Files
clang-p2996/openmp/libomptarget/plugins/amdgpu/impl/system.cpp
Jon Chesterfield dd0b463dd9 [libomptarget][amdgpu] More robust handling of failure to init HSA
If hsa_init fails, subsequent calls into hsa are not safe. Except for
hsa_init, but we don't retry on failure.

This patch:
- deletes a print that called into hsa to ask why it can't call into hsa
- drops a merge conflict block next to that print
- reliably initializes number of devices to zero
- skips the plugin destructor contents if the constructor failed to init hsa

Tested by making hsa_init return error, and by forcing the dynamic library
use which was then deleted from disk. Before this patch, both segv. After it,
friendly message about offloading being unavailable.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D106774
2021-07-25 23:15:58 +01:00

1041 lines
38 KiB
C++

//===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <libelf.h>
#include <cassert>
#include <sstream>
#include <string>
#include "internal.h"
#include "machine.h"
#include "rt.h"
#include "msgpack.h"
namespace hsa {
// Wrap HSA iterate API in a shim that allows passing general callables
template <typename C>
hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
void *data) -> hsa_status_t {
C *unwrapped = static_cast<C *>(data);
return (*unwrapped)(executable, symbol);
};
return hsa_executable_iterate_symbols(executable, L,
static_cast<void *>(&cb));
}
} // namespace hsa
typedef unsigned char *address;
/*
* Note descriptors.
*/
typedef struct {
uint32_t n_namesz; /* Length of note's name. */
uint32_t n_descsz; /* Length of note's value. */
uint32_t n_type; /* Type of note. */
// then name
// then padding, optional
// then desc, at 4 byte alignment (not 8, despite being elf64)
} Elf_Note;
// The following include file and following structs/enums
// have been replicated on a per-use basis below. For example,
// llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
// but we may care only about kernargSegmentSize_ for now, so
// we just include that field in our KernelMD implementation. We
// chose this approach to replicate in order to avoid forcing
// a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
// #include "llvm/Support/AMDGPUMetadata.h"
// typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
// typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
// typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
// using llvm::AMDGPU::HSAMD::AccessQualifier;
// using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
// using llvm::AMDGPU::HSAMD::ValueKind;
// using llvm::AMDGPU::HSAMD::ValueType;
class KernelArgMD {
public:
enum class ValueKind {
HiddenGlobalOffsetX,
HiddenGlobalOffsetY,
HiddenGlobalOffsetZ,
HiddenNone,
HiddenPrintfBuffer,
HiddenDefaultQueue,
HiddenCompletionAction,
HiddenMultiGridSyncArg,
HiddenHostcallBuffer,
Unknown
};
KernelArgMD()
: name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
align_(0), valueKind_(ValueKind::Unknown) {}
// fields
std::string name_;
std::string typeName_;
uint32_t size_;
uint32_t offset_;
uint32_t align_;
ValueKind valueKind_;
};
class KernelMD {
public:
KernelMD() : kernargSegmentSize_(0ull) {}
// fields
uint64_t kernargSegmentSize_;
};
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
// Including only those fields that are relevant to the runtime.
// {"ByValue", KernelArgMD::ValueKind::ByValue},
// {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"DynamicSharedPointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"Sampler", KernelArgMD::ValueKind::Sampler},
// {"Image", KernelArgMD::ValueKind::Image},
// {"Pipe", KernelArgMD::ValueKind::Pipe},
// {"Queue", KernelArgMD::ValueKind::Queue},
{"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
{"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
{"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
// v3
// {"by_value", KernelArgMD::ValueKind::ByValue},
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"dynamic_shared_pointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"sampler", KernelArgMD::ValueKind::Sampler},
// {"image", KernelArgMD::ValueKind::Image},
// {"pipe", KernelArgMD::ValueKind::Pipe},
// {"queue", KernelArgMD::ValueKind::Queue},
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"hidden_completion_action",
KernelArgMD::ValueKind::HiddenCompletionAction},
{"hidden_multigrid_sync_arg",
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
};
ATLMachine g_atl_machine;
namespace core {
// Implement memory_pool iteration function
static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
void *data) {
ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
hsa_status_t err = HSA_STATUS_SUCCESS;
