STORAGE_SIZE() is a standard inquiry intrinsic (size in bits of an array element of the same type as the argument); SIZEOF() is a common extension that returns the size in bytes of its argument; C_SIZEOF() is a renaming of SIZEOF() in module ISO_C_BINDING. STORAGE_SIZE() and SIZEOF() are implemented via rewrites to expressions; these expressions will be constant when the necessary type parameters and bounds are also constant. Code to calculate the sizes of types (with and without alignment) was isolated into Evaluate/type.* and /characteristics.*. Code in Semantics/compute-offsets.* to calculate sizes and alignments of derived types' scopes was exposed so that it can be called at type instantiation time (earlier than before) so that these inquiry intrinsics could be called from specification expressions. Differential Revision: https://reviews.llvm.org/D93322
561 lines
21 KiB
C++
561 lines
21 KiB
C++
//===-- lib/Semantics/data-to-inits.cpp -----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// DATA statement object/value checking and conversion to static
|
|
// initializers
|
|
// - Applies specific checks to each scalar element initialization with a
|
|
// constant value or pointer target with class DataInitializationCompiler;
|
|
// - Collects the elemental initializations for each symbol and converts them
|
|
// into a single init() expression with member function
|
|
// DataChecker::ConstructInitializer().
|
|
|
|
#include "data-to-inits.h"
|
|
#include "pointer-assignment.h"
|
|
#include "flang/Evaluate/fold-designator.h"
|
|
#include "flang/Semantics/tools.h"
|
|
|
|
namespace Fortran::semantics {
|
|
|
|
// Steps through a list of values in a DATA statement set; implements
|
|
// repetition.
|
|
class ValueListIterator {
|
|
public:
|
|
explicit ValueListIterator(const parser::DataStmtSet &set)
|
|
: end_{std::get<std::list<parser::DataStmtValue>>(set.t).end()},
|
|
at_{std::get<std::list<parser::DataStmtValue>>(set.t).begin()} {
|
|
SetRepetitionCount();
|
|
}
|
|
bool hasFatalError() const { return hasFatalError_; }
|
|
bool IsAtEnd() const { return at_ == end_; }
|
|
const SomeExpr *operator*() const { return GetExpr(GetConstant()); }
|
|
parser::CharBlock LocateSource() const { return GetConstant().source; }
|
|
ValueListIterator &operator++() {
|
|
if (repetitionsRemaining_ > 0) {
|
|
--repetitionsRemaining_;
|
|
} else if (at_ != end_) {
|
|
++at_;
|
|
SetRepetitionCount();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
using listIterator = std::list<parser::DataStmtValue>::const_iterator;
|
|
void SetRepetitionCount();
|
|
const parser::DataStmtConstant &GetConstant() const {
|
|
return std::get<parser::DataStmtConstant>(at_->t);
|
|
}
|
|
|
|
listIterator end_;
|
|
listIterator at_;
|
|
ConstantSubscript repetitionsRemaining_{0};
|
|
bool hasFatalError_{false};
|
|
};
|
|
|
|
void ValueListIterator::SetRepetitionCount() {
|
|
for (repetitionsRemaining_ = 1; at_ != end_; ++at_) {
|
|
if (at_->repetitions < 0) {
|
|
hasFatalError_ = true;
|
|
}
|
|
if (at_->repetitions > 0) {
|
|
repetitionsRemaining_ = at_->repetitions - 1;
|
|
return;
|
|
}
|
|
}
|
|
repetitionsRemaining_ = 0;
|
|
}
|
|
|
|
// Collects all of the elemental initializations from DATA statements
|
|
// into a single image for each symbol that appears in any DATA.
|
|
// Expands the implied DO loops and array references.
|
|
// Applies checks that validate each distinct elemental initialization
|
|
// of the variables in a data-stmt-set, as well as those that apply
|
|
// to the corresponding values being use to initialize each element.
