Files
clang-p2996/clang/lib/AST/ByteCode/Program.cpp
Timm Baeder 2c1e9f14be [clang][bytecode] Explicit composite array descriptor types (#129376)
When creating descriptor for array element types, we only save the
original source, e.g. int[2][2][2]. So later calls to getType() of the
element descriptors will also return int[2][2][2], instead of e.g.
int[2][2] for the second dimension.
Fix this by explicitly tracking the array types.
The last attached test case used to have an lvalue offset of 32 instead
of 24.

We should do this for more desriptor types though and not just composite
array, but I'm leaving that to a later patch.
2025-03-02 09:40:56 +01:00

474 lines
15 KiB
C++

//===--- Program.cpp - Bytecode for the constexpr VM ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Program.h"
#include "Context.h"
#include "Function.h"
#include "Integral.h"
#include "PrimType.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
using namespace clang;
using namespace clang::interp;
unsigned Program::getOrCreateNativePointer(const void *Ptr) {
auto [It, Inserted] =
NativePointerIndices.try_emplace(Ptr, NativePointers.size());
if (Inserted)
NativePointers.push_back(Ptr);
return It->second;
}
const void *Program::getNativePointer(unsigned Idx) {
return NativePointers[Idx];
}
unsigned Program::createGlobalString(const StringLiteral *S, const Expr *Base) {
const size_t CharWidth = S->getCharByteWidth();
const size_t BitWidth = CharWidth * Ctx.getCharBit();
unsigned StringLength = S->getLength();
PrimType CharType;
switch (CharWidth) {
case 1:
CharType = PT_Sint8;
break;
case 2:
CharType = PT_Uint16;
break;
case 4:
CharType = PT_Uint32;
break;
default:
llvm_unreachable("unsupported character width");
}
if (!Base)
Base = S;
// Create a descriptor for the string.
Descriptor *Desc =
allocateDescriptor(Base, CharType, Descriptor::GlobalMD, StringLength + 1,
/*isConst=*/true,
/*isTemporary=*/false,
/*isMutable=*/false);
// Allocate storage for the string.
// The byte length does not include the null terminator.
unsigned GlobalIndex = Globals.size();
unsigned Sz = Desc->getAllocSize();
auto *G = new (Allocator, Sz) Global(Ctx.getEvalID(), Desc, /*isStatic=*/true,
/*isExtern=*/false);
G->block()->invokeCtor();
new (G->block()->rawData()) InlineDescriptor(Desc);
Globals.push_back(G);
// Construct the string in storage.
const Pointer Ptr(G->block());
for (unsigned I = 0; I <= StringLength; ++I) {
Pointer Field = Ptr.atIndex(I);
const uint32_t CodePoint = I == StringLength ? 0 : S->getCodeUnit(I);
switch (CharType) {
case PT_Sint8: {
using T = PrimConv<PT_Sint8>::T;
Field.deref<T>() = T::from(CodePoint, BitWidth);
break;
}
case PT_Uint16: {
using T = PrimConv<PT_Uint16>::T;
Field.deref<T>() = T::from(CodePoint, BitWidth);
break;
}
case PT_Uint32: {
using T = PrimConv<PT_Uint32>::T;
Field.deref<T>() = T::from(CodePoint, BitWidth);
break;
}
default:
llvm_unreachable("unsupported character type");
}
}
Ptr.initialize();
return GlobalIndex;
}
Pointer Program::getPtrGlobal(unsigned Idx) const {
assert(Idx < Globals.size());
return Pointer(Globals[Idx]->block());
}
std::optional<unsigned> Program::getGlobal(const ValueDecl *VD) {
if (auto It = GlobalIndices.find(VD); It != GlobalIndices.end())
return It->second;
// Find any previous declarations which were already evaluated.
std::optional<unsigned> Index;
for (const Decl *P = VD->getPreviousDecl(); P; P = P->getPreviousDecl()) {
if (auto It = GlobalIndices.find(P); It != GlobalIndices.end()) {
Index = It->second;
break;
}
}
// Map the decl to the existing index.
