlock();
|
|
}
|
|
cycleBlockSet.insert(loopHeader);
|
|
|
|
// Then turn it into a structured loop by creating a single latch.
|
|
FailureOr<StructuredLoopProperties> loopProperties =
|
|
createSingleExitingLatch(
|
|
edges.backEdges.front().getFromBlock()->getTerminator()->getLoc(),
|
|
edges.backEdges, edges.exitEdges, getSwitchValue, getUndefValue,
|
|
interface, exitCombiner);
|
|
if (failed(loopProperties))
|
|
return failure();
|
|
|
|
Block *latchBlock = loopProperties->latch;
|
|
Block *exitBlock = loopProperties->exitBlock;
|
|
cycleBlockSet.insert(latchBlock);
|
|
cycleBlockSet.insert(loopHeader);
|
|
|
|
// Finally, turn it into reduce form.
|
|
SmallVector<Value> iterationValues = transformToReduceLoop(
|
|
loopHeader, exitBlock, cycleBlockSet, getUndefValue, dominanceInfo);
|
|
|
|
// Create a block acting as replacement for the loop header and insert
|
|
// the structured loop into it.
|
|
auto *newLoopParentBlock = new Block;
|
|
newLoopParentBlock->insertBefore(loopHeader);
|
|
addBlockArgumentsFromOther(newLoopParentBlock, loopHeader);
|
|
|
|
Region::BlockListType &blocks = regionEntry->getParent()->getBlocks();
|
|
Region loopBody;
|
|
// Make sure the loop header is the entry block.
|
|
loopBody.push_back(blocks.remove(loopHeader));
|
|
for (Block *block : cycleBlockSet)
|
|
if (block != latchBlock && block != loopHeader)
|
|
loopBody.push_back(blocks.remove(block));
|
|
// And the latch is the last block.
|
|
loopBody.push_back(blocks.remove(latchBlock));
|
|
|
|
Operation *oldTerminator = latchBlock->getTerminator();
|
|
oldTerminator->remove();
|
|
|
|
auto builder = OpBuilder::atBlockBegin(newLoopParentBlock);
|
|
FailureOr<Operation *> structuredLoopOp =
|
|
interface.createStructuredDoWhileLoopOp(
|
|
builder, oldTerminator, newLoopParentBlock->getArguments(),
|
|
loopProperties->condition, iterationValues, std::move(loopBody));
|
|
if (failed(structuredLoopOp))
|
|
return failure();
|
|
oldTerminator->erase();
|
|
|
|
newSubRegions.push_back(loopHeader);
|
|
|
|
for (auto &&[oldValue, newValue] : llvm::zip(
|
|
exitBlock->getArguments(), (*structuredLoopOp)->getResults()))
|
|
oldValue.replaceAllUsesWith(newValue);
|
|
|
|
loopHeader->replaceAllUsesWith(newLoopParentBlock);
|
|
// Merge the exit block right after the loop operation.
|
|
newLoopParentBlock->getOperations().splice(newLoopParentBlock->end(),
|
|
exitBlock->getOperations());
|
|
exitBlock->erase();
|
|
}
|
|
return newSubRegions;
|
|
}
|
|
|
|
/// Makes sure the branch region only has a single exit. This is required by the
|
|
/// recursive part of the algorithm, as it expects the CFG to be single-entry
|
|
/// and single-exit. This is done by simply creating an empty block if there
|
|
/// is more than one block with an edge to the continuation block. All blocks
|
|
/// with edges to the continuation are then redirected to this block. A region
|
|
/// terminator is later placed into the block.
|
|
static void createSingleExitBranchRegion(
|
|
ArrayRef<Block *> branchRegion, Block *continuation,
|
|
SmallVectorImpl<std::pair<Block *, SmallVector<Value>>> &createdEmptyBlocks,
|
|
Region &conditionalRegion) {
|
|
Block *singleExitBlock = nullptr;
|
|
std::optional<Edge> previousEdgeToContinuation;
|
|
Region::BlockListType &parentBlockList =
|
|
branchRegion.front()->getParent()->getBlocks();
|
|
for (Block *block : branchRegion) {
|
|
for (Edge edge : successorEdges(block)) {
|
|
if (edge.getSuccessor() != continuation)
|
|
continue;
|
|
|
|
if (!previousEdgeToContinuation) {
|
|
previousEdgeToContinuation = edge;
|
|
continue;
|
|
}
|
|
|
|
// If this is not the first edge to the continuation we create the
|
|
// single exit block and redirect the edges.