|
|
class DataInitializationCompiler {
|
|
public:
|
|
DataInitializationCompiler(DataInitializations &inits,
|
|
evaluate::ExpressionAnalyzer &a, const parser::DataStmtSet &set)
|
|
: inits_{inits}, exprAnalyzer_{a}, values_{set} {}
|
|
const DataInitializations &inits() const { return inits_; }
|
|
bool HasSurplusValues() const { return !values_.IsAtEnd(); }
|
|
bool Scan(const parser::DataStmtObject &);
|
|
|
|
private:
|
|
bool Scan(const parser::Variable &);
|
|
bool Scan(const parser::Designator &);
|
|
bool Scan(const parser::DataImpliedDo &);
|
|
bool Scan(const parser::DataIDoObject &);
|
|
|
|
// Initializes all elements of a designator, which can be an array or section.
|
|
bool InitDesignator(const SomeExpr &);
|
|
// Initializes a single object.
|
|
bool InitElement(const evaluate::OffsetSymbol &, const SomeExpr &designator);
|
|
// If the returned flag is true, emit a warning about CHARACTER misusage.
|
|
std::optional<std::pair<SomeExpr, bool>> ConvertElement(
|
|
const SomeExpr &, const evaluate::DynamicType &);
|
|
|
|
DataInitializations &inits_;
|
|
evaluate::ExpressionAnalyzer &exprAnalyzer_;
|
|
ValueListIterator values_;
|
|
};
|
|
|
|
bool DataInitializationCompiler::Scan(const parser::DataStmtObject &object) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[&](const common::Indirection<parser::Variable> &var) {
|
|
return Scan(var.value());
|
|
},
|
|
[&](const parser::DataImpliedDo &ido) { return Scan(ido); },
|
|
},
|
|
object.u);
|
|
}
|
|
|
|
bool DataInitializationCompiler::Scan(const parser::Variable &var) {
|
|
if (const auto *expr{GetExpr(var)}) {
|
|
exprAnalyzer_.GetFoldingContext().messages().SetLocation(var.GetSource());
|
|
if (InitDesignator(*expr)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DataInitializationCompiler::Scan(const parser::Designator &designator) {
|
|
if (auto expr{exprAnalyzer_.Analyze(designator)}) {
|
|
exprAnalyzer_.GetFoldingContext().messages().SetLocation(
|
|
parser::FindSourceLocation(designator));
|
|
if (InitDesignator(*expr)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DataInitializationCompiler::Scan(const parser::DataImpliedDo &ido) {
|
|
const auto &bounds{std::get<parser::DataImpliedDo::Bounds>(ido.t)};
|
|
auto name{bounds.name.thing.thing};
|
|
const auto *lowerExpr{GetExpr(bounds.lower.thing.thing)};
|
|
const auto *upperExpr{GetExpr(bounds.upper.thing.thing)};
|
|
const auto *stepExpr{
|
|
bounds.step ? GetExpr(bounds.step->thing.thing) : nullptr};
|
|
if (lowerExpr && upperExpr) {
|
|
auto lower{ToInt64(*lowerExpr)};
|
|
auto upper{ToInt64(*upperExpr)};
|
|
auto step{stepExpr ? ToInt64(*stepExpr) : std::nullopt};
|
|
auto stepVal{step.value_or(1)};
|
|
if (stepVal == 0) {
|
|
exprAnalyzer_.Say(name.source,
|
|
