Files
clang-p2996/bolt/lib/Passes/CacheMetrics.cpp
Fabian Parzefall d55dfeaf32 [BOLT] Replace uses of layout with basic block list
As we are moving towards support for multiple fragments, loops that
iterate over all basic blocks of a function, but do not depend on the
order of basic blocks in the final layout, should iterate over binary
functions directly, rather than the layout.

Eventually, all loops using the layout list should either iterate over
the function, or be aware of multiple layouts. This patch replaces
references to binary function's block layout with the binary function
itself where only little code changes are necessary.

Reviewed By: maksfb

Differential Revision: https://reviews.llvm.org/D129585
2022-07-14 13:07:05 -07:00

314 lines
12 KiB
C++

//===- bolt/Passes/CacheMetrics.cpp - Metrics for instruction cache -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CacheMetrics class and functions for showing metrics
// of cache lines.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/CacheMetrics.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "llvm/Support/CommandLine.h"
#include <unordered_map>
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::OptionCategory BoltOptCategory;
extern cl::opt<double> ForwardWeight;
extern cl::opt<double> BackwardWeight;
extern cl::opt<unsigned> ForwardDistance;
extern cl::opt<unsigned> BackwardDistance;
extern cl::opt<unsigned> ITLBPageSize;
extern cl::opt<unsigned> ITLBEntries;
} // namespace opts
namespace {
/// Initialize and return a position map for binary basic blocks
void extractBasicBlockInfo(
const std::vector<BinaryFunction *> &BinaryFunctions,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
for (BinaryFunction *BF : BinaryFunctions) {
const BinaryContext &BC = BF->getBinaryContext();
for (BinaryBasicBlock &BB : *BF) {
if (BF->isSimple() || BC.HasRelocations) {
// Use addresses/sizes as in the output binary
BBAddr[&BB] = BB.getOutputAddressRange().first;
BBSize[&BB] = BB.getOutputSize();
} else {
// Output ranges should match the input if the body hasn't changed
BBAddr[&BB] = BB.getInputAddressRange().first + BF->getAddress();
BBSize[&BB] = BB.getOriginalSize();
}
}
}
}
/// Calculate TSP metric, which quantifies the number of fallthrough jumps in
/// the ordering of basic blocks
double
calcTSPScore(const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
double Score = 0;
for (BinaryFunction *BF : BinaryFunctions) {
if (!BF->hasProfile())
continue;
for (BinaryBasicBlock &SrcBB : *BF) {
auto BI = SrcBB.branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB.successors()) {
if (&SrcBB != DstBB &&
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
BBAddr.at(&SrcBB) + BBSize.at(&SrcBB) == BBAddr.at(DstBB))
Score += BI->Count;
++BI;
}
}
}
return Score;
}
/// Calculate Ext-TSP metric, which quantifies the expected number of i-cache
/// misses for a given ordering of basic blocks
double calcExtTSPScore(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
double Score = 0.0;
for (BinaryFunction *BF : BinaryFunctions) {
if (!BF->hasProfile())
continue;
for (BinaryBasicBlock &SrcBB : *BF) {
auto BI = SrcBB.branch_info_begin();
for (BinaryBasicBlock *DstBB : SrcBB.successors()) {
if (DstBB != &SrcBB)
Score +=
CacheMetrics::extTSPScore(BBAddr.at(&SrcBB), BBSize.at(&SrcBB),
BBAddr.at(DstBB), BI->Count);
++BI;
}
}
}
return Score;
}
using Predecessors = std::vector<std::pair<BinaryFunction *, uint64_t>>;
/// Build a simplified version of the call graph: For every function, keep
/// its callers and the frequencies of the calls