|
|
if (!singleExitBlock) {
|
|
singleExitBlock = new Block;
|
|
addBlockArgumentsFromOther(singleExitBlock, continuation);
|
|
previousEdgeToContinuation->setSuccessor(singleExitBlock);
|
|
createdEmptyBlocks.emplace_back(singleExitBlock,
|
|
singleExitBlock->getArguments());
|
|
}
|
|
|
|
edge.setSuccessor(singleExitBlock);
|
|
}
|
|
|
|
conditionalRegion.push_back(parentBlockList.remove(block));
|
|
}
|
|
|
|
if (singleExitBlock)
|
|
conditionalRegion.push_back(singleExitBlock);
|
|
}
|
|
|
|
/// Returns true if this block is an exit block of the region.
|
|
static bool isRegionExitBlock(Block *block) {
|
|
return block->getNumSuccessors() == 0;
|
|
}
|
|
|
|
/// Transforms the first occurrence of conditional control flow in `regionEntry`
|
|
/// into conditionally executed regions. Returns the entry block of the created
|
|
/// regions and the region after the conditional control flow.
|
|
static FailureOr<SmallVector<Block *>> transformToStructuredCFBranches(
|
|
Block *regionEntry, function_ref<Value(unsigned)> getSwitchValue,
|
|
function_ref<Value(Type)> getUndefValue, CFGToSCFInterface &interface,
|
|
DominanceInfo &dominanceInfo) {
|
|
// Trivial region.
|
|
if (regionEntry->getNumSuccessors() == 0)
|
|
return SmallVector<Block *>{};
|
|
|
|
if (regionEntry->getNumSuccessors() == 1) {
|
|
// Single successor we can just splice together.
|
|
Block *successor = regionEntry->getSuccessor(0);
|
|
for (auto &&[oldValue, newValue] :
|
|
llvm::zip(successor->getArguments(),
|
|
getMutableSuccessorOperands(regionEntry, 0)))
|
|
oldValue.replaceAllUsesWith(newValue);
|
|
regionEntry->getTerminator()->erase();
|
|
|
|
regionEntry->getOperations().splice(regionEntry->end(),
|
|
successor->getOperations());
|
|
successor->erase();
|
|
return SmallVector<Block *>{regionEntry};
|
|
}
|
|
|
|
// Split the CFG into "#numSuccessor + 1" regions.
|
|
// For every edge to a successor, the blocks it solely dominates are
|
|
// determined and become the region following that edge.
|
|
// The last region is the continuation that follows the branch regions.
|
|
SmallPtrSet<Block *, 8> notContinuation;
|
|
notContinuation.insert(regionEntry);
|
|
SmallVector<SmallVector<Block *>> successorBranchRegions(
|
|
regionEntry->getNumSuccessors());
|
|
for (auto &&[blockList, succ] :
|
|
llvm::zip(successorBranchRegions, regionEntry->getSuccessors())) {
|
|
// If the region entry is not the only predecessor, then the edge does not
|
|
// dominate the block it leads to.
|
|
if (succ->getSinglePredecessor() != regionEntry)
|
|
continue;
|
|
|
|
// Otherwise get all blocks it dominates in DFS/pre-order.
|
|
DominanceInfoNode *node = dominanceInfo.getNode(succ);
|
|
for (DominanceInfoNode *curr : llvm::depth_first(node)) {
|
|
blockList.push_back(curr->getBlock());
|
|
notContinuation.insert(curr->getBlock());
|
|
}
|
|
}
|
|
|
|
// Finds all relevant edges and checks the shape of the control flow graph at
|
|
// this point.
