According to https://godbolt.org/z/q5rME1naY and acle, we found that there are different SVE conversion behaviours between clang and gcc. It turns out that llvm does not handle SVE predicates width properly. This patch 1) checks SVE predicates width rightly with svbool_t type. 2) removes warning on svbool_t VLST <-> VLAT/GNUT conversion. 3) disables VLST <-> VLAT/GNUT conversion between SVE vectors and predicates due to different width. Differential Revision: https://reviews.llvm.org/D106333
159 lines
11 KiB
C
159 lines
11 KiB
C
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
|
|
// RUN: %clang_cc1 -triple aarch64-none-linux-gnu -target-feature +sve -target-feature +bf16 -msve-vector-bits=512 -fallow-half-arguments-and-returns -S -disable-llvm-passes -emit-llvm -o - %s | FileCheck %s
|
|
|
|
#include <arm_sve.h>
|
|
|
|
#define N __ARM_FEATURE_SVE_BITS
|
|
|
|
typedef svint32_t fixed_int32_t __attribute__((arm_sve_vector_bits(N)));
|
|
typedef svbool_t fixed_bool_t __attribute__((arm_sve_vector_bits(N)));
|
|
typedef uint8_t uint8_vec_t __attribute__((vector_size(N / 64)));
|
|
|
|
fixed_bool_t global_pred;
|
|
fixed_int32_t global_vec;
|
|
|
|
// CHECK-LABEL: @foo(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[PRED_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 2
|
|
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 16
|
|
// CHECK-NEXT: [[PG:%.*]] = alloca <vscale x 16 x i1>, align 2
|
|
// CHECK-NEXT: [[SAVED_VALUE:%.*]] = alloca <8 x i8>, align 8
|
|
// CHECK-NEXT: [[SAVED_VALUE1:%.*]] = alloca <8 x i8>, align 8
|
|
// CHECK-NEXT: store <vscale x 16 x i1> [[PRED:%.*]], <vscale x 16 x i1>* [[PRED_ADDR]], align 2
|
|
// CHECK-NEXT: store <vscale x 4 x i32> [[VEC:%.*]], <vscale x 4 x i32>* [[VEC_ADDR]], align 16
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[PRED_ADDR]], align 2
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, <8 x i8>* @global_pred, align 2
|
|
// CHECK-NEXT: store <8 x i8> [[TMP1]], <8 x i8>* [[SAVED_VALUE]], align 8
|
|
// CHECK-NEXT: [[CASTFIXEDSVE:%.*]] = bitcast <8 x i8>* [[SAVED_VALUE]] to <vscale x 16 x i1>*
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[CASTFIXEDSVE]], align 8
|
|
// CHECK-NEXT: [[TMP3:%.*]] = load <8 x i8>, <8 x i8>* @global_pred, align 2
|
|
// CHECK-NEXT: store <8 x i8> [[TMP3]], <8 x i8>* [[SAVED_VALUE1]], align 8
|
|
// CHECK-NEXT: [[CASTFIXEDSVE2:%.*]] = bitcast <8 x i8>* [[SAVED_VALUE1]] to <vscale x 16 x i1>*
|
|
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[CASTFIXEDSVE2]], align 8
|
|
// CHECK-NEXT: [[TMP5:%.*]] = call <vscale x 16 x i1> @llvm.aarch64.sve.and.z.nxv16i1(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], <vscale x 16 x i1> [[TMP4]])
|
|
// CHECK-NEXT: store <vscale x 16 x i1> [[TMP5]], <vscale x 16 x i1>* [[PG]], align 2
|
|
// CHECK-NEXT: [[TMP6:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[PG]], align 2
|
|
// CHECK-NEXT: [[TMP7:%.*]] = load <16 x i32>, <16 x i32>* @global_vec, align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP7]], i64 0)
|
|
// CHECK-NEXT: [[TMP8:%.*]] = load <vscale x 4 x i32>, <vscale x 4 x i32>* [[VEC_ADDR]], align 16
|
|
// CHECK-NEXT: [[TMP9:%.*]] = call <vscale x 4 x i1> @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> [[TMP6]])
|
|
// CHECK-NEXT: [[TMP10:%.*]] = call <vscale x 4 x i32> @llvm.aarch64.sve.add.nxv4i32(<vscale x 4 x i1> [[TMP9]], <vscale x 4 x i32> [[CASTSCALABLESVE]], <vscale x 4 x i32> [[TMP8]])
|
|
