Files
clang-p2996/llvm/lib/Target/PowerPC/PPCAsmPrinter.cpp
Owen Rodley d3d856ad84 Clean up external users of GlobalValue::getGUID(StringRef) (#129644)
See https://discourse.llvm.org/t/rfc-keep-globalvalue-guids-stable/84801
for context.

This is a non-functional change which just changes the interface of
GlobalValue, in preparation for future functional changes. This part
touches a fair few users, so is split out for ease of review. Future
changes to the GlobalValue implementation can then be focused purely on
that class.

This does the following:

* Rename GlobalValue::getGUID(StringRef) to
  getGUIDAssumingExternalLinkage. This is simply making explicit at the
  callsite what is currently implicit.
* Where possible, migrate users to directly calling getGUID on a
  GlobalValue instance.
* Otherwise, where possible, have them call the newly renamed
  getGUIDAssumingExternalLinkage, to make the assumption explicit.


There are a few cases where neither of the above are possible, as the
caller saves and reconstructs the necessary information to compute the
GUID themselves. We want to migrate these callers eventually, but for
this first step we leave them be.
2025-04-28 11:09:43 +10:00

3383 lines
130 KiB
C++

//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to PowerPC assembly language. This printer is
// the output mechanism used by `llc'.
//
// Documentation at http://developer.apple.com/documentation/DeveloperTools/
// Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCInstPrinter.h"
#include "MCTargetDesc/PPCMCExpr.h"
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "MCTargetDesc/PPCTargetStreamer.h"
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "TargetInfo/PowerPCTargetInfo.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/PPCTargetParser.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <cassert>
#include <cstdint>
#include <memory>
#include <new>
using namespace llvm;
using namespace llvm::XCOFF;
#define DEBUG_TYPE "asmprinter"
STATISTIC(NumTOCEntries, "Number of Total TOC Entries Emitted.");
STATISTIC(NumTOCConstPool, "Number of Constant Pool TOC Entries.");
STATISTIC(NumTOCGlobalInternal,
"Number of Internal Linkage Global TOC Entries.");
STATISTIC(NumTOCGlobalExternal,
"Number of External Linkage Global TOC Entries.");
STATISTIC(NumTOCJumpTable, "Number of Jump Table TOC Entries.");
STATISTIC(NumTOCThreadLocal, "Number of Thread Local TOC Entries.");
STATISTIC(NumTOCBlockAddress, "Number of Block Address TOC Entries.");
STATISTIC(NumTOCEHBlock, "Number of EH Block TOC Entries.");
static cl::opt<bool> EnableSSPCanaryBitInTB(
"aix-ssp-tb-bit", cl::init(false),
cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
// Specialize DenseMapInfo to allow
// std::pair<const MCSymbol *, PPCMCExpr::Specifier> in DenseMap.
// This specialization is needed here because that type is used as keys in the
// map representing TOC entries.
namespace llvm {
template <>
struct DenseMapInfo<std::pair<const MCSymbol *, PPCMCExpr::Specifier>> {
using TOCKey = std::pair<const MCSymbol *, PPCMCExpr::Specifier>;
static inline TOCKey getEmptyKey() { return {nullptr, PPCMCExpr::VK_None}; }
static inline TOCKey getTombstoneKey() {
return {(const MCSymbol *)1, PPCMCExpr::VK_None};
}
static unsigned getHashValue(const TOCKey &PairVal) {
return detail::combineHashValue(
DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
DenseMapInfo<int>::getHashValue(PairVal.second));
}
static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
};
} // end namespace llvm
namespace {
enum {
// GNU attribute tags for PowerPC ABI
Tag_GNU_Power_ABI_FP = 4,
Tag_GNU_Power_ABI_Vector = 8,
Tag_GNU_Power_ABI_Struct_Return = 12,
// GNU attribute values for PowerPC float ABI, as combination of two parts
Val_GNU_Power_ABI_NoFloat = 0b00,
Val_GNU_Power_ABI_HardFloat_DP = 0b01,
Val_GNU_Power_ABI_SoftFloat_DP = 0b10,
Val_GNU_Power_ABI_HardFloat_SP = 0b11,
Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100,
Val_GNU_Power_ABI_LDBL_64 = 0b1000,
Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100,
};
class PPCAsmPrinter : public AsmPrinter {
protected:
// For TLS on AIX, we need to be able to identify TOC entries of specific
// VariantKind so we can add the right relocations when we generate the
// entries. So each entry is represented by a pair of MCSymbol and
// VariantKind. For example, we need to be able to identify the following
// entry as a TLSGD entry so we can add the @m relocation:
// .tc .i[TC],i[TL]@m
// By default, VK_None is used for the VariantKind.
MapVector<std::pair<const MCSymbol *, PPCMCExpr::Specifier>, MCSymbol *> TOC;
const PPCSubtarget *Subtarget = nullptr;
// Keep track of the number of TLS variables and their corresponding
// addresses, which is then used for the assembly printing of
// non-TOC-based local-exec variables.
MapVector<const GlobalValue *, uint64_t> TLSVarsToAddressMapping;
public:
explicit PPCAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)) {}
StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
enum TOCEntryType {
TOCType_ConstantPool,
TOCType_GlobalExternal,
TOCType_GlobalInternal,
TOCType_JumpTable,
TOCType_ThreadLocal,
TOCType_BlockAddress,
TOCType_EHBlock
};
MCSymbol *
lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
PPCMCExpr::Specifier Kind = PPCMCExpr::VK_None);
bool doInitialization(Module &M) override {
if (!TOC.empty())
TOC.clear();
return AsmPrinter::doInitialization(M);
}
const MCExpr *symbolWithSpecifier(const MCSymbol *S,
PPCMCExpr::Specifier Kind);
void emitInstruction(const MachineInstr *MI) override;
/// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
/// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
/// The \p MI would be INLINEASM ONLY.
void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode, raw_ostream &O) override;
bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode, raw_ostream &O) override;
void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
void emitTlsCall(const MachineInstr *MI, PPCMCExpr::Specifier VK);
void EmitAIXTlsCallHelper(const MachineInstr *MI);
const MCExpr *getAdjustedFasterLocalExpr(const MachineOperand &MO,
int64_t Offset);
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<PPCSubtarget>();
bool Changed = AsmPrinter::runOnMachineFunction(MF);
emitXRayTable();
return Changed;
}
};
/// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
class PPCLinuxAsmPrinter : public PPCAsmPrinter {
public:
explicit PPCLinuxAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {}
StringRef getPassName() const override {
return "Linux PPC Assembly Printer";
}
void emitGNUAttributes(Module &M);
void emitStartOfAsmFile(Module &M) override;
void emitEndOfAsmFile(Module &) override;
void emitFunctionEntryLabel() override;
void emitFunctionBodyStart() override;
void emitFunctionBodyEnd() override;
void emitInstruction(const MachineInstr *MI) override;
};
class PPCAIXAsmPrinter : public PPCAsmPrinter {
private:
/// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
/// linkage for them in AIX.
SmallSetVector<MCSymbol *, 8> ExtSymSDNodeSymbols;
/// A format indicator and unique trailing identifier to form part of the
/// sinit/sterm function names.
std::string FormatIndicatorAndUniqueModId;
// Record a list of GlobalAlias associated with a GlobalObject.
// This is used for AIX's extra-label-at-definition aliasing strategy.
DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
GOAliasMap;
uint16_t getNumberOfVRSaved();
void emitTracebackTable();
SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
void emitGlobalVariableHelper(const GlobalVariable *);
// Get the offset of an alias based on its AliaseeObject.
uint64_t getAliasOffset(const Constant *C);
public:
PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
: PPCAsmPrinter(TM, std::move(Streamer)) {
if (MAI->isLittleEndian())
report_fatal_error(
"cannot create AIX PPC Assembly Printer for a little-endian target");
}
StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
bool doInitialization(Module &M) override;
void emitXXStructorList(const DataLayout &DL, const Constant *List,
bool IsCtor) override;
void SetupMachineFunction(MachineFunction &MF) override;
void emitGlobalVariable(const GlobalVariable *GV) override;
void emitFunctionDescriptor() override;
void emitFunctionEntryLabel() override;
void emitFunctionBodyEnd() override;
void emitPGORefs(Module &M);
void emitGCOVRefs();
void emitEndOfAsmFile(Module &) override;
void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
void emitInstruction(const MachineInstr *MI) override;
bool doFinalization(Module &M) override;
void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
void emitModuleCommandLines(Module &M) override;
};
} // end anonymous namespace
void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
raw_ostream &O) {
// Computing the address of a global symbol, not calling it.
const GlobalValue *GV = MO.getGlobal();
getSymbol(GV)->print(O, MAI);
printOffset(MO.getOffset(), O);
}
void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
raw_ostream &O) {
const DataLayout &DL = getDataLayout();
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
// The MI is INLINEASM ONLY and UseVSXReg is always false.
const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
// Linux assembler (Others?) does not take register mnemonics.
// FIXME - What about special registers used in mfspr/mtspr?
O << PPC::stripRegisterPrefix(RegName);
return;
}
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
MO.getMBB()->getSymbol()->print(O, MAI);
return;
case MachineOperand::MO_ConstantPoolIndex:
O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
return;
case MachineOperand::MO_BlockAddress:
GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
PrintSymbolOperand(MO, O);
return;
}
default:
O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
return;
}
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode, raw_ostream &O) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default:
// See if this is a generic print operand
return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
case 'L': // Write second word of DImode reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNo).isReg() ||
OpNo+1 == MI->getNumOperands() ||
!MI->getOperand(OpNo+1).isReg())
return true;
++OpNo; // Return the high-part.
break;
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
case 'x':
if(!MI->getOperand(OpNo).isReg())
return true;
// This operand uses VSX numbering.
// If the operand is a VMX register, convert it to a VSX register.
Register Reg = MI->getOperand(OpNo).getReg();
if (PPC::isVRRegister(Reg))
Reg = PPC::VSX32 + (Reg - PPC::V0);
else if (PPC::isVFRegister(Reg))
Reg = PPC::VSX32 + (Reg - PPC::VF0);
const char *RegName;
RegName = PPCInstPrinter::getRegisterName(Reg);
RegName = PPC::stripRegisterPrefix(RegName);
O << RegName;
return false;
}
}
printOperand(MI, OpNo, O);
return false;
}
// At the moment, all inline asm memory operands are a single register.
// In any case, the output of this routine should always be just one
// assembler operand.
bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
const char *ExtraCode,
raw_ostream &O) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'L': // A memory reference to the upper word of a double word op.
O << getDataLayout().getPointerSize() << "(";
printOperand(MI, OpNo, O);
O << ")";
return false;
case 'y': // A memory reference for an X-form instruction
O << "0, ";
printOperand(MI, OpNo, O);
return false;
case 'I':
// Write 'i' if an integer constant, otherwise nothing. Used to print
// addi vs add, etc.
if (MI->getOperand(OpNo).isImm())
O << "i";
return false;
case 'U': // Print 'u' for update form.
case 'X': // Print 'x' for indexed form.
// FIXME: Currently for PowerPC memory operands are always loaded
// into a register, so we never get an update or indexed form.