|
|
// Branch regions may either:
|
|
// * Be post-dominated by the continuation
|
|
// * Be post-dominated by a return-like op
|
|
// * Dominate a return-like op and have an edge to the continuation.
|
|
//
|
|
// The control flow graph may then be one of three cases:
|
|
// 1) All branch regions are post-dominated by the continuation. This is the
|
|
// usual case. If there are multiple entry blocks into the continuation a
|
|
// single entry block has to be created. A structured control flow op
|
|
// can then be created from the branch regions.
|
|
//
|
|
// 2) No branch region has an edge to a continuation:
|
|
// +-----+
|
|
// +-----+ bb0 +----+
|
|
// v +-----+ v
|
|
// Region 1 +-+--+ ... +-+--+ Region n
|
|
// |ret1| |ret2|
|
|
// +----+ +----+
|
|
//
|
|
// This can only occur if every region ends with a different kind of
|
|
// return-like op. In that case the control flow operation must stay as we are
|
|
// unable to create a single exit-block. We can nevertheless process all its
|
|
// successors as they single-entry, single-exit regions.
|
|
//
|
|
// 3) Only some branch regions are post-dominated by the continuation.
|
|
// The other branch regions may either be post-dominated by a return-like op
|
|
// or lead to either the continuation or return-like op.
|
|
// In this case we also create a single entry block like in 1) that also
|
|
// includes all edges to the return-like op:
|
|
// +-----+
|
|
// +-----+ bb0 +----+
|
|
// v +-----+ v
|
|
// Region 1 +-+-+ ... +-+-+ Region n
|
|
// +---+ +---+
|
|
// +---+ |... ...
|
|
// |ret|<-+ | |
|
|
// +---+ | +---+ |
|
|
// +---->++ ++<---+
|
|
// | |
|
|
// ++ ++ Region T
|
|
// +---+
|
|
// This transforms to:
|
|
// +-----+
|
|
// +-----+ bb0 +----+
|
|
// v +-----+ v
|
|
// Region 1 +-+-+ ... +-+-+ Region n
|
|
// +---+ +---+
|
|
// ... +-----+ ...
|
|
// +---->+ bbM +<---+
|
|
// +-----+
|
|
// +-----+ |
|
|
// | v
|
|
// +---+ | +---+
|
|
// |ret+<---+ ++ ++
|
|
// +---+ | |
|
|
// ++ ++ Region T
|
|
// +---+
|
|
//
|
|
// bb0 to bbM is now a single-entry, single-exit region that applies to case
|
|
// 1). The control flow op at the end of bbM will trigger case 2.
|
|
SmallVector<Edge> continuationEdges;
|
|
bool continuationPostDominatesAllRegions = true;
|
|
bool noSuccessorHasContinuationEdge = true;
|
|
for (auto &&[entryEdge, branchRegion] :
|
|
llvm::zip(successorEdges(regionEntry), successorBranchRegions)) {
|
|
|
|
// If the branch region is empty then the branch target itself is part of
|
|
// the continuation.
|
|
if (branchRegion.empty()) {
|
|
continuationEdges.push_back(entryEdge);
|
|
noSuccessorHasContinuationEdge = false;
|
|
continue;
|
|
}
|
|
|
|
for (Block *block : branchRegion) {
|
|
if (isRegionExitBlock(block)) {
|
|
// If a return-like op is part of the branch region then the
|
|
// continuation no longer post-dominates the branch region.
|
|
// Add all its incoming edges to edge list to create the single-exit
|
|
// block for all branch regions.
|
|
continuationPostDominatesAllRegions = false;
|
|
for (auto iter = block->pred_begin(); iter != block->pred_end();
|
|
++iter) {
|
|
continuationEdges.emplace_back(*iter, iter.getSuccessorIndex());
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (Edge edge : successorEdges(block)) {
|
|
if (notContinuation.contains(edge.getSuccessor()))
|
|
continue;
|
|
|
|
continuationEdges.push_back(edge);
|
|
noSuccessorHasContinuationEdge = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// case 2) Keep the control flow op but process its successors further.