if (Index)
GlobalIndices[VD] = *Index;
return std::nullopt;
}
std::optional<unsigned> Program::getGlobal(const Expr *E) {
if (auto It = GlobalIndices.find(E); It != GlobalIndices.end())
return It->second;
return std::nullopt;
}
std::optional<unsigned> Program::getOrCreateGlobal(const ValueDecl *VD,
const Expr *Init) {
if (auto Idx = getGlobal(VD))
return Idx;
if (auto Idx = createGlobal(VD, Init)) {
GlobalIndices[VD] = *Idx;
return Idx;
}
return std::nullopt;
}
unsigned Program::getOrCreateDummy(const DeclTy &D) {
assert(D);
// Dedup blocks since they are immutable and pointers cannot be compared.
if (auto It = DummyVariables.find(D.getOpaqueValue());
It != DummyVariables.end())
return It->second;
QualType QT;
bool IsWeak = false;
if (const auto *E = dyn_cast<const Expr *>(D)) {
QT = E->getType();
} else {
const ValueDecl *VD = cast<ValueDecl>(cast<const Decl *>(D));
IsWeak = VD->isWeak();
QT = VD->getType();
if (const auto *RT = QT->getAs<ReferenceType>())
QT = RT->getPointeeType();
}
assert(!QT.isNull());
Descriptor *Desc;
if (std::optional<PrimType> T = Ctx.classify(QT))
Desc = createDescriptor(D, *T, std::nullopt, /*IsTemporary=*/true,
/*IsMutable=*/false);
else
Desc = createDescriptor(D, QT.getTypePtr(), std::nullopt,
/*IsTemporary=*/true, /*IsMutable=*/false);
if (!Desc)
Desc = allocateDescriptor(D);
assert(Desc);
Desc->makeDummy();
assert(Desc->isDummy());
// Allocate a block for storage.
unsigned I = Globals.size();
auto *G = new (Allocator, Desc->getAllocSize())
Global(Ctx.getEvalID(), getCurrentDecl(), Desc, /*IsStatic=*/true,
/*IsExtern=*/false, IsWeak);
G->block()->invokeCtor();
Globals.push_back(G);
DummyVariables[D.getOpaqueValue()] = I;
return I;
}
std::optional<unsigned> Program::createGlobal(const ValueDecl *VD,
const Expr *Init) {
bool IsStatic, IsExtern;
bool IsWeak = VD->isWeak();
if (const auto *Var = dyn_cast<VarDecl>(VD)) {
IsStatic = Context::shouldBeGloballyIndexed(VD);
IsExtern = Var->hasExternalStorage();
} else if (isa<UnnamedGlobalConstantDecl, MSGuidDecl,
TemplateParamObjectDecl>(VD)) {
IsStatic = true;
IsExtern = false;
} else {
IsStatic = false;
IsExtern = true;
}
// Register all previous declarations as well. For extern blocks, just replace
// the index with the new variable.
if (auto Idx =
createGlobal(VD, VD->getType(), IsStatic, IsExtern, IsWeak, Init)) {
for (const Decl *P = VD; P; P = P->getPreviousDecl()) {
if (P != VD) {
unsigned PIdx = GlobalIndices[P];
if (Globals[PIdx]->block()->isExtern())
Globals[PIdx] = Globals[*Idx];
}
GlobalIndices[P] = *Idx;
}
return *Idx;
}
return std::nullopt;
}
std::optional<unsigned> Program::createGlobal(const Expr *E) {
if (auto Idx = getGlobal(E))
return Idx;
if (auto Idx = createGlobal(E, E->getType(), /*isStatic=*/true,
/*isExtern=*/false, /*IsWeak=*/false)) {
GlobalIndices[E] = *Idx;
return *Idx;
}
return std::nullopt;
}
std::optional<unsigned> Program::createGlobal(const DeclTy &D, QualType Ty,
bool IsStatic, bool IsExtern,
bool IsWeak, const Expr *Init) {
// Create a descriptor for the global.