// This is bad even for offset forms, since even if we know we
// have a value in -16(r1), we will generate a load into r<n>
// and then load from 0(r<n>). Until that issue is fixed,
// tolerate 'U' and 'X' but don't output anything.
assert(MI->getOperand(OpNo).isReg());
return false;
}
}
assert(MI->getOperand(OpNo).isReg());
O << "0(";
printOperand(MI, OpNo, O);
O << ")";
return false;
}
static void collectTOCStats(PPCAsmPrinter::TOCEntryType Type) {
++NumTOCEntries;
switch (Type) {
case PPCAsmPrinter::TOCType_ConstantPool:
++NumTOCConstPool;
break;
case PPCAsmPrinter::TOCType_GlobalInternal:
++NumTOCGlobalInternal;
break;
case PPCAsmPrinter::TOCType_GlobalExternal:
++NumTOCGlobalExternal;
break;
case PPCAsmPrinter::TOCType_JumpTable:
++NumTOCJumpTable;
break;
case PPCAsmPrinter::TOCType_ThreadLocal:
++NumTOCThreadLocal;
break;
case PPCAsmPrinter::TOCType_BlockAddress:
++NumTOCBlockAddress;
break;
case PPCAsmPrinter::TOCType_EHBlock:
++NumTOCEHBlock;
break;
}
}
static CodeModel::Model getCodeModel(const PPCSubtarget &S,
const TargetMachine &TM,
const MachineOperand &MO) {
CodeModel::Model ModuleModel = TM.getCodeModel();
// If the operand is not a global address then there is no
// global variable to carry an attribute.
if (!(MO.getType() == MachineOperand::MO_GlobalAddress))
return ModuleModel;
const GlobalValue *GV = MO.getGlobal();
assert(GV && "expected global for MO_GlobalAddress");
return S.getCodeModel(TM, GV);
}
static void setOptionalCodeModel(MCSymbolXCOFF *XSym, CodeModel::Model CM) {
switch (CM) {
case CodeModel::Large:
XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Large);
return;
case CodeModel::Small:
XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Small);
return;
default:
report_fatal_error("Invalid code model for AIX");
}
}
/// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
/// exists for it. If not, create one. Then return a symbol that references
/// the TOC entry.
MCSymbol *PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym,
TOCEntryType Type,
PPCMCExpr::Specifier Spec) {
// If this is a new TOC entry add statistics about it.
auto [It, Inserted] = TOC.try_emplace({Sym, Spec});
if (Inserted)
collectTOCStats(Type);
MCSymbol *&TOCEntry = It->second;
if (!TOCEntry)
TOCEntry = createTempSymbol("C");
return TOCEntry;
}
void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
unsigned NumNOPBytes = MI.getOperand(1).getImm();
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordStackMap(*MILabel, MI);
assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
// Scan ahead to trim the shadow.
const MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::const_iterator MII(MI);
++MII;
while (NumNOPBytes > 0) {
if (MII == MBB.end() || MII->isCall() ||
MII->getOpcode() == PPC::DBG_VALUE ||
MII->getOpcode() == TargetOpcode::PATCHPOINT ||
MII->getOpcode() == TargetOpcode::STACKMAP)
break;
++MII;
NumNOPBytes -= 4;
}
// Emit nops.
for (unsigned i = 0; i < NumNOPBytes; i += 4)
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
}
// Lower a patchpoint of the form:
// [<def>], <id>, <numBytes>, <target>, <numArgs>
void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
auto &Ctx = OutStreamer->getContext();
MCSymbol *MILabel = Ctx.createTempSymbol();
OutStreamer->emitLabel(MILabel);
SM.recordPatchPoint(*MILabel, MI);
PatchPointOpers Opers(&MI);
unsigned EncodedBytes = 0;
const MachineOperand &CalleeMO = Opers.getCallTarget();
if (CalleeMO.isImm()) {
int64_t CallTarget = CalleeMO.getImm();
if (CallTarget) {
assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
"High 16 bits of call target should be zero.");
Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
EncodedBytes = 0;
// Materialize the jump address:
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
.addReg(ScratchReg)
.addImm((CallTarget >> 32) & 0xFFFF));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(32).addImm(16));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm((CallTarget >> 16) & 0xFFFF));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
.addReg(ScratchReg)
.addReg(ScratchReg)
.addImm(CallTarget & 0xFFFF));
// Save the current TOC pointer before the remote call.
int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
.addReg(PPC::X1));
++EncodedBytes;
// If we're on ELFv1, then we need to load the actual function pointer
// from the function descriptor.
if (!Subtarget->isELFv2ABI()) {
// Load the new TOC pointer and the function address, but not r11
// (needing this is rare, and loading it here would prevent passing it
// via a 'nest' parameter.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addImm(8)
.addReg(ScratchReg));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(ScratchReg)
.addImm(0)
.addReg(ScratchReg));
++EncodedBytes;
}
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
.addReg(ScratchReg));
++EncodedBytes;
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
++EncodedBytes;
// Restore the TOC pointer after the call.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addImm(TOCSaveOffset)
.addReg(PPC::X1));
++EncodedBytes;
}
} else if (CalleeMO.isGlobal()) {
const GlobalValue *GValue = CalleeMO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
.addExpr(SymVar));
EncodedBytes += 2;
}
// Each instruction is 4 bytes.
EncodedBytes *= 4;
// Emit padding.
unsigned NumBytes = Opers.getNumPatchBytes();
assert(NumBytes >= EncodedBytes &&
"Patchpoint can't request size less than the length of a call.");
assert((NumBytes - EncodedBytes) % 4 == 0 &&
"Invalid number of NOP bytes requested!");
for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
}
/// This helper function creates the TlsGetAddr/TlsGetMod MCSymbol for AIX. We
/// will create the csect and use the qual-name symbol instead of creating just
/// the external symbol.
static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx, unsigned MIOpc) {
StringRef SymName;
switch (MIOpc) {
default:
SymName = ".__tls_get_addr";
break;
case PPC::GETtlsTpointer32AIX:
SymName = ".__get_tpointer";
break;
case PPC::GETtlsMOD32AIX:
case PPC::GETtlsMOD64AIX:
SymName = ".__tls_get_mod";
break;
}
return Ctx
.getXCOFFSection(SymName, SectionKind::getText(),
XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
->getQualNameSymbol();
}
void PPCAsmPrinter::EmitAIXTlsCallHelper(const MachineInstr *MI) {
assert(Subtarget->isAIXABI() &&
"Only expecting to emit calls to get the thread pointer on AIX!");
MCSymbol *TlsCall = createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
const MCExpr *TlsRef = MCSymbolRefExpr::create(TlsCall, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
}
/// Given a GETtls[ld]ADDR[32] instruction, print a call to __tls_get_addr to
/// the current output stream.
void PPCAsmPrinter::emitTlsCall(const MachineInstr *MI,
PPCMCExpr::Specifier VK) {
PPCMCExpr::Specifier Kind = PPCMCExpr::VK_None;
unsigned Opcode = PPC::BL8_NOP_TLS;
assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
Kind = PPCMCExpr::VK_NOTOC;
Opcode = PPC::BL8_NOTOC_TLS;
}
const Module *M = MF->getFunction().getParent();
assert(MI->getOperand(0).isReg() &&
((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
(!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
"GETtls[ld]ADDR[32] must define GPR3");
assert(MI->getOperand(1).isReg() &&
((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
(!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
"GETtls[ld]ADDR[32] must read GPR3");
if (Subtarget->isAIXABI()) {
// For TLSGD, the variable offset should already be in R4 and the region
// handle should already be in R3. We generate an absolute branch to
// .__tls_get_addr. For TLSLD, the module handle should already be in R3.
// We generate an absolute branch to .__tls_get_mod.
Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
(void)VarOffsetReg;
assert((MI->getOpcode() == PPC::GETtlsMOD32AIX ||
MI->getOpcode() == PPC::GETtlsMOD64AIX ||
(MI->getOperand(2).isReg() &&
MI->getOperand(2).getReg() == VarOffsetReg)) &&
"GETtls[ld]ADDR[32] must read GPR4");
EmitAIXTlsCallHelper(MI);
return;
}
MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
if (Subtarget->is32BitELFABI() && isPositionIndependent())
Kind = PPCMCExpr::VK_PLT;
const MCExpr *TlsRef = MCSymbolRefExpr::create(
TlsGetAddr, MCSymbolRefExpr::VariantKind(Kind), OutContext);
// Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
if (Kind == PPCMCExpr::VK_PLT && Subtarget->isSecurePlt() &&
M->getPICLevel() == PICLevel::BigPIC)
TlsRef = MCBinaryExpr::createAdd(
TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymVar = MCSymbolRefExpr::create(
MOSymbol, MCSymbolRefExpr::VariantKind(VK), OutContext);
EmitToStreamer(*OutStreamer,
MCInstBuilder(Subtarget->isPPC64() ? Opcode
: (unsigned)PPC::BL_TLS)
.addExpr(TlsRef)
.addExpr(SymVar));
}
/// Map a machine operand for a TOC pseudo-machine instruction to its
/// corresponding MCSymbol.
static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
AsmPrinter &AP) {
switch (MO.getType()) {
case MachineOperand::MO_GlobalAddress:
return AP.getSymbol(MO.getGlobal());
case MachineOperand::MO_ConstantPoolIndex:
return AP.GetCPISymbol(MO.getIndex());
case MachineOperand::MO_JumpTableIndex:
return AP.GetJTISymbol(MO.getIndex());
case MachineOperand::MO_BlockAddress:
return AP.GetBlockAddressSymbol(MO.getBlockAddress());
default:
llvm_unreachable("Unexpected operand type to get symbol.");
}
}
static PPCAsmPrinter::TOCEntryType
getTOCEntryTypeForMO(const MachineOperand &MO) {
// Use the target flags to determine if this MO is Thread Local.
// If we don't do this it comes out as Global.
if (PPCInstrInfo::hasTLSFlag(MO.getTargetFlags()))
return PPCAsmPrinter::TOCType_ThreadLocal;
switch (MO.getType()) {
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GlobalV = MO.getGlobal();
GlobalValue::LinkageTypes Linkage = GlobalV->getLinkage();
if (Linkage == GlobalValue::ExternalLinkage ||
Linkage == GlobalValue::AvailableExternallyLinkage ||
Linkage == GlobalValue::ExternalWeakLinkage)
return PPCAsmPrinter::TOCType_GlobalExternal;
return PPCAsmPrinter::TOCType_GlobalInternal;
}
case MachineOperand::MO_ConstantPoolIndex:
return PPCAsmPrinter::TOCType_ConstantPool;
case MachineOperand::MO_JumpTableIndex:
return PPCAsmPrinter::TOCType_JumpTable;
case MachineOperand::MO_BlockAddress:
return PPCAsmPrinter::TOCType_BlockAddress;
default:
llvm_unreachable("Unexpected operand type to get TOC type.");
}
}
const MCExpr *PPCAsmPrinter::symbolWithSpecifier(const MCSymbol *S,
PPCMCExpr::Specifier Spec) {
return MCSymbolRefExpr::create(S, MCSymbolRefExpr::VariantKind(Spec),
OutContext);
}
/// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
/// the current output stream.
///
void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
PPC_MC::verifyInstructionPredicates(MI->getOpcode(),
getSubtargetInfo().getFeatureBits());
MCInst TmpInst;
const bool IsPPC64 = Subtarget->isPPC64();
const bool IsAIX = Subtarget->isAIXABI();
const bool HasAIXSmallLocalTLS = Subtarget->hasAIXSmallLocalExecTLS() ||
Subtarget->hasAIXSmallLocalDynamicTLS();
const Module *M = MF->getFunction().getParent();
PICLevel::Level PL = M->getPICLevel();
#ifndef NDEBUG
// Validate that SPE and FPU are mutually exclusive in codegen
if (!MI->isInlineAsm()) {
for (const MachineOperand &MO: MI->operands()) {
if (MO.isReg()) {
Register Reg = MO.getReg();
if (Subtarget->hasSPE()) {
if (PPC::F4RCRegClass.contains(Reg) ||
PPC::F8RCRegClass.contains(Reg) ||
PPC::VFRCRegClass.contains(Reg) ||
PPC::VRRCRegClass.contains(Reg) ||
PPC::VSFRCRegClass.contains(Reg) ||
PPC::VSSRCRegClass.contains(Reg)
)
llvm_unreachable("SPE targets cannot have FPRegs!");
} else {
if (PPC::SPERCRegClass.contains(Reg))
llvm_unreachable("SPE register found in FPU-targeted code!");
}
}
}
}
#endif
auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
ptrdiff_t OriginalOffset) {
// Apply an offset to the TOC-based expression such that the adjusted
// notional offset from the TOC base (to be encoded into the instruction's D
// or DS field) is the signed 16-bit truncation of the original notional
// offset from the TOC base.
