Files
clang-p2996/llvm/test/Transforms/LoopVectorize/AArch64/first-order-recurrence.ll
Sander de Smalen 4f86aa650c [LV] Add -scalable-vectorization=<option> flag.
This patch adds a new option to the LoopVectorizer to control how
scalable vectors can be used.

Initially, this suggests three levels to control scalable
vectorization, although other more aggressive options can be added in
the future.

The possible options are:
- Disabled:   Disables vectorization with scalable vectors.
- Enabled:    Vectorize loops using scalable vectors or fixed-width
              vectors, but favors fixed-width vectors when the cost
              is a tie.
- Preferred:  Like 'Enabled', but favoring scalable vectors when the
              cost-model is inconclusive.

Reviewed By: paulwalker-arm, vkmr

Differential Revision: https://reviews.llvm.org/D101945
2021-05-19 10:40:56 +01:00

105 lines
5.1 KiB
LLVM

; RUN: opt -loop-vectorize -scalable-vectorization=on -force-vector-width=4 -force-vector-interleave=1 -mtriple aarch64-unknown-linux-gnu -mattr=+sve -S < %s | FileCheck %s --check-prefix=CHECK-VF4UF1
; RUN: opt -loop-vectorize -scalable-vectorization=on -force-vector-width=4 -force-vector-interleave=2 -mtriple aarch64-unknown-linux-gnu -mattr=+sve -S < %s | FileCheck %s --check-prefix=CHECK-VF4UF2
; We vectorize this first order recurrence, with a set of insertelements for
; each unrolled part. Make sure these insertelements are generated in-order,
; because the shuffle of the first order recurrence will be added after the
; insertelement of the last part UF - 1, assuming the latter appears after the
; insertelements of all other parts.
;
; int PR33613(double *b, double j, int d) {
; int a = 0;
; for(int i = 0; i < 10240; i++, b+=25) {
; double f = b[d]; // Scalarize to form insertelements
; if (j * f)
; a++;
; j = f;
; }
; return a;
; }
;
define i32 @PR33613(double* %b, double %j, i32 %d) {
; CHECK-VF4UF2-LABEL: @PR33613
; CHECK-VF4UF2: vector.body
; CHECK-VF4UF2: %[[VEC_RECUR:.*]] = phi <vscale x 4 x double> [ {{.*}}, %vector.ph ], [ {{.*}}, %vector.body ]
; CHECK-VF4UF2: %[[SPLICE1:.*]] = call <vscale x 4 x double> @llvm.experimental.vector.splice.nxv4f64(<vscale x 4 x double> %[[VEC_RECUR]], <vscale x 4 x double> {{.*}}, i32 -1)
; CHECK-VF4UF2-NEXT: %[[SPLICE2:.*]] = call <vscale x 4 x double> @llvm.experimental.vector.splice.nxv4f64(<vscale x 4 x double> %{{.*}}, <vscale x 4 x double> %{{.*}}, i32 -1)
; CHECK-VF4UF2-NOT: insertelement <vscale x 4 x double>
; CHECK-VF4UF2: middle.block
entry:
%idxprom = sext i32 %d to i64
br label %for.body
for.cond.cleanup:
%a.1.lcssa = phi i32 [ %a.1, %for.body ]
ret i32 %a.1.lcssa
for.body:
%b.addr.012 = phi double* [ %b, %entry ], [ %add.ptr, %for.body ]
%i.011 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
%a.010 = phi i32 [ 0, %entry ], [ %a.1, %for.body ]
%j.addr.09 = phi double [ %j, %entry ], [ %0, %for.body ]
%arrayidx = getelementptr inbounds double, double* %b.addr.012, i64 %idxprom
%0 = load double, double* %arrayidx, align 8
%mul = fmul double %j.addr.09, %0
%tobool = fcmp une double %mul, 0.000000e+00
%inc = zext i1 %tobool to i32
%a.1 = add nsw i32 %a.010, %inc
%inc1 = add nuw nsw i32 %i.011, 1
%add.ptr = getelementptr inbounds double, double* %b.addr.012, i64 25
%exitcond = icmp eq i32 %inc1, 10240
br i1 %exitcond, label %for.cond.cleanup, label %for.body, !llvm.loop !0
}
; PR34711: given three consecutive instructions such that the first will be
; widened, the second is a cast that will be widened and needs to sink after the
; third, and the third is a first-order-recurring load that will be replicated
; instead of widened. Although the cast and the first instruction will both be
; widened, and are originally adjacent to each other, make sure the replicated
; load ends up appearing between them.
;
; void PR34711(short[2] *a, int *b, int *c, int n) {
; for(int i = 0; i < n; i++) {
; c[i] = 7;
; b[i] = (a[i][0] * a[i][1]);
; }
; }
;
; Check that the sext sank after the load in the vector loop.
define void @PR34711([2 x i16]* %a, i32* %b, i32* %c, i64 %n) {
; CHECK-VF4UF1-LABEL: @PR34711
; CHECK-VF4UF1: vector.body
; CHECK-VF4UF1: %[[VEC_RECUR:.*]] = phi <vscale x 4 x i16> [ %vector.recur.init, %vector.ph ], [ %[[MGATHER:.*]], %vector.body ]
; CHECK-VF4UF1: %[[MGATHER]] = call <vscale x 4 x i16> @llvm.masked.gather.nxv4i16.nxv4p0i16(<vscale x 4 x i16*> {{.*}}, i32 2, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> undef, i1 true, i32 0), <vscale x 4 x i1> undef, <vscale x 4 x i32> zeroinitializer), <vscale x 4 x i16> undef)
; CHECK-VF4UF1-NEXT: %[[SPLICE:.*]] = call <vscale x 4 x i16> @llvm.experimental.vector.splice.nxv4i16(<vscale x 4 x i16> %[[VEC_RECUR]], <vscale x 4 x i16> %[[MGATHER]], i32 -1)
; CHECK-VF4UF1-NEXT: %[[SXT1:.*]] = sext <vscale x 4 x i16> %[[SPLICE]] to <vscale x 4 x i32>
; CHECK-VF4UF1-NEXT: %[[SXT2:.*]] = sext <vscale x 4 x i16> %[[MGATHER]] to <vscale x 4 x i32>
; CHECK-VF4UF1-NEXT: mul nsw <vscale x 4 x i32> %[[SXT2]], %[[SXT1]]
entry:
%pre.index = getelementptr inbounds [2 x i16], [2 x i16]* %a, i64 0, i64 0
%.pre = load i16, i16* %pre.index
br label %for.body
for.body:
%0 = phi i16 [ %.pre, %entry ], [ %1, %for.body ]
%indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
%arraycidx = getelementptr inbounds i32, i32* %c, i64 %indvars.iv
%cur.index = getelementptr inbounds [2 x i16], [2 x i16]* %a, i64 %indvars.iv, i64 1
store i32 7, i32* %arraycidx ; 1st instruction, to be widened.
%conv = sext i16 %0 to i32 ; 2nd, cast to sink after third.
%1 = load i16, i16* %cur.index ; 3rd, first-order-recurring load not widened.
%conv3 = sext i16 %1 to i32
%mul = mul nsw i32 %conv3, %conv
%arrayidx5 = getelementptr inbounds i32, i32* %b, i64 %indvars.iv
store i32 %mul, i32* %arrayidx5
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
for.end:
ret void
}
!0 = distinct !{!0, !1}
!1 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}