"DATA statement implied DO loop has a step value of zero"_err_en_US);
|
|
} else if (lower && upper) {
|
|
int kind{evaluate::ResultType<evaluate::ImpliedDoIndex>::kind};
|
|
if (const auto dynamicType{evaluate::DynamicType::From(*name.symbol)}) {
|
|
if (dynamicType->category() == TypeCategory::Integer) {
|
|
kind = dynamicType->kind();
|
|
}
|
|
}
|
|
if (exprAnalyzer_.AddImpliedDo(name.source, kind)) {
|
|
auto &value{exprAnalyzer_.GetFoldingContext().StartImpliedDo(
|
|
name.source, *lower)};
|
|
bool result{true};
|
|
for (auto n{(*upper - value + stepVal) / stepVal}; n > 0;
|
|
--n, value += stepVal) {
|
|
for (const auto &object :
|
|
std::get<std::list<parser::DataIDoObject>>(ido.t)) {
|
|
if (!Scan(object)) {
|
|
result = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
exprAnalyzer_.GetFoldingContext().EndImpliedDo(name.source);
|
|
exprAnalyzer_.RemoveImpliedDo(name.source);
|
|
return result;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DataInitializationCompiler::Scan(const parser::DataIDoObject &object) {
|
|
return std::visit(
|
|
common::visitors{
|
|
[&](const parser::Scalar<common::Indirection<parser::Designator>>
|
|
&var) { return Scan(var.thing.value()); },
|
|
[&](const common::Indirection<parser::DataImpliedDo> &ido) {
|
|
return Scan(ido.value());
|
|
},
|
|
},
|
|
object.u);
|
|
}
|
|
|
|
bool DataInitializationCompiler::InitDesignator(const SomeExpr &designator) {
|
|
evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};
|
|
evaluate::DesignatorFolder folder{context};
|
|
while (auto offsetSymbol{folder.FoldDesignator(designator)}) {
|
|
if (folder.isOutOfRange()) {
|
|
if (auto bad{evaluate::OffsetToDesignator(context, *offsetSymbol)}) {
|
|
exprAnalyzer_.context().Say(
|
|
"DATA statement designator '%s' is out of range"_err_en_US,
|
|
bad->AsFortran());
|
|
} else {
|
|
exprAnalyzer_.context().Say(
|
|
"DATA statement designator '%s' is out of range"_err_en_US,
|
|
designator.AsFortran());
|
|
}
|
|
return false;
|
|
} else if (!InitElement(*offsetSymbol, designator)) {
|
|
return false;
|
|
} else {
|
|
++values_;
|
|
}
|
|
}
|
|
return folder.isEmpty();
|
|
}
|
|
|
|
std::optional<std::pair<SomeExpr, bool>>
|
|
DataInitializationCompiler::ConvertElement(
|
|
const SomeExpr &expr, const evaluate::DynamicType &type) {
|
|
if (auto converted{evaluate::ConvertToType(type, SomeExpr{expr})}) {
|
|
return {std::make_pair(std::move(*converted), false)};
|
|
}
|
|
if (std::optional<std::string> chValue{evaluate::GetScalarConstantValue<
|
|
evaluate::Type<TypeCategory::Character, 1>>(expr)}) {
|
|
// Allow DATA initialization with Hollerith and kind=1 CHARACTER like
|
|
// (most) other Fortran compilers do. Pad on the right with spaces
|
|
// when short, truncate the right if long.