// Check if the memory_pool is allowed to allocate, i.e. do not return group
// memory
bool alloc_allowed = false;
err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
&alloc_allowed);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Alloc allowed in memory pool check", get_error_string(err));
return err;
}
if (alloc_allowed) {
uint32_t global_flag = 0;
err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Get memory pool info", get_error_string(err));
return err;
}
if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
proc->addMemory(new_mem);
} else {
ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
proc->addMemory(new_mem);
}
}
return err;
}
static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
hsa_status_t err = HSA_STATUS_SUCCESS;
hsa_device_type_t device_type;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Get device type info", get_error_string(err));
return err;
}
switch (device_type) {
case HSA_DEVICE_TYPE_CPU: {
ATLCPUProcessor new_proc(agent);
err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
&new_proc);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterate all memory pools", get_error_string(err));
return err;
}
g_atl_machine.addProcessor(new_proc);
} break;
case HSA_DEVICE_TYPE_GPU: {
hsa_profile_t profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Query the agent profile", get_error_string(err));
return err;
}
atmi_devtype_t gpu_type;
gpu_type =
(profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
ATLGPUProcessor new_proc(agent, gpu_type);
err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
&new_proc);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterate all memory pools", get_error_string(err));
return err;
}
g_atl_machine.addProcessor(new_proc);
} break;
case HSA_DEVICE_TYPE_DSP: {
err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
} break;
}
return err;
}
static hsa_status_t init_compute_and_memory() {
hsa_status_t err;
/* Iterate over the agents and pick the gpu agent */
err = hsa_iterate_agents(get_agent_info, NULL);
if (err == HSA_STATUS_INFO_BREAK) {
err = HSA_STATUS_SUCCESS;
}
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Getting a gpu agent",
get_error_string(err));
return err;
}
/* Init all devices or individual device types? */
std::vector<ATLCPUProcessor> &cpu_procs =
g_atl_machine.processors<ATLCPUProcessor>();
std::vector<ATLGPUProcessor> &gpu_procs =
g_atl_machine.processors<ATLGPUProcessor>();
/* For CPU memory pools, add other devices that can access them directly
* or indirectly */
for (auto &cpu_proc : cpu_procs) {
for (auto &cpu_mem : cpu_proc.memories()) {
hsa_amd_memory_pool_t pool = cpu_mem.memory();
for (auto &gpu_proc : gpu_procs) {
hsa_agent_t agent = gpu_proc.agent();
hsa_amd_memory_pool_access_t access;
hsa_amd_agent_memory_pool_get_info(
agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
if (access != 0) {
// this means not NEVER, but could be YES or NO
// add this memory pool to the proc
gpu_proc.addMemory(cpu_mem);
}
}
}
}
/* FIXME: are the below combinations of procs and memory pools needed?
* all to all compare procs with their memory pools and add those memory
* pools that are accessible by the target procs */
for (auto &gpu_proc : gpu_procs) {
for (auto &gpu_mem : gpu_proc.memories()) {
hsa_amd_memory_pool_t pool = gpu_mem.memory();
for (auto &cpu_proc : cpu_procs) {
hsa_agent_t agent = cpu_proc.agent();
hsa_amd_memory_pool_access_t access;
hsa_amd_agent_memory_pool_get_info(
agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
if (access != 0) {
// this means not NEVER, but could be YES or NO
// add this memory pool to the proc
cpu_proc.addMemory(gpu_mem);
}
}
}
}
size_t num_procs = cpu_procs.size() + gpu_procs.size();
int num_iGPUs = 0;
int num_dGPUs = 0;
for (uint32_t i = 0; i < gpu_procs.size(); i++) {
if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
num_iGPUs++;
else
num_dGPUs++;
}
assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
"Number of dGPUs and iGPUs do not add up");
DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
int cpus_begin = 0;
int cpus_end = cpu_procs.size();
int gpus_begin = cpu_procs.size();
int gpus_end = cpu_procs.size() + gpu_procs.size();
int proc_index = 0;
for (int i = cpus_begin; i < cpus_end; i++) {
std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
int fine_memories_size = 0;
int coarse_memories_size = 0;
DEBUG_PRINT("CPU memory types:\t");
for (auto &memory : memories) {
atmi_memtype_t type = memory.type();
if (type == ATMI_MEMTYPE_FINE_GRAINED) {
fine_memories_size++;
DEBUG_PRINT("Fine\t");
} else {
coarse_memories_size++;
DEBUG_PRINT("Coarse\t");
}
}
DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
