Redefined FPBits.h and LongDoubleBitsX86 so its implementation works for the Windows and Linux platform while maintaining a packed memory alignment of the precision floating point numbers. For its size in memory to be the same as the data type of the float point number. This change was necessary because the previous attribute((packed)) specification in the struct was not working for Windows like it was for Linux and consequently static_asserts in the FPBits.h file were failing. Reviewed By: aeubanks, sivachandra Differential Revision: https://reviews.llvm.org/D105561
264 lines
8.8 KiB
C++
264 lines
8.8 KiB
C++
//===-- A class to store a normalized floating point number -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
|
|
#define LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
|
|
|
|
#include "FPBits.h"
|
|
|
|
#include "utils/CPP/TypeTraits.h"
|
|
|
|
#include <stdint.h>
|
|
|
|
namespace __llvm_libc {
|
|
namespace fputil {
|
|
|
|
// A class which stores the normalized form of a floating point value.
|
|
// The special IEEE-754 bits patterns of Zero, infinity and NaNs are
|
|
// are not handled by this class.
|
|
//
|
|
// A normalized floating point number is of this form:
|
|
// (-1)*sign * 2^exponent * <mantissa>
|
|
// where <mantissa> is of the form 1.<...>.
|
|
template <typename T> struct NormalFloat {
|
|
static_assert(
|
|
cpp::IsFloatingPointType<T>::Value,
|
|
"NormalFloat template parameter has to be a floating point type.");
|
|
|
|
using UIntType = typename FPBits<T>::UIntType;
|
|
static constexpr UIntType one = (UIntType(1) << MantissaWidth<T>::value);
|
|
|
|
// Unbiased exponent value.
|
|
int32_t exponent;
|
|
|
|
UIntType mantissa;
|
|
// We want |UIntType| to have atleast one bit more than the actual mantissa
|
|
// bit width to accommodate the implicit 1 value.
|
|
static_assert(sizeof(UIntType) * 8 >= MantissaWidth<T>::value + 1,
|
|
"Bad type for mantissa in NormalFloat.");
|
|
|
|
bool sign;
|
|
|
|
NormalFloat(int32_t e, UIntType m, bool s)
|
|
: exponent(e), mantissa(m), sign(s) {
|
|
if (mantissa >= one)
|
|
return;
|
|
|
|
unsigned normalizationShift = evaluateNormalizationShift(mantissa);
|
|
mantissa = mantissa << normalizationShift;
|
|
exponent -= normalizationShift;
|
|
}
|
|
|
|
explicit NormalFloat(T x) { initFromBits(FPBits<T>(x)); }
|
|
|
|
explicit NormalFloat(FPBits<T> bits) { initFromBits(bits); }
|
|
|
|
// Compares this normalized number with another normalized number.
|
|
// Returns -1 is this number is less than |other|, 0 if this number is equal
|
|
// to |other|, and 1 if this number is greater than |other|.
|
|
int cmp(const NormalFloat<T> &other) const {
|
|
if (sign != other.sign)
|
|
return sign ? -1 : 1;
|
|
|
|
if (exponent > other.exponent) {
|
|
return sign ? -1 : 1;
|
|
} else if (exponent == other.exponent) {
|
|
if (mantissa > other.mantissa)
|
|
return sign ? -1 : 1;
|
|
else if (mantissa == other.mantissa)
|
|
return 0;
|
|
else
|
|
return sign ? 1 : -1;
|
|
} else {
|
|
return sign ? 1 : -1;
|
|
}
|
|
}
|
|
|
|
// Returns a new normalized floating point number which is equal in value
|
|
// to this number multiplied by 2^e. That is:
|
|
// new = this * 2^e
|
|
NormalFloat<T> mul2(int e) const {
|
|
NormalFloat<T> result = *this;
|
|
result.exponent += e;
|
|
return result;
|
|
}
|
|
|
|
operator T() const {
|
|
int biasedExponent = exponent + FPBits<T>::exponentBias;
|
|
// Max exponent is of the form 0xFF...E. That is why -2 and not -1.