// This is consistent with the treatment used both by XL C/C++ and
// by AIX ld -r.
ptrdiff_t Adjustment =
OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
return MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
};
auto getTOCEntryLoadingExprForXCOFF =
[IsPPC64, getTOCRelocAdjustedExprForXCOFF,
this](const MCSymbol *MOSymbol, const MCExpr *Expr,
PPCMCExpr::Specifier VK = PPCMCExpr::VK_None) -> const MCExpr * {
const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
const auto TOCEntryIter = TOC.find({MOSymbol, VK});
assert(TOCEntryIter != TOC.end() &&
"Could not find the TOC entry for this symbol.");
const ptrdiff_t EntryDistanceFromTOCBase =
(TOCEntryIter - TOC.begin()) * EntryByteSize;
constexpr int16_t PositiveTOCRange = INT16_MAX;
if (EntryDistanceFromTOCBase > PositiveTOCRange)
return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
return Expr;
};
auto getSpecifier = [&](const MachineOperand &MO) {
// For TLS initial-exec and local-exec accesses on AIX, we have one TOC
// entry for the symbol (with the variable offset), which is differentiated
// by MO_TPREL_FLAG.
unsigned Flag = MO.getTargetFlags();
if (Flag == PPCII::MO_TPREL_FLAG ||
Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
Flag == PPCII::MO_TPREL_PCREL_FLAG) {
assert(MO.isGlobal() && "Only expecting a global MachineOperand here!\n");
TLSModel::Model Model = TM.getTLSModel(MO.getGlobal());
if (Model == TLSModel::LocalExec)
return PPCMCExpr::VK_AIX_TLSLE;
if (Model == TLSModel::InitialExec)
return PPCMCExpr::VK_AIX_TLSIE;
// On AIX, TLS model opt may have turned local-dynamic accesses into
// initial-exec accesses.
PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
if (Model == TLSModel::LocalDynamic &&
FuncInfo->isAIXFuncUseTLSIEForLD()) {
LLVM_DEBUG(
dbgs() << "Current function uses IE access for default LD vars.\n");
return PPCMCExpr::VK_AIX_TLSIE;
}
llvm_unreachable("Only expecting local-exec or initial-exec accesses!");
}
// For GD TLS access on AIX, we have two TOC entries for the symbol (one for
// the variable offset and the other for the region handle). They are
// differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
if (Flag == PPCII::MO_TLSGDM_FLAG)
return PPCMCExpr::VK_AIX_TLSGDM;
if (Flag == PPCII::MO_TLSGD_FLAG || Flag == PPCII::MO_GOT_TLSGD_PCREL_FLAG)
return PPCMCExpr::VK_AIX_TLSGD;
// For local-dynamic TLS access on AIX, we have one TOC entry for the symbol
// (the variable offset) and one shared TOC entry for the module handle.
// They are differentiated by MO_TLSLD_FLAG and MO_TLSLDM_FLAG.
if (Flag == PPCII::MO_TLSLD_FLAG && IsAIX)
return PPCMCExpr::VK_AIX_TLSLD;
if (Flag == PPCII::MO_TLSLDM_FLAG && IsAIX)
return PPCMCExpr::VK_AIX_TLSML;
return PPCMCExpr::VK_None;
};
// Lower multi-instruction pseudo operations.
switch (MI->getOpcode()) {
default: break;
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
assert(!Subtarget->isAIXABI() &&
"AIX does not support patchable function entry!");
// PATCHABLE_FUNCTION_ENTER on little endian is for XRAY support which is
// handled in PPCLinuxAsmPrinter.
if (MAI->isLittleEndian())
return;
const Function &F = MF->getFunction();
unsigned Num = 0;
(void)F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, Num);
if (!Num)
return;
emitNops(Num);
return;
}
case TargetOpcode::DBG_VALUE:
llvm_unreachable("Should be handled target independently");
case TargetOpcode::STACKMAP:
return LowerSTACKMAP(SM, *MI);
case TargetOpcode::PATCHPOINT:
return LowerPATCHPOINT(SM, *MI);
case PPC::MoveGOTtoLR: {
// Transform %lr = MoveGOTtoLR
// Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
// _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
// _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
// blrl
// This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
MCSymbol *GOTSymbol =
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *OffsExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(
GOTSymbol, MCSymbolRefExpr::VariantKind(PPCMCExpr::VK_LOCAL),
OutContext),
MCConstantExpr::create(4, OutContext), OutContext);
// Emit the 'bl'.
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
return;
}
case PPC::MovePCtoLR:
case PPC::MovePCtoLR8: {
// Transform %lr = MovePCtoLR
// Into this, where the label is the PIC base:
// bl L1$pb
// L1$pb:
MCSymbol *PICBase = MF->getPICBaseSymbol();
// Emit 'bcl 20,31,.+4' so the link stack is not corrupted.
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BCLalways)
// FIXME: We would like an efficient form for this, so we
// don't have to do a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
// Emit the label.
OutStreamer->emitLabel(PICBase);
return;
}
case PPC::UpdateGBR: {
// Transform %rd = UpdateGBR(%rt, %ri)
// Into: lwz %rt, .L0$poff - .L0$pb(%ri)
// add %rd, %rt, %ri
// or into (if secure plt mode is on):
// addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
// addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
// Get the offset from the GOT Base Register to the GOT
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
MCRegister PICR = TmpInst.getOperand(0).getReg();
MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
: ".LTOC");
const MCExpr *PB =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
return;
} else {
MCSymbol *PICOffset =
MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
TmpInst.setOpcode(PPC::LWZ);
const MCExpr *Exp = MCSymbolRefExpr::create(PICOffset, OutContext);
const MCExpr *PB =
MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
OutContext);
const MCOperand TR = TmpInst.getOperand(1);
const MCOperand PICR = TmpInst.getOperand(0);
// Step 1: lwz %rt, .L$poff - .L$pb(%ri)
TmpInst.getOperand(1) =
MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
TmpInst.getOperand(0) = TR;
TmpInst.getOperand(2) = PICR;
EmitToStreamer(*OutStreamer, TmpInst);
TmpInst.setOpcode(PPC::ADD4);
TmpInst.getOperand(0) = PICR;
TmpInst.getOperand(1) = TR;
TmpInst.getOperand(2) = PICR;
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
}
case PPC::LWZtoc: {
// Transform %rN = LWZtoc @op1, %r2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to LWZ.
TmpInst.setOpcode(PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
"Invalid operand for LWZtoc.");
// Map the operand to its corresponding MCSymbol.
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
// Create a reference to the GOT entry for the symbol. The GOT entry will be
// synthesized later.
if (PL == PICLevel::SmallPIC && !IsAIX) {
const MCExpr *Exp = symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_GOT);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
PPCMCExpr::Specifier VK = getSpecifier(MO);
// Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
// storage allocated in the TOC which contains the address of
// 'MOSymbol'. Said TOC entry will be synthesized later.
MCSymbol *TOCEntry =
lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, OutContext);
// AIX uses the label directly as the lwz displacement operand for
// references into the toc section. The displacement value will be generated
// relative to the toc-base.
if (IsAIX) {
assert(
getCodeModel(*Subtarget, TM, MO) == CodeModel::Small &&
"This pseudo should only be selected for 32-bit small code model.");
Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
// Print MO for better readability
if (isVerbose())
OutStreamer->getCommentOS() << MO << '\n';
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
// Create an explicit subtract expression between the local symbol and
// '.LTOC' to manifest the toc-relative offset.
const MCExpr *PB = MCSymbolRefExpr::create(
OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDItoc:
case PPC::ADDItoc8: {
assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
"PseudoOp only valid for small code model AIX");
// Transform %rN = ADDItoc/8 %r2, @op1.
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to load address.
TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8));
const MachineOperand &MO = MI->getOperand(2);
assert(MO.isGlobal() && "Invalid operand for ADDItoc[8].");
// Map the operand to its corresponding MCSymbol.
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
const MCExpr *Exp = MCSymbolRefExpr::create(MOSymbol, OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocJTI:
case PPC::LDtocCPT:
case PPC::LDtocBA:
case PPC::LDtoc: {
// Transform %x3 = LDtoc @min1, %x2
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to LD.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
"Invalid operand!");
// Map the operand to its corresponding MCSymbol.
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
PPCMCExpr::Specifier VK = getSpecifier(MO);
// Map the machine operand to its corresponding MCSymbol, then map the
// global address operand to be a reference to the TOC entry we will
// synthesize later.
MCSymbol *TOCEntry =
lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
PPCMCExpr::Specifier VKExpr =
IsAIX ? PPCMCExpr::VK_None : PPCMCExpr::VK_TOC;
const MCExpr *Exp = symbolWithSpecifier(TOCEntry, VKExpr);
TmpInst.getOperand(1) = MCOperand::createExpr(
IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
// Print MO for better readability
if (isVerbose() && IsAIX)
OutStreamer->getCommentOS() << MO << '\n';
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDIStocHA: {
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
"Invalid operand for ADDIStocHA.");
assert((IsAIX && !IsPPC64 &&
getCodeModel(*Subtarget, TM, MO) == CodeModel::Large) &&
"This pseudo should only be selected for 32-bit large code model on"
" AIX.");
// Transform %rd = ADDIStocHA %rA, @sym(%r2)
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to ADDIS.
TmpInst.setOpcode(PPC::ADDIS);
// Map the machine operand to its corresponding MCSymbol.
MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
PPCMCExpr::Specifier VK = getSpecifier(MO);
// Map the global address operand to be a reference to the TOC entry we
// will synthesize later. 'TOCEntry' is a label used to reference the
// storage allocated in the TOC which contains the address of 'MOSymbol'.
// If the symbol does not have the toc-data attribute, then we create the
// TOC entry on AIX. If the toc-data attribute is used, the TOC entry
// contains the data rather than the address of the MOSymbol.
if (![](const MachineOperand &MO) {
if (!MO.isGlobal())
return false;
const GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal());
if (!GV)
return false;
return GV->hasAttribute("toc-data");
}(MO)) {
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
}
const MCExpr *Exp = symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_U);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LWZtocL: {
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
"Invalid operand for LWZtocL.");
assert(IsAIX && !IsPPC64 &&
getCodeModel(*Subtarget, TM, MO) == CodeModel::Large &&
"This pseudo should only be selected for 32-bit large code model on"
" AIX.");
// Transform %rd = LWZtocL @sym, %rs.
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to lwz.
TmpInst.setOpcode(PPC::LWZ);
// Map the machine operand to its corresponding MCSymbol.
MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
PPCMCExpr::Specifier VK = getSpecifier(MO);
// Always use TOC on AIX. Map the global address operand to be a reference
// to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
// reference the storage allocated in the TOC which contains the address of
// 'MOSymbol'.
MCSymbol *TOCEntry =
lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
const MCExpr *Exp = symbolWithSpecifier(TOCEntry, PPCMCExpr::VK_L);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDIStocHA8: {
// Transform %xd = ADDIStocHA8 %x2, @sym
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to ADDIS8. If the global address is the address of
// an external symbol, is a jump table address, is a block address, or is a
// constant pool index with large code model enabled, then generate a TOC
// entry and reference that. Otherwise, reference the symbol directly.
TmpInst.setOpcode(PPC::ADDIS8);
const MachineOperand &MO = MI->getOperand(2);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
"Invalid operand for ADDIStocHA8!");
const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
PPCMCExpr::Specifier VK = getSpecifier(MO);
const bool GlobalToc =
MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
const CodeModel::Model CM =
IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
(MO.isCPI() && CM == CodeModel::Large))
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
VK = IsAIX ? PPCMCExpr::VK_U : PPCMCExpr::VK_TOC_HA;
const MCExpr *Exp = symbolWithSpecifier(MOSymbol, VK);
if (!MO.isJTI() && MO.getOffset())
Exp = MCBinaryExpr::createAdd(Exp,
MCConstantExpr::create(MO.getOffset(),
OutContext),
OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::LDtocL: {
// Transform %xd = LDtocL @sym, %xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to LD. If the global address is the address of
// an external symbol, is a jump table address, is a block address, or is
// a constant pool index with large code model enabled, then generate a
// TOC entry and reference that. Otherwise, reference the symbol directly.