|
|
if (noSuccessorHasContinuationEdge)
|
|
return llvm::to_vector(regionEntry->getSuccessors());
|
|
|
|
Block *continuation = llvm::find_singleton<Block>(
|
|
continuationEdges, [](Edge edge, bool) { return edge.getSuccessor(); },
|
|
/*AllowRepeats=*/true);
|
|
|
|
// In case 3) or if not all continuation edges have the same entry block,
|
|
// create a single entry block as continuation for all branch regions.
|
|
if (!continuation || !continuationPostDominatesAllRegions) {
|
|
EdgeMultiplexer multiplexer = createSingleEntryBlock(
|
|
continuationEdges.front().getFromBlock()->getTerminator()->getLoc(),
|
|
continuationEdges, getSwitchValue, getUndefValue, interface);
|
|
continuation = multiplexer.getMultiplexerBlock();
|
|
}
|
|
|
|
// Trigger reprocess of case 3) after creating the single entry block.
|
|
if (!continuationPostDominatesAllRegions) {
|
|
// Unlike in the general case, we are explicitly revisiting the same region
|
|
// entry again after having changed its control flow edges and dominance.
|
|
// We have to therefore explicitly invalidate the dominance tree.
|
|
dominanceInfo.invalidate(regionEntry->getParent());
|
|
return SmallVector<Block *>{regionEntry};
|
|
}
|
|
|
|
SmallVector<Block *> newSubRegions;
|
|
|
|
// Empty blocks with the values they return to the parent op.
|
|
SmallVector<std::pair<Block *, SmallVector<Value>>> createdEmptyBlocks;
|
|
|
|
// Create the branch regions.
|
|
std::vector<Region> conditionalRegions(successorBranchRegions.size());
|
|
for (auto &&[branchRegion, entryEdge, conditionalRegion] :
|
|
llvm::zip(successorBranchRegions, successorEdges(regionEntry),
|
|
conditionalRegions)) {
|
|
if (branchRegion.empty()) {
|
|
// If no block is part of the branch region, we create a dummy block to
|
|
// place the region terminator into.
|
|
createdEmptyBlocks.emplace_back(
|
|
new Block, llvm::to_vector(entryEdge.getSuccessorOperands()));
|
|
conditionalRegion.push_back(createdEmptyBlocks.back().first);
|
|
continue;
|
|
}
|
|
|
|
createSingleExitBranchRegion(branchRegion, continuation, createdEmptyBlocks,
|
|
conditionalRegion);
|
|
|
|
// The entries of the branch regions may only have redundant block arguments
|
|
// since the edge to the branch region is always dominating.
|
|
Block *subRegionEntryBlock = &conditionalRegion.front();
|
|
for (auto &&[oldValue, newValue] :
|
|
llvm::zip(subRegionEntryBlock->getArguments(),
|
|
entryEdge.getSuccessorOperands()))
|
|
oldValue.replaceAllUsesWith(newValue);
|
|
|
|
subRegionEntryBlock->eraseArguments(0,
|
|
subRegionEntryBlock->getNumArguments());
|
|
newSubRegions.push_back(subRegionEntryBlock);
|
|
}
|
|
|
|
Operation *structuredCondOp;
|
|
{
|
|
auto opBuilder = OpBuilder::atBlockTerminator(regionEntry);
|
|
FailureOr<Operation *> result = interface.createStructuredBranchRegionOp(
|
|
opBuilder, regionEntry->getTerminator(),
|
|
continuation->getArgumentTypes(), conditionalRegions);
|
|
if (failed(result))
|
|
return failure();
|
|
structuredCondOp = *result;
|
|
regionEntry->getTerminator()->erase();
|
|
}
|
|
|
|
for (auto &&[block, valueRange] : createdEmptyBlocks) {
|
|
auto builder = OpBuilder::atBlockEnd(block);
|
|
LogicalResult result = interface.createStructuredBranchRegionTerminatorOp(
|
|
structuredCondOp->getLoc(), builder, structuredCondOp, nullptr,
|
|
valueRange);
|
|
if (failed(result))
|
|
return failure();
|
|
}
|
|
|
|
// Any leftover users of the continuation must be from unconditional branches
|
|
// in a branch region. There can only be at most one per branch region as
|
|
// all branch regions have been made single-entry single-exit above.