proc_index++;
}
proc_index = 0;
for (int i = gpus_begin; i < gpus_end; i++) {
std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
int fine_memories_size = 0;
int coarse_memories_size = 0;
DEBUG_PRINT("GPU memory types:\t");
for (auto &memory : memories) {
atmi_memtype_t type = memory.type();
if (type == ATMI_MEMTYPE_FINE_GRAINED) {
fine_memories_size++;
DEBUG_PRINT("Fine\t");
} else {
coarse_memories_size++;
DEBUG_PRINT("Coarse\t");
}
}
DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
proc_index++;
}
if (num_procs > 0)
return HSA_STATUS_SUCCESS;
else
return HSA_STATUS_ERROR_NOT_INITIALIZED;
}
hsa_status_t init_hsa() {
DEBUG_PRINT("Initializing HSA...");
hsa_status_t err = hsa_init();
if (err != HSA_STATUS_SUCCESS) {
return err;
}
err = init_compute_and_memory();
if (err != HSA_STATUS_SUCCESS)
return err;
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"After initializing compute and memory", get_error_string(err));
return err;
}
DEBUG_PRINT("done\n");
return HSA_STATUS_SUCCESS;
}
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
#if (ROCM_VERSION_MAJOR >= 3) || \
(ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
#else
if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
#endif
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
// memory_fault.agent
// memory_fault.virtual_address
// memory_fault.fault_reason_mask
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
std::stringstream stream;
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
std::string addr("0x" + stream.str());
std::string err_string = "[GPU Memory Error] Addr: " + addr;
err_string += " Reason: ";
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
err_string += "No Idea! ";
} else {
if (memory_fault.fault_reason_mask & 0x00000001)
err_string += "Page not present or supervisor privilege. ";
if (memory_fault.fault_reason_mask & 0x00000010)
err_string += "Write access to a read-only page. ";
if (memory_fault.fault_reason_mask & 0x00000100)
err_string += "Execute access to a page marked NX. ";
if (memory_fault.fault_reason_mask & 0x00001000)
err_string += "Host access only. ";
if (memory_fault.fault_reason_mask & 0x00010000)
err_string += "ECC failure (if supported by HW). ";
if (memory_fault.fault_reason_mask & 0x00100000)
err_string += "Can't determine the exact fault address. ";
}
fprintf(stderr, "%s\n", err_string.c_str());
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t atl_init_gpu_context() {
hsa_status_t err;
err = init_hsa();
if (err != HSA_STATUS_SUCCESS)
return HSA_STATUS_ERROR;
err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Registering the system for memory faults", get_error_string(err));
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
static bool isImplicit(KernelArgMD::ValueKind value_kind) {
switch (value_kind) {
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
case KernelArgMD::ValueKind::HiddenNone:
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
case KernelArgMD::ValueKind::HiddenDefaultQueue:
case KernelArgMD::ValueKind::HiddenCompletionAction:
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
return true;
default:
return false;
}
}
static std::pair<unsigned char *, unsigned char *>
find_metadata(void *binary, size_t binSize) {
std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
Elf *e = elf_memory(static_cast<char *>(binary), binSize);
if (elf_kind(e) != ELF_K_ELF) {
return failure;
}
size_t numpHdrs;
if (elf_getphdrnum(e, &numpHdrs) != 0) {
return failure;
}
Elf64_Phdr *pHdrs = elf64_getphdr(e);
for (size_t i = 0; i < numpHdrs; ++i) {
Elf64_Phdr pHdr = pHdrs[i];
// Look for the runtime metadata note
if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
// Iterate over the notes in this segment
address ptr = (address)binary + pHdr.p_offset;
address segmentEnd = ptr + pHdr.p_filesz;
while (ptr < segmentEnd) {
Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
address name = (address)&note[1];
if (note->n_type == 7 || note->n_type == 8) {
return failure;
} else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
note->n_namesz == sizeof "AMD" &&
!memcmp(name, "AMD", note->n_namesz)) {
// code object v2 uses yaml metadata, no longer supported
return failure;
} else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
note->n_namesz == sizeof "AMDGPU" &&
!memcmp(name, "AMDGPU", note->n_namesz)) {
// n_descsz = 485
// value is padded to 4 byte alignment, may want to move end up to
// match
size_t offset = sizeof(uint32_t) * 3 /* fields */
+ sizeof("AMDGPU") /* name */
+ 1 /* padding to 4 byte alignment */;
// Including the trailing padding means both pointers are 4 bytes
// aligned, which may be useful later.