TmpInst.setOpcode(PPC::LD);
const MachineOperand &MO = MI->getOperand(1);
assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
MO.isBlockAddress()) &&
"Invalid operand for LDtocL!");
LLVM_DEBUG(assert(
(!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
"LDtocL used on symbol that could be accessed directly is "
"invalid. Must match ADDIStocHA8."));
const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
PPCMCExpr::Specifier VK = getSpecifier(MO);
CodeModel::Model CM =
IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
if (!MO.isCPI() || CM == CodeModel::Large)
MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
VK = IsAIX ? PPCMCExpr::VK_L : PPCMCExpr::VK_TOC_LO;
const MCExpr *Exp = symbolWithSpecifier(MOSymbol, VK);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDItocL:
case PPC::ADDItocL8: {
// Transform %xd = ADDItocL %xs, @sym
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
unsigned Op = MI->getOpcode();
// Change the opcode to load address for toc-data.
// ADDItocL is only used for 32-bit toc-data on AIX and will always use LA.
TmpInst.setOpcode(Op == PPC::ADDItocL8 ? (IsAIX ? PPC::LA8 : PPC::ADDI8)
: PPC::LA);
const MachineOperand &MO = MI->getOperand(2);
assert((Op == PPC::ADDItocL8)
? (MO.isGlobal() || MO.isCPI())
: MO.isGlobal() && "Invalid operand for ADDItocL8.");
assert(!(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
"Interposable definitions must use indirect accesses.");
// Map the operand to its corresponding MCSymbol.
const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
const MCExpr *Exp = MCSymbolRefExpr::create(
MOSymbol,
MCSymbolRefExpr::VariantKind(IsAIX ? PPCMCExpr::VK_L
: PPCMCExpr::VK_TOC_LO),
OutContext);
TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::ADDISgotTprelHA: {
// Transform: %xd = ADDISgotTprelHA %x2, @sym
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTprel =
symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_GOT_TPREL_HA);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTprel));
return;
}
case PPC::LDgotTprelL:
case PPC::LDgotTprelL32: {
// Transform %xd = LDgotTprelL @sym, %xs
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
// Change the opcode to LD.
TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
const MachineOperand &MO = MI->getOperand(1);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *Exp =
symbolWithSpecifier(MOSymbol, IsPPC64 ? PPCMCExpr::VK_GOT_TPREL_LO
: PPCMCExpr::VK_GOT_TPREL);
TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
case PPC::PPC32PICGOT: {
MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
MCSymbol *GOTRef = OutContext.createTempSymbol();
MCSymbol *NextInstr = OutContext.createTempSymbol();
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
// FIXME: We would like an efficient form for this, so we don't have to do
// a lot of extra uniquing.
.addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
MCSymbolRefExpr::create(GOTRef, OutContext),
OutContext);
OutStreamer->emitLabel(GOTRef);
OutStreamer->emitValue(OffsExpr, 4);
OutStreamer->emitLabel(NextInstr);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
.addReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
.addReg(MI->getOperand(1).getReg())
.addImm(0)
.addReg(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(MI->getOperand(0).getReg()));
return;
}
case PPC::PPC32GOT: {
MCSymbol *GOTSymbol =
OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
const MCExpr *SymGotTlsL = PPCMCExpr::create(
PPCMCExpr::VK_LO, MCSymbolRefExpr::create(GOTSymbol, OutContext),
OutContext);
const MCExpr *SymGotTlsHA = PPCMCExpr::create(
PPCMCExpr::VK_HA, MCSymbolRefExpr::create(GOTSymbol, OutContext),
OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsL));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg())
.addExpr(SymGotTlsHA));
return;
}
case PPC::ADDIStlsgdHA: {
// Transform: %xd = ADDIStlsgdHA %x2, @sym
// Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsGD =
symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_GOT_TLSGD_HA);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::ADDItlsgdL:
// Transform: %xd = ADDItlsgdL %xs, @sym
// Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
case PPC::ADDItlsgdL32: {
// Transform: %rd = ADDItlsgdL32 %rs, @sym
// Into: %rd = ADDI %rs, sym@got@tlsgd
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsGD =
symbolWithSpecifier(MOSymbol, IsPPC64 ? PPCMCExpr::VK_GOT_TLSGD_LO
: PPCMCExpr::VK_GOT_TLSGD);
EmitToStreamer(*OutStreamer,
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsGD));
return;
}
case PPC::GETtlsMOD32AIX:
case PPC::GETtlsMOD64AIX:
// Transform: %r3 = GETtlsMODNNAIX %r3 (for NN == 32/64).
// Into: BLA .__tls_get_mod()
// Input parameter is a module handle (_$TLSML[TC]@ml) for all variables.
case PPC::GETtlsADDR:
// Transform: %x3 = GETtlsADDR %x3, @sym
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
case PPC::GETtlsADDRPCREL:
case PPC::GETtlsADDR32AIX:
case PPC::GETtlsADDR64AIX:
// Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
// Into: BLA .__tls_get_addr()
// Unlike on Linux, there is no symbol or relocation needed for this call.
case PPC::GETtlsADDR32: {
// Transform: %r3 = GETtlsADDR32 %r3, @sym
// Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
emitTlsCall(MI, PPCMCExpr::VK_TLSGD);
return;
}
case PPC::GETtlsTpointer32AIX: {
// Transform: %r3 = GETtlsTpointer32AIX
// Into: BLA .__get_tpointer()
EmitAIXTlsCallHelper(MI);
return;
}
case PPC::ADDIStlsldHA: {
// Transform: %xd = ADDIStlsldHA %x2, @sym
// Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
assert(IsPPC64 && "Not supported for 32-bit PowerPC");
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD =
symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_GOT_TLSLD_HA);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::ADDItlsldL:
// Transform: %xd = ADDItlsldL %xs, @sym
// Into: %xd = ADDI8 %xs, sym@got@tlsld@l
case PPC::ADDItlsldL32: {
// Transform: %rd = ADDItlsldL32 %rs, @sym
// Into: %rd = ADDI %rs, sym@got@tlsld
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymGotTlsLD =
symbolWithSpecifier(MOSymbol, IsPPC64 ? PPCMCExpr::VK_GOT_TLSLD_LO
: PPCMCExpr::VK_GOT_TLSLD);
EmitToStreamer(*OutStreamer,
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymGotTlsLD));
return;
}
case PPC::GETtlsldADDR:
// Transform: %x3 = GETtlsldADDR %x3, @sym
// Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
case PPC::GETtlsldADDRPCREL:
case PPC::GETtlsldADDR32: {
// Transform: %r3 = GETtlsldADDR32 %r3, @sym
// Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
emitTlsCall(MI, PPCMCExpr::VK_TLSLD);
return;
}
case PPC::ADDISdtprelHA:
// Transform: %xd = ADDISdtprelHA %xs, @sym
// Into: %xd = ADDIS8 %xs, sym@dtprel@ha
case PPC::ADDISdtprelHA32: {
// Transform: %rd = ADDISdtprelHA32 %rs, @sym
// Into: %rd = ADDIS %rs, sym@dtprel@ha
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_DTPREL_HA);
EmitToStreamer(
*OutStreamer,
MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::PADDIdtprel: {
// Transform: %rd = PADDIdtprel %rs, @sym
// Into: %rd = PADDI8 %rs, sym@dtprel
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_DTPREL);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::ADDIdtprelL:
// Transform: %xd = ADDIdtprelL %xs, @sym
// Into: %xd = ADDI8 %xs, sym@dtprel@l
case PPC::ADDIdtprelL32: {
// Transform: %rd = ADDIdtprelL32 %rs, @sym
// Into: %rd = ADDI %rs, sym@dtprel@l
const MachineOperand &MO = MI->getOperand(2);
const GlobalValue *GValue = MO.getGlobal();
MCSymbol *MOSymbol = getSymbol(GValue);
const MCExpr *SymDtprel =
symbolWithSpecifier(MOSymbol, PPCMCExpr::VK_DTPREL_LO);
EmitToStreamer(*OutStreamer,
MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
.addReg(MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addExpr(SymDtprel));
return;
}
case PPC::MFOCRF:
case PPC::MFOCRF8:
if (!Subtarget->hasMFOCRF()) {
// Transform: %r3 = MFOCRF %cr7
// Into: %r3 = MFCR ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
OutStreamer->AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(1).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
.addReg(MI->getOperand(0).getReg()));
return;
}
break;
case PPC::MTOCRF:
case PPC::MTOCRF8:
if (!Subtarget->hasMFOCRF()) {
// Transform: %cr7 = MTOCRF %r3
// Into: MTCRF mask, %r3 ;; cr7
unsigned NewOpcode =
MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
->getEncodingValue(MI->getOperand(0).getReg());
OutStreamer->AddComment(PPCInstPrinter::
getRegisterName(MI->getOperand(0).getReg()));
EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
.addImm(Mask)
.addReg(MI->getOperand(1).getReg()));
return;
}
break;
case PPC::LD:
case PPC::STD:
case PPC::LWA_32:
case PPC::LWA: {
// Verify alignment is legal, so we don't create relocations
// that can't be supported.
unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
// For non-TOC-based local-exec TLS accesses with non-zero offsets, the
// machine operand (which is a TargetGlobalTLSAddress) is expected to be
// the same operand for both loads and stores.
for (const MachineOperand &TempMO : MI->operands()) {
if (((TempMO.getTargetFlags() == PPCII::MO_TPREL_FLAG ||
TempMO.getTargetFlags() == PPCII::MO_TLSLD_FLAG)) &&
TempMO.getOperandNo() == 1)
OpNum = 1;
}
const MachineOperand &MO = MI->getOperand(OpNum);
if (MO.isGlobal()) {
const DataLayout &DL = MO.getGlobal()->getDataLayout();
if (MO.getGlobal()->getPointerAlignment(DL) < 4)
llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
}
// As these load/stores share common code with the following load/stores,
// fall through to the subsequent cases in order to either process the
// non-TOC-based local-exec sequence or to process the instruction normally.
[[fallthrough]];
}
case PPC::LBZ:
case PPC::LBZ8:
case PPC::LHA:
case PPC::LHA8:
case PPC::LHZ:
case PPC::LHZ8:
case PPC::LWZ:
case PPC::LWZ8:
case PPC::STB:
case PPC::STB8:
case PPC::STH:
case PPC::STH8:
case PPC::STW:
case PPC::STW8:
case PPC::LFS:
case PPC::STFS:
case PPC::LFD:
case PPC::STFD:
case PPC::ADDI8: {
// A faster non-TOC-based local-[exec|dynamic] sequence is represented by
// `addi` or a load/store instruction (that directly loads or stores off of
// the thread pointer) with an immediate operand having the
// [MO_TPREL_FLAG|MO_TLSLD_FLAG]. Such instructions do not otherwise arise.
if (!HasAIXSmallLocalTLS)
break;
bool IsMIADDI8 = MI->getOpcode() == PPC::ADDI8;
unsigned OpNum = IsMIADDI8 ? 2 : 1;
const MachineOperand &MO = MI->getOperand(OpNum);
unsigned Flag = MO.getTargetFlags();
if (Flag == PPCII::MO_TPREL_FLAG ||
Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
Flag == PPCII::MO_TPREL_PCREL_FLAG || Flag == PPCII::MO_TLSLD_FLAG) {
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
const MCExpr *Expr = getAdjustedFasterLocalExpr(MO, MO.getOffset());
if (Expr)
TmpInst.getOperand(OpNum) = MCOperand::createExpr(Expr);
// Change the opcode to load address if the original opcode is an `addi`.
if (IsMIADDI8)
TmpInst.setOpcode(PPC::LA8);
EmitToStreamer(*OutStreamer, TmpInst);
return;
}
// Now process the instruction normally.
break;
}
case PPC::PseudoEIEIO: {
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
return;
}
}
LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
EmitToStreamer(*OutStreamer, TmpInst);
}
// For non-TOC-based local-[exec|dynamic] variables that have a non-zero offset,
// we need to create a new MCExpr that adds the non-zero offset to the address
// of the local-[exec|dynamic] variable that will be used in either an addi,
// load or store. However, the final displacement for these instructions must be
// between [-32768, 32768), so if the TLS address + its non-zero offset is
// greater than 32KB, a new MCExpr is produced to accommodate this situation.
const MCExpr *
PPCAsmPrinter::getAdjustedFasterLocalExpr(const MachineOperand &MO,
int64_t Offset) {
// Non-zero offsets (for loads, stores or `addi`) require additional handling.