Descriptor *Desc;
const bool IsConst = Ty.isConstQualified();
const bool IsTemporary = D.dyn_cast<const Expr *>();
if (std::optional<PrimType> T = Ctx.classify(Ty))
Desc = createDescriptor(D, *T, Descriptor::GlobalMD, IsConst, IsTemporary);
else
Desc = createDescriptor(D, Ty.getTypePtr(), Descriptor::GlobalMD, IsConst,
IsTemporary);
if (!Desc)
return std::nullopt;
// Allocate a block for storage.
unsigned I = Globals.size();
auto *G = new (Allocator, Desc->getAllocSize()) Global(
Ctx.getEvalID(), getCurrentDecl(), Desc, IsStatic, IsExtern, IsWeak);
G->block()->invokeCtor();
// Initialize InlineDescriptor fields.
auto *GD = new (G->block()->rawData()) GlobalInlineDescriptor();
if (!Init)
GD->InitState = GlobalInitState::NoInitializer;
Globals.push_back(G);
return I;
}
Function *Program::getFunction(const FunctionDecl *F) {
F = F->getCanonicalDecl();
assert(F);
auto It = Funcs.find(F);
return It == Funcs.end() ? nullptr : It->second.get();
}
Record *Program::getOrCreateRecord(const RecordDecl *RD) {
// Use the actual definition as a key.
RD = RD->getDefinition();
if (!RD)
return nullptr;
if (!RD->isCompleteDefinition())
return nullptr;
// Return an existing record if available. Otherwise, we insert nullptr now
// and replace that later, so recursive calls to this function with the same
// RecordDecl don't run into infinite recursion.
auto [It, Inserted] = Records.try_emplace(RD);
if (!Inserted)
return It->second;
// Number of bytes required by fields and base classes.
unsigned BaseSize = 0;
// Number of bytes required by virtual base.
unsigned VirtSize = 0;
// Helper to get a base descriptor.
auto GetBaseDesc = [this](const RecordDecl *BD,
const Record *BR) -> const Descriptor * {
if (!BR)
return nullptr;
return allocateDescriptor(BD, BR, std::nullopt, /*isConst=*/false,
/*isTemporary=*/false,
/*isMutable=*/false);
};
// Reserve space for base classes.
Record::BaseList Bases;
Record::VirtualBaseList VirtBases;
if (const auto *CD = dyn_cast<CXXRecordDecl>(RD)) {
for (const CXXBaseSpecifier &Spec : CD->bases()) {
if (Spec.isVirtual())
continue;
// In error cases, the base might not be a RecordType.
const auto *RT = Spec.getType()->getAs<RecordType>();
if (!RT)
return nullptr;
const RecordDecl *BD = RT->getDecl();
const Record *BR = getOrCreateRecord(BD);
const Descriptor *Desc = GetBaseDesc(BD, BR);
if (!Desc)
return nullptr;
BaseSize += align(sizeof(InlineDescriptor));
Bases.push_back({BD, BaseSize, Desc, BR});
BaseSize += align(BR->getSize());
}
for (const CXXBaseSpecifier &Spec : CD->vbases()) {
const auto *RT = Spec.getType()->getAs<RecordType>();
if (!RT)
return nullptr;
const RecordDecl *BD = RT->getDecl();
const Record *BR = getOrCreateRecord(BD);
const Descriptor *Desc = GetBaseDesc(BD, BR);
if (!Desc)
return nullptr;
VirtSize += align(sizeof(InlineDescriptor));
VirtBases.push_back({BD, VirtSize, Desc, BR});
VirtSize += align(BR->getSize());
}
}
// Reserve space for fields.
Record::FieldList Fields;
for (const FieldDecl *FD : RD->fields()) {
FD = FD->getFirstDecl();
// Note that we DO create fields and descriptors
// for unnamed bitfields here, even though we later ignore
// them everywhere. That's so the FieldDecl's getFieldIndex() matches.
// Reserve space for the field's descriptor and the offset.
BaseSize += align(sizeof(InlineDescriptor));
// Classify the field and add its metadata.
