Files
clang-p2996/libc/utils/FPUtil/ManipulationFunctions.h
Hedin Garca a5a337e55e [libc] Capture floating point encoding and arrange it sequentially in memory
Redefined FPBits.h and LongDoubleBitsX86 so its implementation works for the Windows
and Linux platform while maintaining a packed memory alignment of the precision floating
point numbers. For its size in memory to be the same as the data type of the float point number.
This change was necessary because the previous attribute((packed)) specification in the struct was not working
for Windows like it was for Linux and consequently static_asserts in the FPBits.h file were failing.

Reviewed By: aeubanks, sivachandra

Differential Revision: https://reviews.llvm.org/D105561
2021-07-13 20:43:54 +00:00

186 lines
5.4 KiB
C++

//===-- Floating-point manipulation functions -------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
#define LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H
#include "FPBits.h"
#include "NearestIntegerOperations.h"
#include "NormalFloat.h"
#include "PlatformDefs.h"
#include "utils/CPP/TypeTraits.h"
#include <limits.h>
#include <math.h>
namespace __llvm_libc {
namespace fputil {
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T frexp(T x, int &exp) {
FPBits<T> bits(x);
if (bits.isInfOrNaN())
return x;
if (bits.isZero()) {
exp = 0;
return x;
}
NormalFloat<T> normal(bits);
exp = normal.exponent + 1;
normal.exponent = -1;
return normal;
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T modf(T x, T &iptr) {
FPBits<T> bits(x);
if (bits.isZero() || bits.isNaN()) {
iptr = x;
return x;
} else if (bits.isInf()) {
iptr = x;
return bits.getSign() ? T(FPBits<T>::negZero()) : T(FPBits<T>::zero());
} else {
iptr = trunc(x);
if (x == iptr) {
// If x is already an integer value, then return zero with the right
// sign.
return bits.getSign() ? T(FPBits<T>::negZero()) : T(FPBits<T>::zero());
} else {
return x - iptr;
}
}
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T copysign(T x, T y) {
FPBits<T> xbits(x);
xbits.setSign(FPBits<T>(y).getSign());
return T(xbits);
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline int ilogb(T x) {
// TODO: Raise appropriate floating point exceptions and set errno to the
// an appropriate error value wherever relevant.
FPBits<T> bits(x);
if (bits.isZero()) {
return FP_ILOGB0;
} else if (bits.isNaN()) {
return FP_ILOGBNAN;
} else if (bits.isInf()) {
return INT_MAX;
}
NormalFloat<T> normal(bits);
// The C standard does not specify the return value when an exponent is
// out of int range. However, XSI conformance required that INT_MAX or
// INT_MIN are returned.
// NOTE: It is highly unlikely that exponent will be out of int range as
// the exponent is only 15 bits wide even for the 128-bit floating point
// format.
if (normal.exponent > INT_MAX)
return INT_MAX;
else if (normal.exponent < INT_MIN)
return INT_MIN;
else
return normal.exponent;
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T logb(T x) {
FPBits<T> bits(x);
if (bits.isZero()) {
// TODO(Floating point exception): Raise div-by-zero exception.
// TODO(errno): POSIX requires setting errno to ERANGE.
return T(FPBits<T>::negInf());
} else if (bits.isNaN()) {
return x;
} else if (bits.isInf()) {
// Return positive infinity.
return T(FPBits<T>::inf());
}
NormalFloat<T> normal(bits);
return normal.exponent;
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T ldexp(T x, int exp) {
FPBits<T> bits(x);
if (bits.isZero() || bits.isInfOrNaN() || exp == 0)
return x;
// NormalFloat uses int32_t to store the true exponent value. We should ensure
// that adding |exp| to it does not lead to integer rollover. But, if |exp|
// value is larger the exponent range for type T, then we can return infinity
// early. Because the result of the ldexp operation can be a subnormal number,
// we need to accommodate the (mantissaWidht + 1) worth of shift in
// calculating the limit.
int expLimit = FPBits<T>::maxExponent + MantissaWidth<T>::value + 1;
if (exp > expLimit)
return bits.getSign() ? T(FPBits<T>::negInf()) : T(FPBits<T>::inf());
// Similarly on the negative side we return zero early if |exp| is too small.
if (exp < -expLimit)
return bits.getSign() ? T(FPBits<T>::negZero()) : T(FPBits<T>::zero());
// For all other values, NormalFloat to T conversion handles it the right way.
NormalFloat<T> normal(bits);
normal.exponent += exp;
return normal;
}
template <typename T,
cpp::EnableIfType<cpp::IsFloatingPointType<T>::Value, int> = 0>
static inline T nextafter(T from, T to) {
FPBits<T> fromBits(from);
if (fromBits.isNaN())
return from;
FPBits<T> toBits(to);
if (toBits.isNaN())
return to;
if (from == to)
return to;
using UIntType = typename FPBits<T>::UIntType;
UIntType intVal = fromBits.uintval();
UIntType signMask = (UIntType(1) << (sizeof(T) * 8 - 1));
if (from != T(0.0)) {
if ((from < to) == (from > T(0.0))) {
++intVal;
} else {
--intVal;
}
} else {
intVal = (toBits.uintval() & signMask) + UIntType(1);
}
return *reinterpret_cast<T *>(&intVal);
// TODO: Raise floating point exceptions as required by the standard.
}
} // namespace fputil
} // namespace __llvm_libc
#ifdef SPECIAL_X86_LONG_DOUBLE
#include "NextAfterLongDoubleX86.h"
#endif // SPECIAL_X86_LONG_DOUBLE
#endif // LLVM_LIBC_UTILS_FPUTIL_MANIPULATION_FUNCTIONS_H