// When the offset is zero, there is no need to create an adjusted MCExpr.
if (!Offset)
return nullptr;
assert(MO.isGlobal() && "Only expecting a global MachineOperand here!");
const GlobalValue *GValue = MO.getGlobal();
TLSModel::Model Model = TM.getTLSModel(GValue);
assert((Model == TLSModel::LocalExec || Model == TLSModel::LocalDynamic) &&
"Only local-[exec|dynamic] accesses are handled!");
bool IsGlobalADeclaration = GValue->isDeclarationForLinker();
// Find the GlobalVariable that corresponds to the particular TLS variable
// in the TLS variable-to-address mapping. All TLS variables should exist
// within this map, with the exception of TLS variables marked as extern.
const auto TLSVarsMapEntryIter = TLSVarsToAddressMapping.find(GValue);
if (TLSVarsMapEntryIter == TLSVarsToAddressMapping.end())
assert(IsGlobalADeclaration &&
"Only expecting to find extern TLS variables not present in the TLS "
"variable-to-address map!");
unsigned TLSVarAddress =
IsGlobalADeclaration ? 0 : TLSVarsMapEntryIter->second;
ptrdiff_t FinalAddress = (TLSVarAddress + Offset);
// If the address of the TLS variable + the offset is less than 32KB,
// or if the TLS variable is extern, we simply produce an MCExpr to add the
// non-zero offset to the TLS variable address.
// For when TLS variables are extern, this is safe to do because we can
// assume that the address of extern TLS variables are zero.
const MCExpr *Expr = MCSymbolRefExpr::create(
getSymbol(GValue),
MCSymbolRefExpr::VariantKind(Model == TLSModel::LocalExec
? PPCMCExpr::VK_AIX_TLSLE
: PPCMCExpr::VK_AIX_TLSLD),
OutContext);
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
if (FinalAddress >= 32768) {
// Handle the written offset for cases where:
// TLS variable address + Offset > 32KB.
// The assembly that is printed will look like:
// TLSVar@le + Offset - Delta
// where Delta is a multiple of 64KB: ((FinalAddress + 32768) & ~0xFFFF).
ptrdiff_t Delta = ((FinalAddress + 32768) & ~0xFFFF);
// Check that the total instruction displacement fits within [-32768,32768).
[[maybe_unused]] ptrdiff_t InstDisp = TLSVarAddress + Offset - Delta;
assert(
((InstDisp < 32768) && (InstDisp >= -32768)) &&
"Expecting the instruction displacement for local-[exec|dynamic] TLS "
"variables to be between [-32768, 32768)!");
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(-Delta, OutContext), OutContext);
}
return Expr;
}
void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) {
// Emit float ABI into GNU attribute
Metadata *MD = M.getModuleFlag("float-abi");
MDString *FloatABI = dyn_cast_or_null<MDString>(MD);
if (!FloatABI)
return;
StringRef flt = FloatABI->getString();
// TODO: Support emitting soft-fp and hard double/single attributes.
if (flt == "doubledouble")
OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
Val_GNU_Power_ABI_HardFloat_DP |
Val_GNU_Power_ABI_LDBL_IBM128);
else if (flt == "ieeequad")
OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
Val_GNU_Power_ABI_HardFloat_DP |
Val_GNU_Power_ABI_LDBL_IEEE128);
else if (flt == "ieeedouble")
OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
Val_GNU_Power_ABI_HardFloat_DP |
Val_GNU_Power_ABI_LDBL_64);
}
void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
if (!Subtarget->isPPC64())
return PPCAsmPrinter::emitInstruction(MI);
switch (MI->getOpcode()) {
default:
break;
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
// .begin:
// b .end # lis 0, FuncId[16..32]
// nop # li 0, FuncId[0..15]
// std 0, -8(1)
// mflr 0
// bl __xray_FunctionEntry
// mtlr 0
// .end:
//
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
// of instructions change.
// XRAY is only supported on PPC Linux little endian.
if (!MAI->isLittleEndian())
break;
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
MCSymbol *EndOfSled = OutContext.createTempSymbol();
OutStreamer->emitLabel(BeginOfSled);
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::B).addExpr(
MCSymbolRefExpr::create(EndOfSled, OutContext)));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BL8_NOP)
.addExpr(MCSymbolRefExpr::create(
OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
OutContext)));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
OutStreamer->emitLabel(EndOfSled);
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
break;
}
case TargetOpcode::PATCHABLE_RET: {
unsigned RetOpcode = MI->getOperand(0).getImm();
MCInst RetInst;
RetInst.setOpcode(RetOpcode);
for (const auto &MO : llvm::drop_begin(MI->operands())) {
MCOperand MCOp;
if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
RetInst.addOperand(MCOp);
}
bool IsConditional;
if (RetOpcode == PPC::BCCLR) {
IsConditional = true;
} else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
RetOpcode == PPC::TCRETURNai8) {
break;
} else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
IsConditional = false;
} else {
EmitToStreamer(*OutStreamer, RetInst);
return;
}
MCSymbol *FallthroughLabel;
if (IsConditional) {
// Before:
// bgtlr cr0
//
// After:
// ble cr0, .end
// .p2align 3
// .begin:
// blr # lis 0, FuncId[16..32]
// nop # li 0, FuncId[0..15]
// std 0, -8(1)
// mflr 0
// bl __xray_FunctionExit
// mtlr 0
// blr
// .end:
//
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
// of instructions change.
FallthroughLabel = OutContext.createTempSymbol();
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::BCC)
.addImm(PPC::InvertPredicate(
static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
.addReg(MI->getOperand(2).getReg())
.addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
RetInst = MCInst();
RetInst.setOpcode(PPC::BLR8);
}
// .p2align 3
// .begin:
// b(lr)? # lis 0, FuncId[16..32]
// nop # li 0, FuncId[0..15]
// std 0, -8(1)
// mflr 0
// bl __xray_FunctionExit
// mtlr 0
// b(lr)?
//
// Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
// of instructions change.
OutStreamer->emitCodeAlignment(Align(8), &getSubtargetInfo());
MCSymbol *BeginOfSled = OutContext.createTempSymbol();
OutStreamer->emitLabel(BeginOfSled);
EmitToStreamer(*OutStreamer, RetInst);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
EmitToStreamer(*OutStreamer,
MCInstBuilder(PPC::BL8_NOP)
.addExpr(MCSymbolRefExpr::create(
OutContext.getOrCreateSymbol("__xray_FunctionExit"),
OutContext)));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
EmitToStreamer(*OutStreamer, RetInst);
if (IsConditional)
OutStreamer->emitLabel(FallthroughLabel);
recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
return;
}
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
case TargetOpcode::PATCHABLE_TAIL_CALL:
// TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
// normal function exit from a tail exit.
llvm_unreachable("Tail call is handled in the normal case. See comments "
"around this assert.");
}
return PPCAsmPrinter::emitInstruction(MI);
}
void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->emitAbiVersion(2);
}
if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
!isPositionIndependent())
return AsmPrinter::emitStartOfAsmFile(M);
if (M.getPICLevel() == PICLevel::SmallPIC)
return AsmPrinter::emitStartOfAsmFile(M);
OutStreamer->switchSection(OutContext.getELFSection(
".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
MCSymbol *CurrentPos = OutContext.createTempSymbol();
OutStreamer->emitLabel(CurrentPos);
// The GOT pointer points to the middle of the GOT, in order to reference the
// entire 64kB range. 0x8000 is the midpoint.
const MCExpr *tocExpr =
MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
MCConstantExpr::create(0x8000, OutContext),
OutContext);
OutStreamer->emitAssignment(TOCSym, tocExpr);
OutStreamer->switchSection(getObjFileLowering().getTextSection());
}
void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
// linux/ppc32 - Normal entry label.
if (!Subtarget->isPPC64() &&
(!isPositionIndependent() ||
MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
return AsmPrinter::emitFunctionEntryLabel();
if (!Subtarget->isPPC64()) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
MCSymbol *PICBase = MF->getPICBaseSymbol();
OutStreamer->emitLabel(RelocSymbol);
const MCExpr *OffsExpr =
MCBinaryExpr::createSub(
MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
OutContext),
MCSymbolRefExpr::create(PICBase, OutContext),
OutContext);
OutStreamer->emitValue(OffsExpr, 4);
OutStreamer->emitLabel(CurrentFnSym);
return;
} else
return AsmPrinter::emitFunctionEntryLabel();
}
// ELFv2 ABI - Normal entry label.
if (Subtarget->isELFv2ABI()) {
// In the Large code model, we allow arbitrary displacements between
// the text section and its associated TOC section. We place the
// full 8-byte offset to the TOC in memory immediately preceding
// the function global entry point.
if (TM.getCodeModel() == CodeModel::Large
&& !MF->getRegInfo().use_empty(PPC::X2)) {
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
const MCExpr *TOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
MCSymbolRefExpr::create(GlobalEPSymbol,
OutContext),
OutContext);
OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
OutStreamer->emitValue(TOCDeltaExpr, 8);
}
return AsmPrinter::emitFunctionEntryLabel();
}
// Emit an official procedure descriptor.
MCSectionSubPair Current = OutStreamer->getCurrentSection();
MCSectionELF *Section = OutStreamer->getContext().getELFSection(
".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer->switchSection(Section);
OutStreamer->emitLabel(CurrentFnSym);
OutStreamer->emitValueToAlignment(Align(8));
MCSymbol *Symbol1 = CurrentFnSymForSize;
// Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
// entry point.
OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
8 /*size*/);
MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
// Generates a R_PPC64_TOC relocation for TOC base insertion.
OutStreamer->emitValue(
MCSymbolRefExpr::create(
Symbol2, MCSymbolRefExpr::VariantKind(PPCMCExpr::VK_TOCBASE),
OutContext),
8 /*size*/);
// Emit a null environment pointer.
OutStreamer->emitIntValue(0, 8 /* size */);
OutStreamer->switchSection(Current.first, Current.second);
}
void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
const DataLayout &DL = getDataLayout();
bool isPPC64 = DL.getPointerSizeInBits() == 64;
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
// If we are using any values provided by Glibc at fixed addresses,
// we need to ensure that the Glibc used at link time actually provides
// those values. All versions of Glibc that do will define the symbol
// named "__parse_hwcap_and_convert_at_platform".
if (static_cast<const PPCTargetMachine &>(TM).hasGlibcHWCAPAccess())
OutStreamer->emitSymbolValue(
GetExternalSymbolSymbol("__parse_hwcap_and_convert_at_platform"),
MAI->getCodePointerSize());
emitGNUAttributes(M);
if (!TOC.empty()) {
const char *Name = isPPC64 ? ".toc" : ".got2";
MCSectionELF *Section = OutContext.getELFSection(
Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
OutStreamer->switchSection(Section);
if (!isPPC64)
OutStreamer->emitValueToAlignment(Align(4));
for (const auto &TOCMapPair : TOC) {
const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
MCSymbol *const TOCEntryLabel = TOCMapPair.second;
OutStreamer->emitLabel(TOCEntryLabel);
if (isPPC64)
TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
else
OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
}
}
PPCAsmPrinter::emitEndOfAsmFile(M);
}
/// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
// In the ELFv2 ABI, in functions that use the TOC register, we need to
// provide two entry points. The ABI guarantees that when calling the
// local entry point, r2 is set up by the caller to contain the TOC base
// for this function, and when calling the global entry point, r12 is set
// up by the caller to hold the address of the global entry point. We
// thus emit a prefix sequence along the following lines:
//
// func:
// .Lfunc_gepNN:
// # global entry point
// addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
// addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
// .Lfunc_lepNN:
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
// # local entry point, followed by function body
//
// For the Large code model, we create
//
// .Lfunc_tocNN:
// .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
// func:
// .Lfunc_gepNN:
// # global entry point
// ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
// add r2,r2,r12
// .Lfunc_lepNN:
// .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
// # local entry point, followed by function body
//
// This ensures we have r2 set up correctly while executing the function
// body, no matter which entry point is called.
const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
!MF->getRegInfo().use_empty(PPC::R2);
const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
UsesX2OrR2 && PPCFI->usesTOCBasePtr();
const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
Subtarget->isELFv2ABI() && UsesX2OrR2;
// Only do all that if the function uses R2 as the TOC pointer
// in the first place. We don't need the global entry point if the
// function uses R2 as an allocatable register.
if (NonPCrelGEPRequired || PCrelGEPRequired) {
// Note: The logic here must be synchronized with the code in the
// branch-selection pass which sets the offset of the first block in the
// function. This matters because it affects the alignment.
MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
OutStreamer->emitLabel(GlobalEntryLabel);
const MCSymbolRefExpr *GlobalEntryLabelExp =
MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
if (TM.getCodeModel() != CodeModel::Large) {
MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
const MCExpr *TOCDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
GlobalEntryLabelExp, OutContext);
const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
.addReg(PPC::X2)
.addReg(PPC::X12)
.addExpr(TOCDeltaHi));
const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
.addReg(PPC::X2)
.addReg(PPC::X2)
.addExpr(TOCDeltaLo));
} else {
MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
const MCExpr *TOCOffsetDeltaExpr =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
GlobalEntryLabelExp, OutContext);
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
.addReg(PPC::X2)
.addExpr(TOCOffsetDeltaExpr)
.addReg(PPC::X12));
EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
.addReg(PPC::X2)
.addReg(PPC::X2)
.addReg(PPC::X12));
}
MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
OutStreamer->emitLabel(LocalEntryLabel);
const MCSymbolRefExpr *LocalEntryLabelExp =
MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
const MCExpr *LocalOffsetExp =
MCBinaryExpr::createSub(LocalEntryLabelExp,
GlobalEntryLabelExp, OutContext);
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
} else if (Subtarget->isUsingPCRelativeCalls()) {
// When generating the entry point for a function we have a few scenarios
// based on whether or not that function uses R2 and whether or not that
// function makes calls (or is a leaf function).
// 1) A leaf function that does not use R2 (or treats it as callee-saved
// and preserves it). In this case st_other=0 and both
// the local and global entry points for the function are the same.
// No special entry point code is required.
// 2) A function uses the TOC pointer R2. This function may or may not have
// calls. In this case st_other=[2,6] and the global and local entry
// points are different. Code to correctly setup the TOC pointer in R2
// is put between the global and local entry points. This case is
// covered by the if statatement above.
// 3) A function does not use the TOC pointer R2 but does have calls.
// In this case st_other=1 since we do not know whether or not any
// of the callees clobber R2. This case is dealt with in this else if
// block. Tail calls are considered calls and the st_other should also
// be set to 1 in that case as well.
// 4) The function does not use the TOC pointer but R2 is used inside
// the function. In this case st_other=1 once again.
// 5) This function uses inline asm. We mark R2 as reserved if the function
// has inline asm as we have to assume that it may be used.
if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
MCConstantExpr::create(1, OutContext));
}
}
}
/// EmitFunctionBodyEnd - Print the traceback table before the .size
/// directive.
///
void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
// Only the 64-bit target requires a traceback table. For now,
// we only emit the word of zeroes that GDB requires to find
// the end of the function, and zeroes for the eight-byte
// mandatory fields.
// FIXME: We should fill in the eight-byte mandatory fields as described in
// the PPC64 ELF ABI (this is a low-priority item because GDB does not
// currently make use of these fields).
if (Subtarget->isPPC64()) {
OutStreamer->emitIntValue(0, 4/*size*/);
OutStreamer->emitIntValue(0, 8/*size*/);
}
}
void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
MCSymbol *GVSym) const {
MCSymbolAttr LinkageAttr = MCSA_Invalid;
switch (GV->getLinkage()) {
case GlobalValue::ExternalLinkage:
LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
break;
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::ExternalWeakLinkage:
LinkageAttr = MCSA_Weak;
break;
case GlobalValue::AvailableExternallyLinkage:
LinkageAttr = MCSA_Extern;
break;
case GlobalValue::PrivateLinkage:
return;
case GlobalValue::InternalLinkage:
assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
"InternalLinkage should not have other visibility setting.");
LinkageAttr = MCSA_LGlobal;
break;
case GlobalValue::AppendingLinkage:
llvm_unreachable("Should never emit this");
case GlobalValue::CommonLinkage:
llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
}
assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
MCSymbolAttr VisibilityAttr = MCSA_Invalid;
if (!TM.getIgnoreXCOFFVisibility()) {
if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility())
report_fatal_error(
"Cannot not be both dllexport and non-default visibility");
switch (GV->getVisibility()) {
// TODO: "internal" Visibility needs to go here.
case GlobalValue::DefaultVisibility:
if (GV->hasDLLExportStorageClass())
VisibilityAttr = MAI->getExportedVisibilityAttr();
break;
case GlobalValue::HiddenVisibility:
VisibilityAttr = MAI->getHiddenVisibilityAttr();
break;
case GlobalValue::ProtectedVisibility:
VisibilityAttr = MAI->getProtectedVisibilityAttr();
break;
}
}
// Do not emit the _$TLSML symbol.
if (GV->getThreadLocalMode() == GlobalVariable::LocalDynamicTLSModel &&
GV->hasName() && GV->getName() == "_$TLSML")
return;
OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
VisibilityAttr);
}
void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
// Setup CurrentFnDescSym and its containing csect.
MCSectionXCOFF *FnDescSec =
cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
&MF.getFunction(), TM));
FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
CurrentFnDescSym = FnDescSec->getQualNameSymbol();
return AsmPrinter::SetupMachineFunction(MF);
}
uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
// Calculate the number of VRs be saved.
// Vector registers 20 through 31 are marked as reserved and cannot be used
// in the default ABI.
const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
TM.getAIXExtendedAltivecABI()) {
const MachineRegisterInfo &MRI = MF->getRegInfo();
for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
if (MRI.isPhysRegModified(Reg))
// Number of VRs saved.
return PPC::V31 - Reg + 1;
}
return 0;
}
void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
if (!TM.getXCOFFTracebackTable())
return;
emitTracebackTable();
// If ShouldEmitEHBlock returns true, then the eh info table
// will be emitted via `AIXException::endFunction`. Otherwise, we
// need to emit a dumy eh info table when VRs are saved. We could not
// consolidate these two places into one because there is no easy way
// to access register information in `AIXException` class.
if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
(getNumberOfVRSaved() > 0)) {
// Emit dummy EH Info Table.
OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection());
MCSymbol *EHInfoLabel =
TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
OutStreamer->emitLabel(EHInfoLabel);
// Version number.
OutStreamer->emitInt32(0);
const DataLayout &DL = MMI->getModule()->getDataLayout();
const unsigned PointerSize = DL.getPointerSize();
// Add necessary paddings in 64 bit mode.
OutStreamer->emitValueToAlignment(Align(PointerSize));
OutStreamer->emitIntValue(0, PointerSize);
OutStreamer->emitIntValue(0, PointerSize);
OutStreamer->switchSection(MF->getSection());
}
}
void PPCAIXAsmPrinter::emitTracebackTable() {
// Create a symbol for the end of function.
MCSymbol *FuncEnd = createTempSymbol(MF->getName());
OutStreamer->emitLabel(FuncEnd);
OutStreamer->AddComment("Traceback table begin");
// Begin with a fullword of zero.
OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
SmallString<128> CommentString;
raw_svector_ostream CommentOS(CommentString);
auto EmitComment = [&]() {
OutStreamer->AddComment(CommentOS.str());
CommentString.clear();
};
auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(Value, Size);
};
unsigned int Version = 0;
CommentOS << "Version = " << Version;
EmitCommentAndValue(Version, 1);
// There is a lack of information in the IR to assist with determining the
// source language. AIX exception handling mechanism would only search for
// personality routine and LSDA area when such language supports exception
// handling. So to be conservatively correct and allow runtime to do its job,
// we need to set it to C++ for now.
TracebackTable::LanguageID LanguageIdentifier =
TracebackTable::CPlusPlus; // C++
CommentOS << "Language = "
<< getNameForTracebackTableLanguageId(LanguageIdentifier);
EmitCommentAndValue(LanguageIdentifier, 1);
// This is only populated for the third and fourth bytes.
uint32_t FirstHalfOfMandatoryField = 0;
// Emit the 3rd byte of the mandatory field.
// We always set traceback offset bit to true.
FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
const MachineRegisterInfo &MRI = MF->getRegInfo();
// Check the function uses floating-point processor instructions or not
for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
break;
}
}
#define GENBOOLCOMMENT(Prefix, V, Field) \
CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \
<< #Field
#define GENVALUECOMMENT(PrefixAndName, V, Field) \
CommentOS << (PrefixAndName) << " = " \
<< static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \
(TracebackTable::Field##Shift))
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
EmitComment();
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
EmitComment();
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
EmitComment();
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
EmitComment();
GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
IsFloatingPointOperationLogOrAbortEnabled);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(
(FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
// Set the 4th byte of the mandatory field.
FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
const PPCRegisterInfo *RegInfo =
static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo());
Register FrameReg = RegInfo->getFrameRegister(*MF);
if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31))
FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
if (!MustSaveCRs.empty())
FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
if (FI->mustSaveLR())
FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
EmitComment();
GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
OnConditionDirective);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
1);
// Set the 5th byte of mandatory field.
uint32_t SecondHalfOfMandatoryField = 0;
SecondHalfOfMandatoryField |= MF->getFrameInfo().getStackSize()
? TracebackTable::IsBackChainStoredMask
: 0;
uint32_t FPRSaved = 0;
for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
if (MRI.isPhysRegModified(Reg)) {
FPRSaved = PPC::F31 - Reg + 1;
break;
}
}
SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
TracebackTable::FPRSavedMask;
GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(
(SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
// Set the 6th byte of mandatory field.
// Check whether has Vector Instruction,We only treat instructions uses vector
// register as vector instructions.
bool HasVectorInst = false;
for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
// Has VMX instruction.
HasVectorInst = true;
break;
}
if (FI->hasVectorParms() || HasVectorInst)
SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
uint16_t NumOfVRSaved = getNumberOfVRSaved();
bool ShouldEmitEHBlock =
TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
if (ShouldEmitEHBlock)
SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
uint32_t GPRSaved = 0;
// X13 is reserved under 64-bit environment.
unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
if (MRI.isPhysRegModified(Reg)) {
GPRSaved = GPREnd - Reg + 1;
break;
}
}
SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
TracebackTable::GPRSavedMask;
GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(
(SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
// Set the 7th byte of mandatory field.
uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
SecondHalfOfMandatoryField |=
(NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
TracebackTable::NumberOfFixedParmsMask;
GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
NumberOfFixedParms);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(
(SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
// Set the 8th byte of mandatory field.
// Always set parameter on stack.
SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
SecondHalfOfMandatoryField |=
(NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
TracebackTable::NumberOfFloatingPointParmsMask;
GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
NumberOfFloatingPointParms);
GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
1);
// Generate the optional fields of traceback table.
// Parameter type.
if (NumberOfFixedParms || NumberOfFPParms) {
uint32_t ParmsTypeValue = FI->getParmsType();
Expected<SmallString<32>> ParmsType =
FI->hasVectorParms()
? XCOFF::parseParmsTypeWithVecInfo(
ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
FI->getVectorParmsNum())
: XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
NumberOfFPParms);
assert(ParmsType && toString(ParmsType.takeError()).c_str());
if (ParmsType) {
CommentOS << "Parameter type = " << ParmsType.get();
EmitComment();
}
OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
sizeof(ParmsTypeValue));
}
// Traceback table offset.