// CHECK-NEXT: [[CASTFIXEDSVE3:%.*]] = call <16 x i32> @llvm.experimental.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP10]], i64 0)
|
|
// CHECK-NEXT: store <16 x i32> [[CASTFIXEDSVE3]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP11:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE4:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP11]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE4]]
|
|
//
|
|
fixed_int32_t foo(svbool_t pred, svint32_t vec) {
|
|
svbool_t pg = svand_z(pred, global_pred, global_pred);
|
|
return svadd_m(pg, global_vec, vec);
|
|
}
|
|
|
|
// CHECK-LABEL: @test_ptr_to_global(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[GLOBAL_VEC_PTR:%.*]] = alloca <16 x i32>*, align 8
|
|
// CHECK-NEXT: store <16 x i32>* @global_vec, <16 x i32>** [[GLOBAL_VEC_PTR]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <16 x i32>*, <16 x i32>** [[GLOBAL_VEC_PTR]], align 8
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, <16 x i32>* [[TMP0]], align 16
|
|
// CHECK-NEXT: store <16 x i32> [[TMP1]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP2]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE]]
|
|
//
|
|
fixed_int32_t test_ptr_to_global() {
|
|
fixed_int32_t *global_vec_ptr;
|
|
global_vec_ptr = &global_vec;
|
|
return *global_vec_ptr;
|
|
}
|
|
|
|
//
|
|
// Test casting pointer from fixed-length array to scalable vector.
|
|
// CHECK-LABEL: @array_arg(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[ARR_ADDR:%.*]] = alloca <16 x i32>*, align 8
|
|
// CHECK-NEXT: store <16 x i32>* [[ARR:%.*]], <16 x i32>** [[ARR_ADDR]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <16 x i32>*, <16 x i32>** [[ARR_ADDR]], align 8
|
|
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds <16 x i32>, <16 x i32>* [[TMP0]], i64 0
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, <16 x i32>* [[ARRAYIDX]], align 16
|
|
// CHECK-NEXT: store <16 x i32> [[TMP1]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP2]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE]]
|
|
//
|
|
fixed_int32_t array_arg(fixed_int32_t arr[]) {
|
|
return arr[0];
|
|
}
|
|
|
|
// CHECK-LABEL: @address_of_array_idx(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i8>, align 2
|
|
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <8 x i8>], align 2
|
|
// CHECK-NEXT: [[PARR:%.*]] = alloca <8 x i8>*, align 8
|
|
// CHECK-NEXT: [[RETVAL_COERCE:%.*]] = alloca <vscale x 16 x i1>, align 16
|
|
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <8 x i8>], [3 x <8 x i8>]* [[ARR]], i64 0, i64 0
|
|
// CHECK-NEXT: store <8 x i8>* [[ARRAYIDX]], <8 x i8>** [[PARR]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <8 x i8>*, <8 x i8>** [[PARR]], align 8
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, <8 x i8>* [[TMP0]], align 2
|
|
// CHECK-NEXT: store <8 x i8> [[TMP1]], <8 x i8>* [[RETVAL]], align 2
|
|
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 16 x i1>* [[RETVAL_COERCE]] to i8*
|
|
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <8 x i8>* [[RETVAL]] to i8*
|
|
// CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 16 [[TMP2]], i8* align 2 [[TMP3]], i64 8, i1 false)
|
|
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[RETVAL_COERCE]], align 16
|
|
// CHECK-NEXT: ret <vscale x 16 x i1> [[TMP4]]
|
|
//
|
|
fixed_bool_t address_of_array_idx() {
|
|
fixed_bool_t arr[3];
|
|
fixed_bool_t *parr;
|
|
parr = &arr[0];
|
|
return *parr;
|
|
}
|
|
|
|
// CHECK-LABEL: @test_cast(
|
|
// CHECK-NEXT: entry:
|
|
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 16