unsigned char *metadata_start = (unsigned char *)ptr + offset;
unsigned char *metadata_end =
metadata_start + core::alignUp(note->n_descsz, 4);
return {metadata_start, metadata_end};
}
ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
core::alignUp(note->n_descsz, sizeof(int));
}
}
}
return failure;
}
namespace {
int map_lookup_array(msgpack::byte_range message, const char *needle,
msgpack::byte_range *res, uint64_t *size) {
unsigned count = 0;
struct s : msgpack::functors_defaults<s> {
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
unsigned &count;
uint64_t *size;
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
count++;
*size = N;
return bytes.end;
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
// If the message is an array, record number of
// elements in *size
msgpack::handle_msgpack<s>(value, {count, size});
// return the whole array
*res = value;
}
});
// Only claim success if exactly one key/array pair matched
return count != 1;
}
int map_lookup_string(msgpack::byte_range message, const char *needle,
std::string *res) {
unsigned count = 0;
struct s : public msgpack::functors_defaults<s> {
s(unsigned &count, std::string *res) : count(count), res(res) {}
unsigned &count;
std::string *res;
void handle_string(size_t N, const unsigned char *str) {
count++;
*res = std::string(str, str + N);
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::handle_msgpack<s>(value, {count, res});
}
});
return count != 1;
}
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
uint64_t *res) {
unsigned count = 0;
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::foronly_unsigned(value, [&](uint64_t x) {
count++;
*res = x;
});
}
});
return count != 1;
}
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
msgpack::byte_range *res) {
int rc = 1;
uint64_t i = 0;
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
if (i == elt) {
*res = value;
rc = 0;
}
i++;
});
return rc;
}
int populate_kernelArgMD(msgpack::byte_range args_element,
KernelArgMD *kernelarg) {
using namespace msgpack;
int error = 0;
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
if (message_is_string(key, ".name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->name_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".type_name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->typeName_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".size")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
} else if (message_is_string(key, ".offset")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
} else if (message_is_string(key, ".value_kind")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
std::string s = std::string(str, str + N);
auto itValueKind = ArgValueKind.find(s);
if (itValueKind != ArgValueKind.end()) {
kernelarg->valueKind_ = itValueKind->second;
}
});
}
});
return error;
}
} // namespace
static hsa_status_t get_code_object_custom_metadata(
void *binary, size_t binSize,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
// parse code object with different keys from v2
// also, the kernel name is not the same as the symbol name -- so a
// symbol->name map is needed
std::pair<unsigned char *, unsigned char *> metadata =
find_metadata(binary, binSize);
if (!metadata.first) {
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
uint64_t kernelsSize = 0;
int msgpack_errors = 0;
msgpack::byte_range kernel_array;
msgpack_errors =
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
&kernel_array, &kernelsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernels lookup in program metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
for (size_t i = 0; i < kernelsSize; i++) {
assert(msgpack_errors == 0);
std::string kernelName;
std::string symbolName;
msgpack::byte_range element;
msgpack_errors += array_lookup_element(kernel_array, i, &element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"element lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"strings lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// Make sure that kernelName + ".kd" == symbolName
if ((kernelName + ".kd") != symbolName) {
printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
__FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_count = sgpr_count;
msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_count = vgpr_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_spill_count = sgpr_spill_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_spill_count = vgpr_spill_count;
size_t kernel_explicit_args_size = 0;
uint64_t kernel_segment_size;
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
&kernel_segment_size);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernarg segment size metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
bool hasHiddenArgs = false;
if (kernel_segment_size > 0) {
uint64_t argsSize;
size_t offset = 0;
msgpack::byte_range args_array;
msgpack_errors +=
map_lookup_array(element, ".args", &args_array, &argsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernel args metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.num_args = argsSize;
for (size_t i = 0; i < argsSize; ++i) {
KernelArgMD lcArg;
msgpack::byte_range args_element;
msgpack_errors += array_lookup_element(args_array, i, &args_element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// populate info with sizes and offsets
info.arg_sizes.push_back(lcArg.size_);
// v3 has offset field and not align field
size_t new_offset = lcArg.offset_;
size_t padding = new_offset - offset;
offset = new_offset;
info.arg_offsets.push_back(lcArg.offset_);
DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
lcArg.size_, lcArg.offset_);
offset += lcArg.size_;
// check if the arg is a hidden/implicit arg
// this logic assumes that all hidden args are 8-byte aligned
if (!isImplicit(lcArg.valueKind_)) {
kernel_explicit_args_size += lcArg.size_;
} else {
hasHiddenArgs = true;
}
kernel_explicit_args_size += padding;
}
}
// add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
// in ATMI, do not count the compiler set implicit args, but set your own
// implicit args by discounting the compiler set implicit args
info.kernel_segment_size =
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
sizeof(atmi_implicit_args_t);
DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
kernel_segment_size, info.kernel_segment_size);
// kernel received, now add it to the kernel info table
KernelInfoTable[kernelName] = info;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t
populate_InfoTables(hsa_executable_symbol_t symbol,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
hsa_symbol_kind_t type;
uint32_t name_length;
hsa_status_t err;
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
&type);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
DEBUG_PRINT("Exec Symbol type: %d\n", type);
if (type == HSA_SYMBOL_KIND_KERNEL) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
// remove the suffix .kd from symbol name.