|
|
// Replace them with the region terminator.
|
|
for (Operation *user : llvm::make_early_inc_range(continuation->getUsers())) {
|
|
assert(user->getNumSuccessors() == 1);
|
|
auto builder = OpBuilder::atBlockTerminator(user->getBlock());
|
|
LogicalResult result = interface.createStructuredBranchRegionTerminatorOp(
|
|
user->getLoc(), builder, structuredCondOp, user,
|
|
static_cast<OperandRange>(
|
|
getMutableSuccessorOperands(user->getBlock(), 0)));
|
|
if (failed(result))
|
|
return failure();
|
|
user->erase();
|
|
}
|
|
|
|
for (auto &&[oldValue, newValue] :
|
|
llvm::zip(continuation->getArguments(), structuredCondOp->getResults()))
|
|
oldValue.replaceAllUsesWith(newValue);
|
|
|
|
// Splice together the continuations operations with the region entry.
|
|
regionEntry->getOperations().splice(regionEntry->end(),
|
|
continuation->getOperations());
|
|
|
|
continuation->erase();
|
|
|
|
// After splicing the continuation, the region has to be reprocessed as it has
|
|
// new successors.
|
|
newSubRegions.push_back(regionEntry);
|
|
|
|
return newSubRegions;
|
|
}
|
|
|
|
/// Transforms the region to only have a single block for every kind of
|
|
/// return-like operation that all previous occurrences of the return-like op
|
|
/// branch to. If the region only contains a single kind of return-like
|
|
/// operation, it creates a single-entry and single-exit region.
|
|
static ReturnLikeExitCombiner createSingleExitBlocksForReturnLike(
|
|
Region ®ion, function_ref<Value(unsigned)> getSwitchValue,
|
|
CFGToSCFInterface &interface) {
|
|
ReturnLikeExitCombiner exitCombiner(region, interface);
|
|
|
|
for (Block &block : region.getBlocks()) {
|
|
if (block.getNumSuccessors() != 0)
|
|
continue;
|
|
exitCombiner.combineExit(block.getTerminator(), getSwitchValue);
|
|
}
|
|
|
|
return exitCombiner;
|
|
}
|
|
|
|
/// Checks all preconditions of the transformation prior to any transformations.
|
|
/// Returns failure if any precondition is violated.
|
|
static LogicalResult checkTransformationPreconditions(Region ®ion) {
|
|
for (Block &block : region.getBlocks())
|
|
if (block.hasNoPredecessors() && !block.isEntryBlock())
|
|
return block.front().emitOpError(
|
|
"transformation does not support unreachable blocks");
|
|
|
|
WalkResult result = region.walk([](Operation *operation) {
|
|
if (operation->getNumSuccessors() == 0)
|
|
return WalkResult::advance();
|
|
|
|
// This transformation requires all ops with successors to implement the
|
|
// branch op interface. It is impossible to adjust their block arguments
|
|
// otherwise.
|
|
auto branchOpInterface = dyn_cast<BranchOpInterface>(operation);
|
|
if (!branchOpInterface) {
|
|
operation->emitOpError("transformation does not support terminators with "
|
|
"successors not implementing BranchOpInterface");
|
|
return WalkResult::interrupt();
|
|
}
|
|
// Branch operations must have no side effects. Replacing them would not be
|
|
// valid otherwise.
|
|
if (!isMemoryEffectFree(branchOpInterface)) {
|
|
branchOpInterface->emitOpError(
|
|
"transformation does not support terminators with side effects");
|
|
return WalkResult::interrupt();
|
|
}
|
|
|
|
for (unsigned index : llvm::seq(operation->getNumSuccessors())) {
|
|
SuccessorOperands succOps = branchOpInterface.getSuccessorOperands(index);
|
|
|
|
// We cannot support operations with operation-produced successor operands
|
|
// as it is currently not possible to pass them to any block arguments
|
|
// other than the first. This breaks creating multiplexer blocks and would
|
|
// likely need special handling elsewhere too.