|
|
// TODO: big-endian targets
|
|
auto bytes{static_cast<std::size_t>(evaluate::ToInt64(
|
|
type.MeasureSizeInBytes(exprAnalyzer_.GetFoldingContext(), false))
|
|
.value())};
|
|
evaluate::BOZLiteralConstant bits{0};
|
|
for (std::size_t j{0}; j < bytes; ++j) {
|
|
char ch{j >= chValue->size() ? ' ' : chValue->at(j)};
|
|
evaluate::BOZLiteralConstant chBOZ{static_cast<unsigned char>(ch)};
|
|
bits = bits.IOR(chBOZ.SHIFTL(8 * j));
|
|
}
|
|
if (auto converted{evaluate::ConvertToType(type, SomeExpr{bits})}) {
|
|
return {std::make_pair(std::move(*converted), true)};
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool DataInitializationCompiler::InitElement(
|
|
const evaluate::OffsetSymbol &offsetSymbol, const SomeExpr &designator) {
|
|
const Symbol &symbol{offsetSymbol.symbol()};
|
|
const Symbol *lastSymbol{GetLastSymbol(designator)};
|
|
bool isPointer{lastSymbol && IsPointer(*lastSymbol)};
|
|
bool isProcPointer{lastSymbol && IsProcedurePointer(*lastSymbol)};
|
|
evaluate::FoldingContext &context{exprAnalyzer_.GetFoldingContext()};
|
|
auto restorer{context.messages().SetLocation(values_.LocateSource())};
|
|
|
|
const auto DescribeElement{[&]() {
|
|
if (auto badDesignator{
|
|
evaluate::OffsetToDesignator(context, offsetSymbol)}) {
|
|
return badDesignator->AsFortran();
|
|
} else {
|
|
// Error recovery
|
|
std::string buf;
|
|
llvm::raw_string_ostream ss{buf};
|
|
ss << offsetSymbol.symbol().name() << " offset " << offsetSymbol.offset()
|
|
<< " bytes for " << offsetSymbol.size() << " bytes";
|
|
return ss.str();
|
|
}
|
|
}};
|
|
const auto GetImage{[&]() -> evaluate::InitialImage & {
|
|
auto &symbolInit{inits_.emplace(&symbol, symbol.size()).first->second};
|
|
symbolInit.inits.emplace_back(offsetSymbol.offset(), offsetSymbol.size());
|
|
return symbolInit.image;
|
|
}};
|
|
const auto OutOfRangeError{[&]() {
|
|
evaluate::AttachDeclaration(
|
|
exprAnalyzer_.context().Say(
|
|
"DATA statement designator '%s' is out of range for its variable '%s'"_err_en_US,
|
|
DescribeElement(), symbol.name()),
|
|
symbol);
|
|
}};
|
|
|
|
if (values_.hasFatalError()) {
|
|
return false;
|
|
} else if (values_.IsAtEnd()) {
|
|
exprAnalyzer_.context().Say(
|
|
"DATA statement set has no value for '%s'"_err_en_US,
|
|
DescribeElement());
|
|
return false;
|
|
} else if (static_cast<std::size_t>(
|
|
offsetSymbol.offset() + offsetSymbol.size()) > symbol.size()) {
|
|
OutOfRangeError();
|
|
return false;
|
|
}
|
|
|
|
const SomeExpr *expr{*values_};
|
|
if (!expr) {
|
|
CHECK(exprAnalyzer_.context().AnyFatalError());
|
|
} else if (isPointer) {
|
|
if (static_cast<std::size_t>(offsetSymbol.offset() + offsetSymbol.size()) >
|
|
symbol.size()) {
|
|
OutOfRangeError();
|
|
} else if (evaluate::IsNullPointer(*expr)) {
|
|
// nothing to do; rely on zero initialization
|
|
return true;
|
|
} else if (isProcPointer) {
|
|
if (evaluate::IsProcedure(*expr)) {
|
|
if (CheckPointerAssignment(context, designator, *expr)) {
|
|
GetImage().AddPointer(offsetSymbol.offset(), *expr);
|
|
return true;
|
|
}
|
|
} else {
|
|
exprAnalyzer_.Say(
|
|
"Data object '%s' may not be used to initialize '%s', which is a procedure pointer"_err_en_US,
|
|
expr->AsFortran(), DescribeElement());
|
|
}
|
|
} else if (evaluate::IsProcedure(*expr)) {
|
|
exprAnalyzer_.Say(
|
|
"Procedure '%s' may not be used to initialize '%s', which is not a procedure pointer"_err_en_US,
|
|
expr->AsFortran(), DescribeElement());
|
|
} else if (CheckInitialTarget(context, designator, *expr)) {
|
|
GetImage().AddPointer(offsetSymbol.offset(), *expr);
|
|
return true;
|
|
}
|
|
} else if (evaluate::IsNullPointer(*expr)) {
|
|
exprAnalyzer_.Say("Initializer for '%s' must not be a pointer"_err_en_US,
|
|
DescribeElement());
|
|
} else if (evaluate::IsProcedure(*expr)) {
|
|
exprAnalyzer_.Say("Initializer for '%s' must not be a procedure"_err_en_US,
|
|
DescribeElement());
|
|
} else if (auto designatorType{designator.GetType()}) {
|
|
if (expr->Rank() > 0) {
|
|
// Because initial-data-target is ambiguous with scalar-constant and
|
|
// scalar-constant-subobject at parse time, enforcement of scalar-*
|
|
// must be deferred to here.