std::unordered_map<const BinaryFunction *, Predecessors>
extractFunctionCalls(const std::vector<BinaryFunction *> &BinaryFunctions) {
std::unordered_map<const BinaryFunction *, Predecessors> Calls;
for (BinaryFunction *SrcFunction : BinaryFunctions) {
const BinaryContext &BC = SrcFunction->getBinaryContext();
for (BinaryBasicBlock *BB : SrcFunction->layout()) {
// Find call instructions and extract target symbols from each one
for (MCInst &Inst : *BB) {
if (!BC.MIB->isCall(Inst))
continue;
// Call info
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
uint64_t Count = BB->getKnownExecutionCount();
// Ignore calls w/o information
if (DstSym == nullptr || Count == 0)
continue;
const BinaryFunction *DstFunction = BC.getFunctionForSymbol(DstSym);
// Ignore recursive calls
if (DstFunction == nullptr || DstFunction->layout_empty() ||
DstFunction == SrcFunction)
continue;
// Record the call
Calls[DstFunction].emplace_back(SrcFunction, Count);
}
}
}
return Calls;
}
/// Compute expected hit ratio of the i-TLB cache (optimized by HFSortPlus alg).
/// Given an assignment of functions to the i-TLB pages), we divide all
/// functions calls into two categories:
/// - 'short' ones that have a caller-callee distance less than a page;
/// - 'long' ones where the distance exceeds a page.
/// The short calls are likely to result in a i-TLB cache hit. For the long
/// ones, the hit/miss result depends on the 'hotness' of the page (i.e., how
/// often the page is accessed). Assuming that functions are sent to the i-TLB
/// cache in a random order, the probability that a page is present in the cache
/// is proportional to the number of samples corresponding to the functions on
/// the page. The following procedure detects short and long calls, and
/// estimates the expected number of cache misses for the long ones.
double expectedCacheHitRatio(
const std::vector<BinaryFunction *> &BinaryFunctions,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBAddr,
const std::unordered_map<BinaryBasicBlock *, uint64_t> &BBSize) {
const double PageSize = opts::ITLBPageSize;
const uint64_t CacheEntries = opts::ITLBEntries;
std::unordered_map<const BinaryFunction *, Predecessors> Calls =
extractFunctionCalls(BinaryFunctions);
// Compute 'hotness' of the functions
double TotalSamples = 0;
std::unordered_map<BinaryFunction *, double> FunctionSamples;
for (BinaryFunction *BF : BinaryFunctions) {
double Samples = 0;
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF])
Samples += Pair.second;
Samples = std::max(Samples, (double)BF->getKnownExecutionCount());
FunctionSamples[BF] = Samples;
TotalSamples += Samples;
}
// Compute 'hotness' of the pages
std::unordered_map<uint64_t, double> PageSamples;
for (BinaryFunction *BF : BinaryFunctions) {
if (BF->layout_empty())
continue;
double Page = BBAddr.at(BF->layout_front()) / PageSize;
PageSamples[Page] += FunctionSamples.at(BF);
}
// Computing the expected number of misses for every function
double Misses = 0;
for (BinaryFunction *BF : BinaryFunctions) {
// Skip the function if it has no samples
if (BF->layout_empty() || FunctionSamples.at(BF) == 0.0)
continue;
double Samples = FunctionSamples.at(BF);
double Page = BBAddr.at(BF->layout_front()) / PageSize;
// The probability that the page is not present in the cache
double MissProb = pow(1.0 - PageSamples[Page] / TotalSamples, CacheEntries);
// Processing all callers of the function
for (std::pair<BinaryFunction *, uint64_t> Pair : Calls[BF]) {
BinaryFunction *SrcFunction = Pair.first;