|
|
if (succOps.getProducedOperandCount() == 0)
|
|
continue;
|
|
|
|
branchOpInterface->emitOpError("transformation does not support "
|
|
"operations with operation-produced "
|
|
"successor operands");
|
|
return WalkResult::interrupt();
|
|
}
|
|
return WalkResult::advance();
|
|
});
|
|
return failure(result.wasInterrupted());
|
|
}
|
|
|
|
FailureOr<bool> mlir::transformCFGToSCF(Region ®ion,
|
|
CFGToSCFInterface &interface,
|
|
DominanceInfo &dominanceInfo) {
|
|
if (region.empty() || region.hasOneBlock())
|
|
return false;
|
|
|
|
if (failed(checkTransformationPreconditions(region)))
|
|
return failure();
|
|
|
|
DenseMap<Type, Value> typedUndefCache;
|
|
auto getUndefValue = [&](Type type) {
|
|
auto [iter, inserted] = typedUndefCache.insert({type, nullptr});
|
|
if (!inserted)
|
|
return iter->second;
|
|
|
|
auto constantBuilder = OpBuilder::atBlockBegin(®ion.front());
|
|
|
|
iter->second =
|
|
interface.getUndefValue(region.getLoc(), constantBuilder, type);
|
|
return iter->second;
|
|
};
|
|
|
|
// The transformation only creates all values in the range of 0 to
|
|
// max(#numSuccessors). Therefore using a vector instead of a map.
|
|
SmallVector<Value> switchValueCache;
|
|
auto getSwitchValue = [&](unsigned value) {
|
|
if (value < switchValueCache.size())
|
|
if (switchValueCache[value])
|
|
return switchValueCache[value];
|
|
|
|
auto constantBuilder = OpBuilder::atBlockBegin(®ion.front());
|
|
|
|
switchValueCache.resize(
|
|
std::max<size_t>(switchValueCache.size(), value + 1));
|
|
|
|
switchValueCache[value] =
|
|
interface.getCFGSwitchValue(region.getLoc(), constantBuilder, value);
|
|
return switchValueCache[value];
|
|
};
|
|
|
|
ReturnLikeExitCombiner exitCombiner =
|
|
createSingleExitBlocksForReturnLike(region, getSwitchValue, interface);
|
|
|
|
// Invalidate any dominance tree on the region as the exit combiner has
|
|
// added new blocks and edges.
|
|
dominanceInfo.invalidate(®ion);
|
|
|
|
SmallVector<Block *> workList = {®ion.front()};
|
|
while (!workList.empty()) {
|
|
Block *current = workList.pop_back_val();
|
|
|
|
// Turn all top-level cycles in the CFG to structured control flow first.
|
|
// After this transformation, the remaining CFG ops form a DAG.
|
|
FailureOr<SmallVector<Block *>> newRegions =
|
|
transformCyclesToSCFLoops(current, getSwitchValue, getUndefValue,
|
|
interface, dominanceInfo, exitCombiner);
|
|
if (failed(newRegions))
|
|
return failure();
|
|
|
|
// Add the newly created subregions to the worklist. These are the
|
|
// bodies of the loops.
|
|
llvm::append_range(workList, *newRegions);
|
|
// Invalidate the dominance tree as blocks have been moved, created and
|
|
// added during the cycle to structured loop transformation.
|
|
if (!newRegions->empty())
|
|
dominanceInfo.invalidate(current->getParent());
|
|
|
|
newRegions = transformToStructuredCFBranches(
|
|
current, getSwitchValue, getUndefValue, interface, dominanceInfo);
|
|
if (failed(newRegions))
|
|
return failure();
|
|
// Invalidating the dominance tree is generally not required by the
|
|
// transformation above as the new region entries correspond to unaffected
|
|
// subtrees in the dominator tree. Only its parent nodes have changed but
|
|
// won't be visited again.
|
|
llvm::append_range(workList, *newRegions);
|
|
}
|
|
|
|
return true;
|
|
}
|