OutStreamer->AddComment("Function size");
if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
&(MF->getFunction()), TM);
OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
}
// Since we unset the Int_Handler.
if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
report_fatal_error("Hand_Mask not implement yet");
if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
report_fatal_error("Ctl_Info not implement yet");
if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
StringRef Name = MF->getName().substr(0, INT16_MAX);
int16_t NameLength = Name.size();
CommentOS << "Function name len = "
<< static_cast<unsigned int>(NameLength);
EmitCommentAndValue(NameLength, 2);
OutStreamer->AddComment("Function Name");
OutStreamer->emitBytes(Name);
}
if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
uint8_t AllocReg = XCOFF::AllocRegNo;
OutStreamer->AddComment("AllocaUsed");
OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
}
if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
uint16_t VRData = 0;
if (NumOfVRSaved) {
// Number of VRs saved.
VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
TracebackTable::NumberOfVRSavedMask;
// This bit is supposed to set only when the special register
// VRSAVE is saved on stack.
// However, IBM XL compiler sets the bit when any vector registers
// are saved on the stack. We will follow XL's behavior on AIX
// so that we don't get surprise behavior change for C code.
VRData |= TracebackTable::IsVRSavedOnStackMask;
}
// Set has_varargs.
if (FI->getVarArgsFrameIndex())
VRData |= TracebackTable::HasVarArgsMask;
// Vector parameters number.
unsigned VectorParmsNum = FI->getVectorParmsNum();
VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
TracebackTable::NumberOfVectorParmsMask;
if (HasVectorInst)
VRData |= TracebackTable::HasVMXInstructionMask;
GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
GENBOOLCOMMENT(", ", VRData, HasVarArgs);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
EmitComment();
OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
uint32_t VecParmTypeValue = FI->getVecExtParmsType();
Expected<SmallString<32>> VecParmsType =
XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
if (VecParmsType) {
CommentOS << "Vector Parameter type = " << VecParmsType.get();
EmitComment();
}
OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
sizeof(VecParmTypeValue));
// Padding 2 bytes.
CommentOS << "Padding";
EmitCommentAndValue(0, 2);
}
uint8_t ExtensionTableFlag = 0;
if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
if (ShouldEmitEHBlock)
ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
if (EnableSSPCanaryBitInTB &&
TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
CommentOS << "ExtensionTableFlag = "
<< getExtendedTBTableFlagString(ExtensionTableFlag);
EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
}
if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
auto &Ctx = OutStreamer->getContext();
MCSymbol *EHInfoSym =
TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym, TOCType_EHBlock);
const MCSymbol *TOCBaseSym =
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
->getQualNameSymbol();
const MCExpr *Exp =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
const DataLayout &DL = getDataLayout();
OutStreamer->emitValueToAlignment(Align(4));
OutStreamer->AddComment("EHInfo Table");
OutStreamer->emitValue(Exp, DL.getPointerSize());
}
#undef GENBOOLCOMMENT
#undef GENVALUECOMMENT
}
static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
return GV->hasAppendingLinkage() &&
StringSwitch<bool>(GV->getName())
// TODO: Linker could still eliminate the GV if we just skip
// handling llvm.used array. Skipping them for now until we or the
// AIX OS team come up with a good solution.
.Case("llvm.used", true)
// It's correct to just skip llvm.compiler.used array here.
.Case("llvm.compiler.used", true)
.Default(false);
}
static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
return StringSwitch<bool>(GV->getName())
.Cases("llvm.global_ctors", "llvm.global_dtors", true)
.Default(false);
}
uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) {
if (auto *GA = dyn_cast<GlobalAlias>(C))
return getAliasOffset(GA->getAliasee());
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
const MCExpr *LowC = lowerConstant(CE);
const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC);
if (!CBE)
return 0;
if (CBE->getOpcode() != MCBinaryExpr::Add)
report_fatal_error("Only adding an offset is supported now.");
auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS());
if (!RHS)
report_fatal_error("Unable to get the offset of alias.");
return RHS->getValue();
}
return 0;
}
static void tocDataChecks(unsigned PointerSize, const GlobalVariable *GV) {
// TODO: These asserts should be updated as more support for the toc data
// transformation is added (struct support, etc.).
assert(
PointerSize >= GV->getAlign().valueOrOne().value() &&
"GlobalVariables with an alignment requirement stricter than TOC entry "
"size not supported by the toc data transformation.");
Type *GVType = GV->getValueType();
assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
"supported by the toc data transformation.");
if (GV->getDataLayout().getTypeSizeInBits(GVType) >
PointerSize * 8)
report_fatal_error(
"A GlobalVariable with size larger than a TOC entry is not currently "
"supported by the toc data transformation.");
if (GV->hasPrivateLinkage())
report_fatal_error("A GlobalVariable with private linkage is not "
"currently supported by the toc data transformation.");
}
void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
// Special LLVM global arrays have been handled at the initialization.
if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
return;
// If the Global Variable has the toc-data attribute, it needs to be emitted
// when we emit the .toc section.
if (GV->hasAttribute("toc-data")) {
unsigned PointerSize = GV->getDataLayout().getPointerSize();
tocDataChecks(PointerSize, GV);
TOCDataGlobalVars.push_back(GV);
return;
}
emitGlobalVariableHelper(GV);
}
void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
assert(!GV->getName().starts_with("llvm.") &&
"Unhandled intrinsic global variable.");
if (GV->hasComdat())
report_fatal_error("COMDAT not yet supported by AIX.");
MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
if (GV->isDeclarationForLinker()) {
emitLinkage(GV, GVSym);
return;
}
SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
!GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
report_fatal_error("Encountered a global variable kind that is "
"not supported yet.");
// Print GV in verbose mode
if (isVerbose()) {
if (GV->hasInitializer()) {
GV->printAsOperand(OutStreamer->getCommentOS(),
/*PrintType=*/false, GV->getParent());
OutStreamer->getCommentOS() << '\n';
}
}
MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
// Switch to the containing csect.
OutStreamer->switchSection(Csect);
const DataLayout &DL = GV->getDataLayout();
// Handle common and zero-initialized local symbols.
if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
GVKind.isThreadBSSLocal()) {
Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV));
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
GVSym->setStorageClass(
TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
if (GVKind.isBSSLocal() && Csect->getMappingClass() == XCOFF::XMC_TD) {
OutStreamer->emitZeros(Size);
} else if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) {
assert(Csect->getMappingClass() != XCOFF::XMC_TD &&
"BSS local toc-data already handled and TLS variables "
"incompatible with XMC_TD");
OutStreamer->emitXCOFFLocalCommonSymbol(
OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
GVSym, Alignment);
} else {
OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
}
return;
}
MCSymbol *EmittedInitSym = GVSym;
// Emit linkage for the global variable and its aliases.
emitLinkage(GV, EmittedInitSym);
for (const GlobalAlias *GA : GOAliasMap[GV])
emitLinkage(GA, getSymbol(GA));
emitAlignment(getGVAlignment(GV, DL), GV);
// When -fdata-sections is enabled, every GlobalVariable will
// be put into its own csect; therefore, label is not necessary here.
if (!TM.getDataSections() || GV->hasSection()) {
if (Csect->getMappingClass() != XCOFF::XMC_TD)
OutStreamer->emitLabel(EmittedInitSym);
}
// No alias to emit.
if (!GOAliasMap[GV].size()) {
emitGlobalConstant(GV->getDataLayout(), GV->getInitializer());
return;
}
// Aliases with the same offset should be aligned. Record the list of aliases
// associated with the offset.
AliasMapTy AliasList;
for (const GlobalAlias *GA : GOAliasMap[GV])
AliasList[getAliasOffset(GA->getAliasee())].push_back(GA);
// Emit alias label and element value for global variable.
emitGlobalConstant(GV->getDataLayout(), GV->getInitializer(),
&AliasList);
}
void PPCAIXAsmPrinter::emitFunctionDescriptor() {
const DataLayout &DL = getDataLayout();
const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
MCSectionSubPair Current = OutStreamer->getCurrentSection();
// Emit function descriptor.
OutStreamer->switchSection(
cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
// Emit aliasing label for function descriptor csect.
for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
OutStreamer->emitLabel(getSymbol(Alias));
// Emit function entry point address.
OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
PointerSize);
// Emit TOC base address.
const MCSymbol *TOCBaseSym =
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
->getQualNameSymbol();
OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
PointerSize);
// Emit a null environment pointer.
OutStreamer->emitIntValue(0, PointerSize);
OutStreamer->switchSection(Current.first, Current.second);
}
void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
// For functions without user defined section, it's not necessary to emit the
// label when we have individual function in its own csect.
if (!TM.getFunctionSections() || MF->getFunction().hasSection())
PPCAsmPrinter::emitFunctionEntryLabel();
// Emit aliasing label for function entry point label.
for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
OutStreamer->emitLabel(
getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
}
void PPCAIXAsmPrinter::emitPGORefs(Module &M) {
if (!OutContext.hasXCOFFSection(
"__llvm_prf_cnts",
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
return;
// When inside a csect `foo`, a .ref directive referring to a csect `bar`
// translates into a relocation entry from `foo` to` bar`. The referring
// csect, `foo`, is identified by its address. If multiple csects have the
// same address (because one or more of them are zero-length), the referring
// csect cannot be determined. Hence, we don't generate the .ref directives
// if `__llvm_prf_cnts` is an empty section.
bool HasNonZeroLengthPrfCntsSection = false;
const DataLayout &DL = M.getDataLayout();
for (GlobalVariable &GV : M.globals())
if (GV.hasSection() && GV.getSection() == "__llvm_prf_cnts" &&
DL.getTypeAllocSize(GV.getValueType()) > 0) {
HasNonZeroLengthPrfCntsSection = true;
break;
}
if (HasNonZeroLengthPrfCntsSection) {
MCSection *CntsSection = OutContext.getXCOFFSection(
"__llvm_prf_cnts", SectionKind::getData(),
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
/*MultiSymbolsAllowed*/ true);
OutStreamer->switchSection(CntsSection);
if (OutContext.hasXCOFFSection(
"__llvm_prf_data",
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_data[RW]");
OutStreamer->emitXCOFFRefDirective(S);
}
if (OutContext.hasXCOFFSection(
"__llvm_prf_names",
XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD))) {
MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_names[RO]");
OutStreamer->emitXCOFFRefDirective(S);
}
if (OutContext.hasXCOFFSection(
"__llvm_prf_vnds",
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_vnds[RW]");
OutStreamer->emitXCOFFRefDirective(S);
}
}
}
void PPCAIXAsmPrinter::emitGCOVRefs() {
if (!OutContext.hasXCOFFSection(
"__llvm_gcov_ctr_section",
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
return;
MCSection *CtrSection = OutContext.getXCOFFSection(
"__llvm_gcov_ctr_section", SectionKind::getData(),
XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
/*MultiSymbolsAllowed*/ true);
OutStreamer->switchSection(CtrSection);
const XCOFF::StorageMappingClass MappingClass =
TM.Options.XCOFFReadOnlyPointers ? XCOFF::XMC_RO : XCOFF::XMC_RW;
if (OutContext.hasXCOFFSection(
"__llvm_covinit",
XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD))) {
const char *SymbolStr = TM.Options.XCOFFReadOnlyPointers
? "__llvm_covinit[RO]"
: "__llvm_covinit[RW]";
MCSymbol *S = OutContext.getOrCreateSymbol(SymbolStr);
OutStreamer->emitXCOFFRefDirective(S);
}
}
void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
// If there are no functions and there are no toc-data definitions in this
// module, we will never need to reference the TOC base.
if (M.empty() && TOCDataGlobalVars.empty())
return;
emitPGORefs(M);
emitGCOVRefs();
// Switch to section to emit TOC base.
OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection());
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
for (auto &I : TOC) {
MCSectionXCOFF *TCEntry;
// Setup the csect for the current TC entry. If the variant kind is
// VK_AIX_TLSGDM the entry represents the region handle, we create a
// new symbol to prefix the name with a dot.