|
|
exprAnalyzer_.Say(
|
|
"DATA statement value initializes '%s' with an array"_err_en_US,
|
|
DescribeElement());
|
|
} else if (auto converted{ConvertElement(*expr, *designatorType)}) {
|
|
// value non-pointer initialization
|
|
if (std::holds_alternative<evaluate::BOZLiteralConstant>(expr->u) &&
|
|
designatorType->category() != TypeCategory::Integer) { // 8.6.7(11)
|
|
exprAnalyzer_.Say(
|
|
"BOZ literal should appear in a DATA statement only as a value for an integer object, but '%s' is '%s'"_en_US,
|
|
DescribeElement(), designatorType->AsFortran());
|
|
} else if (converted->second) {
|
|
exprAnalyzer_.context().Say(
|
|
"DATA statement value initializes '%s' of type '%s' with CHARACTER"_en_US,
|
|
DescribeElement(), designatorType->AsFortran());
|
|
}
|
|
auto folded{evaluate::Fold(context, std::move(converted->first))};
|
|
switch (GetImage().Add(
|
|
offsetSymbol.offset(), offsetSymbol.size(), folded, context)) {
|
|
case evaluate::InitialImage::Ok:
|
|
return true;
|
|
case evaluate::InitialImage::NotAConstant:
|
|
exprAnalyzer_.Say(
|
|
"DATA statement value '%s' for '%s' is not a constant"_err_en_US,
|
|
folded.AsFortran(), DescribeElement());
|
|
break;
|
|
case evaluate::InitialImage::OutOfRange:
|
|
OutOfRangeError();
|
|
break;
|
|
default:
|
|
CHECK(exprAnalyzer_.context().AnyFatalError());
|
|
break;
|
|
}
|
|
} else {
|
|
exprAnalyzer_.context().Say(
|
|
"DATA statement value could not be converted to the type '%s' of the object '%s'"_err_en_US,
|
|
designatorType->AsFortran(), DescribeElement());
|
|
}
|
|
} else {
|
|
CHECK(exprAnalyzer_.context().AnyFatalError());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void AccumulateDataInitializations(DataInitializations &inits,
|
|
evaluate::ExpressionAnalyzer &exprAnalyzer,
|
|
const parser::DataStmtSet &set) {
|
|
DataInitializationCompiler scanner{inits, exprAnalyzer, set};
|
|
for (const auto &object :
|
|
std::get<std::list<parser::DataStmtObject>>(set.t)) {
|
|
if (!scanner.Scan(object)) {
|
|
return;
|
|
}
|
|
}
|
|
if (scanner.HasSurplusValues()) {
|
|
exprAnalyzer.context().Say(
|
|
"DATA statement set has more values than objects"_err_en_US);
|
|
}
|
|
}
|
|
|
|
static bool CombineSomeEquivalencedInits(
|
|
DataInitializations &inits, evaluate::ExpressionAnalyzer &exprAnalyzer) {
|
|
auto end{inits.end()};
|
|
for (auto iter{inits.begin()}; iter != end; ++iter) {
|
|
const Symbol &symbol{*iter->first};
|
|
Scope &scope{const_cast<Scope &>(symbol.owner())};
|
|
if (scope.equivalenceSets().empty()) {
|
|
continue; // no problem to solve here
|
|
}
|
|
const auto *commonBlock{FindCommonBlockContaining(symbol)};
|
|
// Sweep following DATA initializations in search of overlapping
|
|
// objects, accumulating into a vector; iterate to a fixed point.