QualType FT = FD->getType();
const bool IsConst = FT.isConstQualified();
const bool IsMutable = FD->isMutable();
const Descriptor *Desc;
if (std::optional<PrimType> T = Ctx.classify(FT)) {
Desc = createDescriptor(FD, *T, std::nullopt, IsConst,
/*isTemporary=*/false, IsMutable);
} else {
Desc = createDescriptor(FD, FT.getTypePtr(), std::nullopt, IsConst,
/*isTemporary=*/false, IsMutable);
}
if (!Desc)
return nullptr;
Fields.push_back({FD, BaseSize, Desc});
BaseSize += align(Desc->getAllocSize());
}
Record *R = new (Allocator) Record(RD, std::move(Bases), std::move(Fields),
std::move(VirtBases), VirtSize, BaseSize);
Records[RD] = R;
return R;
}
Descriptor *Program::createDescriptor(const DeclTy &D, const Type *Ty,
Descriptor::MetadataSize MDSize,
bool IsConst, bool IsTemporary,
bool IsMutable, const Expr *Init) {
// Classes and structures.
if (const auto *RT = Ty->getAs<RecordType>()) {
if (const auto *Record = getOrCreateRecord(RT->getDecl()))
return allocateDescriptor(D, Record, MDSize, IsConst, IsTemporary,
IsMutable);
}
// Arrays.
if (const auto *ArrayType = Ty->getAsArrayTypeUnsafe()) {
QualType ElemTy = ArrayType->getElementType();
// Array of well-known bounds.
if (const auto *CAT = dyn_cast<ConstantArrayType>(ArrayType)) {
size_t NumElems = CAT->getZExtSize();
if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
// Arrays of primitives.
unsigned ElemSize = primSize(*T);
if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems) {
return {};
}
return allocateDescriptor(D, *T, MDSize, NumElems, IsConst, IsTemporary,
IsMutable);
} else {
// Arrays of composites. In this case, the array is a list of pointers,
// followed by the actual elements.
const Descriptor *ElemDesc = createDescriptor(
D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
if (!ElemDesc)
return nullptr;
unsigned ElemSize = ElemDesc->getAllocSize() + sizeof(InlineDescriptor);
if (std::numeric_limits<unsigned>::max() / ElemSize <= NumElems)
return {};
return allocateDescriptor(D, Ty, ElemDesc, MDSize, NumElems, IsConst,
IsTemporary, IsMutable);
}
}
// Array of unknown bounds - cannot be accessed and pointer arithmetic
// is forbidden on pointers to such objects.
if (isa<IncompleteArrayType>(ArrayType) ||
isa<VariableArrayType>(ArrayType)) {
if (std::optional<PrimType> T = Ctx.classify(ElemTy)) {
return allocateDescriptor(D, *T, MDSize, IsTemporary,
Descriptor::UnknownSize{});
} else {
const Descriptor *Desc = createDescriptor(
D, ElemTy.getTypePtr(), std::nullopt, IsConst, IsTemporary);
if (!Desc)
return nullptr;
return allocateDescriptor(D, Desc, MDSize, IsTemporary,
Descriptor::UnknownSize{});
}
}
}
// Atomic types.
if (const auto *AT = Ty->getAs<AtomicType>()) {
const Type *InnerTy = AT->getValueType().getTypePtr();
return createDescriptor(D, InnerTy, MDSize, IsConst, IsTemporary,
IsMutable);
}
// Complex types - represented as arrays of elements.
if (const auto *CT = Ty->getAs<ComplexType>()) {
std::optional<PrimType> ElemTy = Ctx.classify(CT->getElementType());
if (!ElemTy)
return nullptr;
return allocateDescriptor(D, *ElemTy, MDSize, 2, IsConst, IsTemporary,
IsMutable);
}
// Same with vector types.
if (const auto *VT = Ty->getAs<VectorType>()) {
std::optional<PrimType> ElemTy = Ctx.classify(VT->getElementType());
if (!ElemTy)
return nullptr;
return allocateDescriptor(D, *ElemTy, MDSize, VT->getNumElements(), IsConst,
IsTemporary, IsMutable);
}
return nullptr;
}