double SrcPage = BBAddr.at(SrcFunction->layout_front()) / PageSize;
// Is this a 'long' or a 'short' call?
if (Page != SrcPage) {
// This is a miss
Misses += MissProb * Pair.second;
}
Samples -= Pair.second;
}
assert(Samples >= 0.0 && "Function samples computed incorrectly");
// The remaining samples likely come from the jitted code
Misses += Samples * MissProb;
}
return 100.0 * (1.0 - Misses / TotalSamples);
}
} // namespace
double CacheMetrics::extTSPScore(uint64_t SrcAddr, uint64_t SrcSize,
uint64_t DstAddr, uint64_t Count) {
assert(Count != BinaryBasicBlock::COUNT_NO_PROFILE);
// Fallthrough
if (SrcAddr + SrcSize == DstAddr) {
// Assume that FallthroughWeight = 1.0 after normalization
return static_cast<double>(Count);
}
// Forward
if (SrcAddr + SrcSize < DstAddr) {
const uint64_t Dist = DstAddr - (SrcAddr + SrcSize);
if (Dist <= opts::ForwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::ForwardDistance;
return opts::ForwardWeight * Prob * Count;
}
return 0;
}
// Backward
const uint64_t Dist = SrcAddr + SrcSize - DstAddr;
if (Dist <= opts::BackwardDistance) {
double Prob = 1.0 - static_cast<double>(Dist) / opts::BackwardDistance;
return opts::BackwardWeight * Prob * Count;
}
return 0;
}
void CacheMetrics::printAll(const std::vector<BinaryFunction *> &BFs) {
// Stats related to hot-cold code splitting
size_t NumFunctions = 0;
size_t NumProfiledFunctions = 0;
size_t NumHotFunctions = 0;
size_t NumBlocks = 0;
size_t NumHotBlocks = 0;
size_t TotalCodeMinAddr = std::numeric_limits<size_t>::max();
size_t TotalCodeMaxAddr = 0;
size_t HotCodeMinAddr = std::numeric_limits<size_t>::max();
size_t HotCodeMaxAddr = 0;
for (BinaryFunction *BF : BFs) {
NumFunctions++;
if (BF->hasProfile())
NumProfiledFunctions++;
if (BF->hasValidIndex())
NumHotFunctions++;
for (const BinaryBasicBlock &BB : *BF) {
NumBlocks++;
size_t BBAddrMin = BB.getOutputAddressRange().first;
size_t BBAddrMax = BB.getOutputAddressRange().second;
TotalCodeMinAddr = std::min(TotalCodeMinAddr, BBAddrMin);
TotalCodeMaxAddr = std::max(TotalCodeMaxAddr, BBAddrMax);
if (BF->hasValidIndex() && !BB.isCold()) {
NumHotBlocks++;
HotCodeMinAddr = std::min(HotCodeMinAddr, BBAddrMin);
HotCodeMaxAddr = std::max(HotCodeMaxAddr, BBAddrMax);
}
}
}
outs() << format(" There are %zu functions;", NumFunctions)
<< format(" %zu (%.2lf%%) are in the hot section,", NumHotFunctions,
100.0 * NumHotFunctions / NumFunctions)
<< format(" %zu (%.2lf%%) have profile\n", NumProfiledFunctions,
100.0 * NumProfiledFunctions / NumFunctions);
outs() << format(" There are %zu basic blocks;", NumBlocks)
<< format(" %zu (%.2lf%%) are in the hot section\n", NumHotBlocks,
100.0 * NumHotBlocks / NumBlocks);
assert(TotalCodeMinAddr <= TotalCodeMaxAddr && "incorrect output addresses");
size_t HotCodeSize = HotCodeMaxAddr - HotCodeMinAddr;
size_t TotalCodeSize = TotalCodeMaxAddr - TotalCodeMinAddr;
size_t HugePage2MB = 2 << 20;
outs() << format(" Hot code takes %.2lf%% of binary (%zu bytes out of %zu, "
"%.2lf huge pages)\n",
100.0 * HotCodeSize / TotalCodeSize, HotCodeSize,
TotalCodeSize, double(HotCodeSize) / HugePage2MB);
// Stats related to expected cache performance
std::unordered_map<BinaryBasicBlock *, uint64_t> BBAddr;
std::unordered_map<BinaryBasicBlock *, uint64_t> BBSize;
extractBasicBlockInfo(BFs, BBAddr, BBSize);
outs() << " Expected i-TLB cache hit ratio: "
<< format("%.2lf%%\n", expectedCacheHitRatio(BFs, BBAddr, BBSize));
outs() << " TSP score: "
<< format("%.0lf\n", calcTSPScore(BFs, BBAddr, BBSize));
outs() << " ExtTSP score: "
<< format("%.0lf\n", calcExtTSPScore(BFs, BBAddr, BBSize));
}