|
|
std::vector<const Symbol *> conflicts;
|
|
auto minStart{symbol.offset()};
|
|
auto maxEnd{symbol.offset() + symbol.size()};
|
|
std::size_t minElementBytes{1};
|
|
while (true) {
|
|
auto prevCount{conflicts.size()};
|
|
conflicts.clear();
|
|
for (auto scan{iter}; ++scan != end;) {
|
|
const Symbol &other{*scan->first};
|
|
const Scope &otherScope{other.owner()};
|
|
if (&otherScope == &scope &&
|
|
FindCommonBlockContaining(other) == commonBlock &&
|
|
maxEnd > other.offset() &&
|
|
other.offset() + other.size() > minStart) {
|
|
// "other" conflicts with "symbol" or another conflict
|
|
conflicts.push_back(&other);
|
|
minStart = std::min(minStart, other.offset());
|
|
maxEnd = std::max(maxEnd, other.offset() + other.size());
|
|
}
|
|
}
|
|
if (conflicts.size() == prevCount) {
|
|
break;
|
|
}
|
|
}
|
|
if (conflicts.empty()) {
|
|
continue;
|
|
}
|
|
// Compute the minimum common granularity
|
|
if (auto dyType{evaluate::DynamicType::From(symbol)}) {
|
|
minElementBytes = evaluate::ToInt64(
|
|
dyType->MeasureSizeInBytes(exprAnalyzer.GetFoldingContext(), true))
|
|
.value_or(1);
|
|
}
|
|
for (const Symbol *s : conflicts) {
|
|
if (auto dyType{evaluate::DynamicType::From(*s)}) {
|
|
minElementBytes = std::min<std::size_t>(minElementBytes,
|
|
evaluate::ToInt64(dyType->MeasureSizeInBytes(
|
|
exprAnalyzer.GetFoldingContext(), true))
|
|
.value_or(1));
|
|
} else {
|
|
minElementBytes = 1;
|
|
}
|
|
}
|
|
CHECK(minElementBytes > 0);
|
|
CHECK((minElementBytes & (minElementBytes - 1)) == 0);
|
|
auto bytes{static_cast<common::ConstantSubscript>(maxEnd - minStart)};
|
|
CHECK(bytes % minElementBytes == 0);
|
|
const DeclTypeSpec &typeSpec{scope.MakeNumericType(
|
|
TypeCategory::Integer, KindExpr{minElementBytes})};
|
|
// Combine "symbol" and "conflicts[]" into a compiler array temp
|
|
// that overlaps all of them, and merge their initial values into
|
|
// the temp's initializer.
|
|
SourceName name{exprAnalyzer.context().GetTempName(scope)};
|
|
auto emplaced{
|
|
scope.try_emplace(name, Attrs{Attr::SAVE}, ObjectEntityDetails{})};
|
|
CHECK(emplaced.second);
|
|
Symbol &combinedSymbol{*emplaced.first->second};
|
|
auto &details{combinedSymbol.get<ObjectEntityDetails>()};
|
|
combinedSymbol.set_offset(minStart);
|
|
combinedSymbol.set_size(bytes);
|
|
details.set_type(typeSpec);
|
|
ArraySpec arraySpec;
|
|
arraySpec.emplace_back(ShapeSpec::MakeExplicit(Bound{
|
|
bytes / static_cast<common::ConstantSubscript>(minElementBytes)}));
|
|
details.set_shape(arraySpec);
|
|
if (commonBlock) {
|
|
details.set_commonBlock(*commonBlock);
|
|
}
|
|
// Merge these EQUIVALENCE'd DATA initializations, and remove the
|
|
// original initializations from the map.