// If TLS model opt is turned on, create a new symbol to prefix the name
// with a dot.
if (I.first.second == PPCMCExpr::VK_AIX_TLSGDM ||
(Subtarget->hasAIXShLibTLSModelOpt() &&
I.first.second == PPCMCExpr::VK_AIX_TLSLD)) {
SmallString<128> Name;
StringRef Prefix = ".";
Name += Prefix;
Name += cast<MCSymbolXCOFF>(I.first.first)->getSymbolTableName();
MCSymbol *S = OutContext.getOrCreateSymbol(Name);
TCEntry = cast<MCSectionXCOFF>(
getObjFileLowering().getSectionForTOCEntry(S, TM));
} else {
TCEntry = cast<MCSectionXCOFF>(
getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
}
OutStreamer->switchSection(TCEntry);
OutStreamer->emitLabel(I.second);
TS->emitTCEntry(*I.first.first, I.first.second);
}
// Traverse the list of global variables twice, emitting all of the
// non-common global variables before the common ones, as emitting a
// .comm directive changes the scope from .toc to the common symbol.
for (const auto *GV : TOCDataGlobalVars) {
if (!GV->hasCommonLinkage())
emitGlobalVariableHelper(GV);
}
for (const auto *GV : TOCDataGlobalVars) {
if (GV->hasCommonLinkage())
emitGlobalVariableHelper(GV);
}
}
bool PPCAIXAsmPrinter::doInitialization(Module &M) {
const bool Result = PPCAsmPrinter::doInitialization(M);
// Emit the .machine directive on AIX.
const Triple &Target = TM.getTargetTriple();
XCOFF::CFileCpuId TargetCpuId = XCOFF::TCPU_INVALID;
// Walk through the "target-cpu" attribute of functions and use the newest
// level as the CPU of the module.
for (auto &F : M) {
XCOFF::CFileCpuId FunCpuId =
XCOFF::getCpuID(TM.getSubtargetImpl(F)->getCPU());
if (FunCpuId > TargetCpuId)
TargetCpuId = FunCpuId;
}
// If there is no "target-cpu" attribute within the functions, take the
// "-mcpu" value. If both are omitted, use getNormalizedPPCTargetCPU() to
// determine the default CPU.
if (!TargetCpuId) {
StringRef TargetCPU = TM.getTargetCPU();
TargetCpuId = XCOFF::getCpuID(
TargetCPU.empty() ? PPC::getNormalizedPPCTargetCPU(Target) : TargetCPU);
}
PPCTargetStreamer *TS =
static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
TS->emitMachine(XCOFF::getTCPUString(TargetCpuId));
auto setCsectAlignment = [this](const GlobalObject *GO) {
// Declarations have 0 alignment which is set by default.
if (GO->isDeclarationForLinker())
return;
SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
Align GOAlign = getGVAlignment(GO, GO->getDataLayout());
Csect->ensureMinAlignment(GOAlign);
};
// For all TLS variables, calculate their corresponding addresses and store
// them into TLSVarsToAddressMapping, which will be used to determine whether
// or not local-exec TLS variables require special assembly printing.
uint64_t TLSVarAddress = 0;
auto DL = M.getDataLayout();
for (const auto &G : M.globals()) {
if (G.isThreadLocal() && !G.isDeclaration()) {
TLSVarAddress = alignTo(TLSVarAddress, getGVAlignment(&G, DL));
TLSVarsToAddressMapping[&G] = TLSVarAddress;
TLSVarAddress += DL.getTypeAllocSize(G.getValueType());
}
}
// We need to know, up front, the alignment of csects for the assembly path,
// because once a .csect directive gets emitted, we could not change the
// alignment value on it.
for (const auto &G : M.globals()) {
if (isSpecialLLVMGlobalArrayToSkip(&G))
continue;
if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
// Generate a format indicator and a unique module id to be a part of
// the sinit and sterm function names.
if (FormatIndicatorAndUniqueModId.empty()) {
std::string UniqueModuleId = getUniqueModuleId(&M);
if (UniqueModuleId != "")
// TODO: Use source file full path to generate the unique module id
// and add a format indicator as a part of function name in case we
// will support more than one format.
FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
else {
// Use threadId, Pid, and current time as the unique module id when we
// cannot generate one based on a module's strong external symbols.
auto CurTime =
std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
FormatIndicatorAndUniqueModId =
"clangPidTidTime_" + llvm::itostr(sys::Process::getProcessId()) +
"_" + llvm::itostr(llvm::get_threadid()) + "_" +
llvm::itostr(CurTime);
}
}
emitSpecialLLVMGlobal(&G);
continue;
}
setCsectAlignment(&G);
std::optional<CodeModel::Model> OptionalCodeModel = G.getCodeModel();
if (OptionalCodeModel)
setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&G)),
*OptionalCodeModel);
}
for (const auto &F : M)
setCsectAlignment(&F);
// Construct an aliasing list for each GlobalObject.
for (const auto &Alias : M.aliases()) {
const GlobalObject *Aliasee = Alias.getAliaseeObject();
if (!Aliasee)
report_fatal_error(
"alias without a base object is not yet supported on AIX");
if (Aliasee->hasCommonLinkage()) {
report_fatal_error("Aliases to common variables are not allowed on AIX:"
"\n\tAlias attribute for " +
Alias.getName() + " is invalid because " +
Aliasee->getName() + " is common.",
false);
}
const GlobalVariable *GVar =
dyn_cast_or_null<GlobalVariable>(Alias.getAliaseeObject());
if (GVar) {
std::optional<CodeModel::Model> OptionalCodeModel = GVar->getCodeModel();
if (OptionalCodeModel)
setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&Alias)),
*OptionalCodeModel);
}
GOAliasMap[Aliasee].push_back(&Alias);
}
return Result;
}
void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
switch (MI->getOpcode()) {
default:
break;
case PPC::TW:
case PPC::TWI:
case PPC::TD:
case PPC::TDI: {
if (MI->getNumOperands() < 5)
break;
const MachineOperand &LangMO = MI->getOperand(3);
const MachineOperand &ReasonMO = MI->getOperand(4);
if (!LangMO.isImm() || !ReasonMO.isImm())
break;
MCSymbol *TempSym = OutContext.createNamedTempSymbol();
OutStreamer->emitLabel(TempSym);
OutStreamer->emitXCOFFExceptDirective(
CurrentFnSym, TempSym, LangMO.getImm(), ReasonMO.getImm(),
Subtarget->isPPC64() ? MI->getMF()->getInstructionCount() * 8
: MI->getMF()->getInstructionCount() * 4,
hasDebugInfo());
break;
}
case PPC::GETtlsMOD32AIX:
case PPC::GETtlsMOD64AIX:
case PPC::GETtlsTpointer32AIX:
case PPC::GETtlsADDR64AIX:
case PPC::GETtlsADDR32AIX: {
// A reference to .__tls_get_mod/.__tls_get_addr/.__get_tpointer is unknown
// to the assembler so we need to emit an external symbol reference.
MCSymbol *TlsGetAddr =
createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
ExtSymSDNodeSymbols.insert(TlsGetAddr);
break;
}
case PPC::BL8:
case PPC::BL:
case PPC::BL8_NOP:
case PPC::BL_NOP: {
const MachineOperand &MO = MI->getOperand(0);
if (MO.isSymbol()) {
MCSymbolXCOFF *S =
cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
ExtSymSDNodeSymbols.insert(S);
}
} break;
case PPC::BL_TLS:
case PPC::BL8_TLS:
case PPC::BL8_TLS_:
case PPC::BL8_NOP_TLS:
report_fatal_error("TLS call not yet implemented");
case PPC::TAILB:
case PPC::TAILB8:
case PPC::TAILBA:
case PPC::TAILBA8:
case PPC::TAILBCTR:
case PPC::TAILBCTR8:
if (MI->getOperand(0).isSymbol())
report_fatal_error("Tail call for extern symbol not yet supported.");
break;
case PPC::DST:
case PPC::DST64:
case PPC::DSTT:
case PPC::DSTT64:
case PPC::DSTST:
case PPC::DSTST64:
case PPC::DSTSTT:
case PPC::DSTSTT64:
EmitToStreamer(
*OutStreamer,
MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
return;
}
return PPCAsmPrinter::emitInstruction(MI);
}
bool PPCAIXAsmPrinter::doFinalization(Module &M) {
// Do streamer related finalization for DWARF.
if (hasDebugInfo()) {
// Emit section end. This is used to tell the debug line section where the
// end is for a text section if we don't use .loc to represent the debug
// line.
auto *Sec = OutContext.getObjectFileInfo()->getTextSection();
OutStreamer->switchSectionNoPrint(Sec);
MCSymbol *Sym = Sec->getEndSymbol(OutContext);
OutStreamer->emitLabel(Sym);
}
for (MCSymbol *Sym : ExtSymSDNodeSymbols)
OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
return PPCAsmPrinter::doFinalization(M);
}
static unsigned mapToSinitPriority(int P) {
if (P < 0 || P > 65535)
report_fatal_error("invalid init priority");
if (P <= 20)
return P;
if (P < 81)
return 20 + (P - 20) * 16;
if (P <= 1124)
return 1004 + (P - 81);
if (P < 64512)
return 2047 + (P - 1124) * 33878;
return 2147482625u + (P - 64512);
}
static std::string convertToSinitPriority(int Priority) {
// This helper function converts clang init priority to values used in sinit
// and sterm functions.
//
// The conversion strategies are:
// We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
// reserved priority range [0, 1023] by
// - directly mapping the first 21 and the last 20 elements of the ranges
// - linear interpolating the intermediate values with a step size of 16.
//
// We map the non reserved clang/gnu priority range of [101, 65535] into the
// sinit/sterm priority range [1024, 2147483648] by:
// - directly mapping the first and the last 1024 elements of the ranges
// - linear interpolating the intermediate values with a step size of 33878.
unsigned int P = mapToSinitPriority(Priority);
std::string PrioritySuffix;
llvm::raw_string_ostream os(PrioritySuffix);
os << llvm::format_hex_no_prefix(P, 8);
return PrioritySuffix;
}
void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
const Constant *List, bool IsCtor) {
SmallVector<Structor, 8> Structors;
preprocessXXStructorList(DL, List, Structors);
if (Structors.empty())
return;
unsigned Index = 0;
for (Structor &S : Structors) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
S.Func = CE->getOperand(0);
llvm::GlobalAlias::create(
GlobalValue::ExternalLinkage,
(IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
llvm::Twine(convertToSinitPriority(S.Priority)) +
llvm::Twine("_", FormatIndicatorAndUniqueModId) +
llvm::Twine("_", llvm::utostr(Index++)),
cast<Function>(S.Func));
}
}
void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
unsigned Encoding) {
if (GV) {
TOCEntryType GlobalType = TOCType_GlobalInternal;
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
if (Linkage == GlobalValue::ExternalLinkage ||
Linkage == GlobalValue::AvailableExternallyLinkage ||
Linkage == GlobalValue::ExternalWeakLinkage)
GlobalType = TOCType_GlobalExternal;
MCSymbol *TypeInfoSym = TM.getSymbol(GV);
MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym, GlobalType);
const MCSymbol *TOCBaseSym =
cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
->getQualNameSymbol();
auto &Ctx = OutStreamer->getContext();
const MCExpr *Exp =
MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
} else
OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
}
// Return a pass that prints the PPC assembly code for a MachineFunction to the
// given output stream.
static AsmPrinter *
createPPCAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
if (tm.getTargetTriple().isOSAIX())
return new PPCAIXAsmPrinter(tm, std::move(Streamer));
return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
}
void PPCAIXAsmPrinter::emitModuleCommandLines(Module &M) {
const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
if (!NMD || !NMD->getNumOperands())
return;
std::string S;
raw_string_ostream RSOS(S);
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *N = NMD->getOperand(i);
assert(N->getNumOperands() == 1 &&
"llvm.commandline metadata entry can have only one operand");
const MDString *MDS = cast<MDString>(N->getOperand(0));
// Add "@(#)" to support retrieving the command line information with the
// AIX "what" command
RSOS << "@(#)opt " << MDS->getString() << "\n";
RSOS.write('\0');
}
OutStreamer->emitXCOFFCInfoSym(".GCC.command.line", RSOS.str());
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
createPPCAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
createPPCAsmPrinterPass);
}