|
|
constexpr int maxExponentValue = (1 << ExponentWidth<T>::value) - 2;
|
|
if (biasedExponent > maxExponentValue) {
|
|
return sign ? T(FPBits<T>::negInf()) : T(FPBits<T>::inf());
|
|
}
|
|
|
|
FPBits<T> result(T(0.0));
|
|
result.setSign(sign);
|
|
|
|
constexpr int subnormalExponent = -FPBits<T>::exponentBias + 1;
|
|
if (exponent < subnormalExponent) {
|
|
unsigned shift = subnormalExponent - exponent;
|
|
// Since exponent > subnormalExponent, shift is strictly greater than
|
|
// zero.
|
|
if (shift <= MantissaWidth<T>::value + 1) {
|
|
// Generate a subnormal number. Might lead to loss of precision.
|
|
// We round to nearest and round halfway cases to even.
|
|
const UIntType shiftOutMask = (UIntType(1) << shift) - 1;
|
|
const UIntType shiftOutValue = mantissa & shiftOutMask;
|
|
const UIntType halfwayValue = UIntType(1) << (shift - 1);
|
|
result.setUnbiasedExponent(0);
|
|
result.setMantissa(mantissa >> shift);
|
|
UIntType newMantissa = result.getMantissa();
|
|
if (shiftOutValue > halfwayValue) {
|
|
newMantissa += 1;
|
|
} else if (shiftOutValue == halfwayValue) {
|
|
// Round to even.
|
|
if (result.getMantissa() & 0x1)
|
|
newMantissa += 1;
|
|
}
|
|
result.setMantissa(newMantissa);
|
|
// Adding 1 to mantissa can lead to overflow. This can only happen if
|
|
// mantissa was all ones (0b111..11). For such a case, we will carry
|
|
// the overflow into the exponent.
|
|
if (newMantissa == one)
|
|
result.setUnbiasedExponent(1);
|
|
return T(result);
|
|
} else {
|
|
return T(result);
|
|
}
|
|
}
|
|
|
|
result.setUnbiasedExponent(exponent + FPBits<T>::exponentBias);
|
|
result.setMantissa(mantissa);
|
|
return T(result);
|
|
}
|
|
|
|
private:
|
|
void initFromBits(FPBits<T> bits) {
|
|
sign = bits.getSign();
|
|
|
|
if (bits.isInfOrNaN() || bits.isZero()) {
|
|
// Ignore special bit patterns. Implementations deal with them separately
|
|
// anyway so this should not be a problem.
|
|
exponent = 0;
|
|
mantissa = 0;
|
|
return;
|
|
}
|
|
|
|
// Normalize subnormal numbers.
|
|
if (bits.getUnbiasedExponent() == 0) {
|
|
unsigned shift = evaluateNormalizationShift(bits.getMantissa());
|
|
mantissa = UIntType(bits.getMantissa()) << shift;
|
|
exponent = 1 - FPBits<T>::exponentBias - shift;
|
|
} else {
|
|
exponent = bits.getUnbiasedExponent() - FPBits<T>::exponentBias;
|
|
mantissa = one | bits.getMantissa();
|
|
}
|
|
}
|
|
|
|
unsigned evaluateNormalizationShift(UIntType m) {
|
|
unsigned shift = 0;
|
|
for (; (one & m) == 0 && (shift < MantissaWidth<T>::value);
|
|
m <<= 1, ++shift)
|
|
;
|
|
return shift;
|
|
}
|
|
};
|
|
|
|
#ifdef SPECIAL_X86_LONG_DOUBLE
|
|
template <>
|
|
inline void NormalFloat<long double>::initFromBits(FPBits<long double> bits) {
|
|
sign = bits.getSign();
|
|
|
|
if (bits.isInfOrNaN() || bits.isZero()) {
|
|
// Ignore special bit patterns. Implementations deal with them separately
|
|
// anyway so this should not be a problem.