|
|
// CHECK-NEXT: [[PRED_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 2
|
|
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 16
|
|
// CHECK-NEXT: [[XX:%.*]] = alloca <8 x i8>, align 8
|
|
// CHECK-NEXT: [[YY:%.*]] = alloca <8 x i8>, align 8
|
|
// CHECK-NEXT: [[PG:%.*]] = alloca <vscale x 16 x i1>, align 2
|
|
// CHECK-NEXT: [[SAVED_VALUE:%.*]] = alloca <8 x i8>, align 8
|
|
// CHECK-NEXT: [[SAVED_VALUE1:%.*]] = alloca <8 x i8>, align 8
|
|
// CHECK-NEXT: store <vscale x 16 x i1> [[PRED:%.*]], <vscale x 16 x i1>* [[PRED_ADDR]], align 2
|
|
// CHECK-NEXT: store <vscale x 4 x i32> [[VEC:%.*]], <vscale x 4 x i32>* [[VEC_ADDR]], align 16
|
|
// CHECK-NEXT: store <8 x i8> <i8 1, i8 2, i8 3, i8 4, i8 0, i8 0, i8 0, i8 0>, <8 x i8>* [[XX]], align 8
|
|
// CHECK-NEXT: store <8 x i8> <i8 2, i8 5, i8 4, i8 6, i8 0, i8 0, i8 0, i8 0>, <8 x i8>* [[YY]], align 8
|
|
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[PRED_ADDR]], align 2
|
|
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, <8 x i8>* @global_pred, align 2
|
|
// CHECK-NEXT: store <8 x i8> [[TMP1]], <8 x i8>* [[SAVED_VALUE]], align 8
|
|
// CHECK-NEXT: [[CASTFIXEDSVE:%.*]] = bitcast <8 x i8>* [[SAVED_VALUE]] to <vscale x 16 x i1>*
|
|
// CHECK-NEXT: [[TMP2:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[CASTFIXEDSVE]], align 8
|
|
// CHECK-NEXT: [[TMP3:%.*]] = load <8 x i8>, <8 x i8>* [[XX]], align 8
|
|
// CHECK-NEXT: [[TMP4:%.*]] = load <8 x i8>, <8 x i8>* [[YY]], align 8
|
|
// CHECK-NEXT: [[ADD:%.*]] = add <8 x i8> [[TMP3]], [[TMP4]]
|
|
// CHECK-NEXT: store <8 x i8> [[ADD]], <8 x i8>* [[SAVED_VALUE1]], align 8
|
|
// CHECK-NEXT: [[CASTFIXEDSVE2:%.*]] = bitcast <8 x i8>* [[SAVED_VALUE1]] to <vscale x 16 x i1>*
|
|
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[CASTFIXEDSVE2]], align 8
|
|
// CHECK-NEXT: [[TMP6:%.*]] = call <vscale x 16 x i1> @llvm.aarch64.sve.and.z.nxv16i1(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], <vscale x 16 x i1> [[TMP5]])
|
|
// CHECK-NEXT: store <vscale x 16 x i1> [[TMP6]], <vscale x 16 x i1>* [[PG]], align 2
|
|
// CHECK-NEXT: [[TMP7:%.*]] = load <vscale x 16 x i1>, <vscale x 16 x i1>* [[PG]], align 2
|
|
// CHECK-NEXT: [[TMP8:%.*]] = load <16 x i32>, <16 x i32>* @global_vec, align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP8]], i64 0)
|
|
// CHECK-NEXT: [[TMP9:%.*]] = load <vscale x 4 x i32>, <vscale x 4 x i32>* [[VEC_ADDR]], align 16
|
|
// CHECK-NEXT: [[TMP10:%.*]] = call <vscale x 4 x i1> @llvm.aarch64.sve.convert.from.svbool.nxv4i1(<vscale x 16 x i1> [[TMP7]])
|
|
// CHECK-NEXT: [[TMP11:%.*]] = call <vscale x 4 x i32> @llvm.aarch64.sve.add.nxv4i32(<vscale x 4 x i1> [[TMP10]], <vscale x 4 x i32> [[CASTSCALABLESVE]], <vscale x 4 x i32> [[TMP9]])
|
|
// CHECK-NEXT: [[CASTFIXEDSVE3:%.*]] = call <16 x i32> @llvm.experimental.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP11]], i64 0)
|
|
// CHECK-NEXT: store <16 x i32> [[CASTFIXEDSVE3]], <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[TMP12:%.*]] = load <16 x i32>, <16 x i32>* [[RETVAL]], align 16
|
|
// CHECK-NEXT: [[CASTSCALABLESVE4:%.*]] = call <vscale x 4 x i32> @llvm.experimental.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP12]], i64 0)
|
|
// CHECK-NEXT: ret <vscale x 4 x i32> [[CASTSCALABLESVE4]]
|
|
//
|
|
fixed_int32_t test_cast(svbool_t pred, svint32_t vec) {
|
|
uint8_vec_t xx = {1, 2, 3, 4};
|
|
uint8_vec_t yy = {2, 5, 4, 6};
|
|
svbool_t pg = svand_z(pred, global_pred, xx + yy);
|
|
return svadd_m(pg, global_vec, vec);
|
|
}
|