|
|
auto combinedInit{
|
|
inits.emplace(&combinedSymbol, static_cast<std::size_t>(bytes))};
|
|
evaluate::InitialImage &combined{combinedInit.first->second.image};
|
|
combined.Incorporate(symbol.offset() - minStart, iter->second.image);
|
|
inits.erase(iter);
|
|
for (const Symbol *s : conflicts) {
|
|
auto sIter{inits.find(s)};
|
|
CHECK(sIter != inits.end());
|
|
combined.Incorporate(s->offset() - minStart, sIter->second.image);
|
|
inits.erase(sIter);
|
|
}
|
|
return true; // got one
|
|
}
|
|
return false; // no remaining EQUIVALENCE'd DATA initializations
|
|
}
|
|
|
|
// Converts the initialization image for all the DATA statement appearances of
|
|
// a single symbol into an init() expression in the symbol table entry.
|
|
void ConstructInitializer(const Symbol &symbol,
|
|
SymbolDataInitialization &initialization,
|
|
evaluate::ExpressionAnalyzer &exprAnalyzer) {
|
|
auto &context{exprAnalyzer.GetFoldingContext()};
|
|
initialization.inits.sort();
|
|
ConstantSubscript next{0};
|
|
for (const auto &init : initialization.inits) {
|
|
if (init.start() < next) {
|
|
auto badDesignator{evaluate::OffsetToDesignator(
|
|
context, symbol, init.start(), init.size())};
|
|
CHECK(badDesignator);
|
|
exprAnalyzer.Say(symbol.name(),
|
|
"DATA statement initializations affect '%s' more than once"_err_en_US,
|
|
badDesignator->AsFortran());
|
|
}
|
|
next = init.start() + init.size();
|
|
CHECK(next <= static_cast<ConstantSubscript>(initialization.image.size()));
|
|
}
|
|
if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
|
|
CHECK(IsProcedurePointer(symbol));
|
|
const auto &procDesignator{initialization.image.AsConstantProcPointer()};
|
|
CHECK(!procDesignator.GetComponent());
|
|
auto &mutableProc{const_cast<ProcEntityDetails &>(*proc)};
|
|
mutableProc.set_init(DEREF(procDesignator.GetSymbol()));
|
|
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
|
|
if (auto symbolType{evaluate::DynamicType::From(symbol)}) {
|
|
auto &mutableObject{const_cast<ObjectEntityDetails &>(*object)};
|
|
if (IsPointer(symbol)) {
|
|
mutableObject.set_init(
|
|
initialization.image.AsConstantDataPointer(*symbolType));
|
|
} else {
|
|
if (auto extents{evaluate::GetConstantExtents(context, symbol)}) {
|
|
mutableObject.set_init(
|
|
initialization.image.AsConstant(context, *symbolType, *extents));
|
|
} else {
|
|
exprAnalyzer.Say(symbol.name(),
|
|
"internal: unknown shape for '%s' while constructing initializer from DATA"_err_en_US,
|
|
symbol.name());
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
exprAnalyzer.Say(symbol.name(),
|
|
"internal: no type for '%s' while constructing initializer from DATA"_err_en_US,
|
|
symbol.name());
|
|
return;
|
|
}
|
|
if (!object->init()) {
|
|
exprAnalyzer.Say(symbol.name(),
|
|
"internal: could not construct an initializer from DATA statements for '%s'"_err_en_US,
|
|
symbol.name());
|
|
}
|
|
} else {
|
|
CHECK(exprAnalyzer.context().AnyFatalError());
|
|
}
|
|
}
|
|
|
|
void ConvertToInitializers(
|
|
DataInitializations &inits, evaluate::ExpressionAnalyzer &exprAnalyzer) {
|
|
while (CombineSomeEquivalencedInits(inits, exprAnalyzer)) {
|
|
}
|
|
for (auto &[symbolPtr, initialization] : inits) {
|
|
ConstructInitializer(*symbolPtr, initialization, exprAnalyzer);
|
|
}
|
|
}
|
|
} // namespace Fortran::semantics
|