|
|
exponent = 0;
|
|
mantissa = 0;
|
|
return;
|
|
}
|
|
|
|
if (bits.getUnbiasedExponent() == 0) {
|
|
if (bits.getImplicitBit() == 0) {
|
|
// Since we ignore zero value, the mantissa in this case is non-zero.
|
|
int normalizationShift = evaluateNormalizationShift(bits.getMantissa());
|
|
exponent = -16382 - normalizationShift;
|
|
mantissa = (bits.getMantissa() << normalizationShift);
|
|
} else {
|
|
exponent = -16382;
|
|
mantissa = one | bits.getMantissa();
|
|
}
|
|
} else {
|
|
if (bits.getImplicitBit() == 0) {
|
|
// Invalid number so just store 0 similar to a NaN.
|
|
exponent = 0;
|
|
mantissa = 0;
|
|
} else {
|
|
exponent = bits.getUnbiasedExponent() - 16383;
|
|
mantissa = one | bits.getMantissa();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <> inline NormalFloat<long double>::operator long double() const {
|
|
int biasedExponent = exponent + FPBits<long double>::exponentBias;
|
|
// Max exponent is of the form 0xFF...E. That is why -2 and not -1.
|
|
constexpr int maxExponentValue = (1 << ExponentWidth<long double>::value) - 2;
|
|
if (biasedExponent > maxExponentValue) {
|
|
return sign ? FPBits<long double>::negInf() : FPBits<long double>::inf();
|
|
}
|
|
|
|
FPBits<long double> result(0.0l);
|
|
result.setSign(sign);
|
|
|
|
constexpr int subnormalExponent = -FPBits<long double>::exponentBias + 1;
|
|
if (exponent < subnormalExponent) {
|
|
unsigned shift = subnormalExponent - exponent;
|
|
if (shift <= MantissaWidth<long double>::value + 1) {
|
|
// Generate a subnormal number. Might lead to loss of precision.
|
|
// We round to nearest and round halfway cases to even.
|
|
const UIntType shiftOutMask = (UIntType(1) << shift) - 1;
|
|
const UIntType shiftOutValue = mantissa & shiftOutMask;
|
|
const UIntType halfwayValue = UIntType(1) << (shift - 1);
|
|
result.setUnbiasedExponent(0);
|
|
result.setMantissa(mantissa >> shift);
|
|
UIntType newMantissa = result.getMantissa();
|
|
if (shiftOutValue > halfwayValue) {
|
|
newMantissa += 1;
|
|
} else if (shiftOutValue == halfwayValue) {
|
|
// Round to even.
|
|
if (result.getMantissa() & 0x1)
|
|
newMantissa += 1;
|
|
}
|
|
result.setMantissa(newMantissa);
|
|
// Adding 1 to mantissa can lead to overflow. This can only happen if
|
|
// mantissa was all ones (0b111..11). For such a case, we will carry
|
|
// the overflow into the exponent and set the implicit bit to 1.
|
|
if (newMantissa == one) {
|
|
result.setUnbiasedExponent(1);
|
|
result.setImplicitBit(1);
|
|
} else {
|
|
result.setImplicitBit(0);
|
|
}
|
|
return static_cast<long double>(result);
|
|
} else {
|
|
return static_cast<long double>(result);
|
|
}
|
|
}
|
|
|
|
result.setUnbiasedExponent(biasedExponent);
|
|
result.setMantissa(mantissa);
|
|
result.setImplicitBit(1);
|
|
return static_cast<long double>(result);
|
|
}
|
|
#endif // SPECIAL_X86_LONG_DOUBLE
|
|
|
|
} // namespace fputil
|
|
} // namespace __llvm_libc
|
|
|
|
#endif // LLVM_LIBC_UTILS_FPUTIL_NORMAL_FLOAT_H
|