name[name_length - 3] = 0;
atl_kernel_info_t info;
std::string kernelName(name);
// by now, the kernel info table should already have an entry
// because the non-ROCr custom code object parsing is called before
// iterating over the code object symbols using ROCr
if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
if (HSA_STATUS_ERROR_INVALID_CODE_OBJECT != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Finding the entry kernel info table",
get_error_string(HSA_STATUS_ERROR_INVALID_CODE_OBJECT));
exit(1);
}
}
// found, so assign and update
info = KernelInfoTable[kernelName];
/* Extract dispatch information from the symbol */
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
&(info.kernel_object));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the symbol from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
&(info.group_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the group segment size from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
&(info.private_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the private segment from the executable",
get_error_string(err));
return err;
}
DEBUG_PRINT(
"Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
"kernarg\n",
kernelName.c_str(), info.kernel_object, info.group_segment_size,
info.private_segment_size, info.kernel_segment_size);
// assign it back to the kernel info table
KernelInfoTable[kernelName] = info;
free(name);
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
name[name_length] = 0;
atl_symbol_info_t info;
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info address extraction", get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info size extraction", get_error_string(err));
return err;
}
DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
info.size);
SymbolInfoTable[std::string(name)] = info;
free(name);
} else {
DEBUG_PRINT("Symbol is an indirect function\n");
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t RegisterModuleFromMemory(
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
void *module_bytes, size_t module_size, hsa_agent_t agent,
hsa_status_t (*on_deserialized_data)(void *data, size_t size,
void *cb_state),
void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
hsa_status_t err;
hsa_executable_t executable = {0};
hsa_profile_t agent_profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Query the agent profile", get_error_string(err));
return HSA_STATUS_ERROR;
}
// FIXME: Assume that every profile is FULL until we understand how to build
// GCN with base profile
agent_profile = HSA_PROFILE_FULL;
/* Create the empty executable. */
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
&executable);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Create the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
bool module_load_success = false;
do // Existing control flow used continue, preserve that for this patch
{
{
// Some metadata info is not available through ROCr API, so use custom
// code object metadata parsing to collect such metadata info
err = get_code_object_custom_metadata(module_bytes, module_size,
KernelInfoTable);
if (err != HSA_STATUS_SUCCESS) {
DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Getting custom code object metadata",
get_error_string(err));
continue;
}
// Deserialize code object.
hsa_code_object_t code_object = {0};
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
&code_object);
if (err != HSA_STATUS_SUCCESS) {
DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Code Object Deserialization", get_error_string(err));
continue;
}
assert(0 != code_object.handle);
// Mutating the device image here avoids another allocation & memcpy
void *code_object_alloc_data =
reinterpret_cast<void *>(code_object.handle);
hsa_status_t atmi_err =
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
if (atmi_err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Error in deserialized_data callback",
get_error_string(atmi_err));
return atmi_err;
}
/* Load the code object. */
err =
hsa_executable_load_code_object(executable, agent, code_object, NULL);
if (err != HSA_STATUS_SUCCESS) {
DEBUG_PRINT("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Loading the code object", get_error_string(err));
continue;
}
// cannot iterate over symbols until executable is frozen
}
module_load_success = true;
} while (0);
DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
if (module_load_success) {
/* Freeze the executable; it can now be queried for symbols. */
err = hsa_executable_freeze(executable, "");
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Freeze the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
err = hsa::executable_iterate_symbols(
executable,
[&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
});
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterating over symbols for execuatable", get_error_string(err));
return HSA_STATUS_ERROR;
}
// save the executable and destroy during finalize
HSAExecutables.push_back(executable);
return HSA_STATUS_SUCCESS;
} else {
return HSA_STATUS_ERROR;
}
}
} // namespace core