In our test pool, the max entry point RT was improved by this change: 1'181 seconds (~19.7 minutes) -> 94 seconds (1.6 minutes) BTW, the 1.6 minutes is still really bad. But a few orders of magnitude better than it was before. This was the most servere RT edge-case as you can see from the numbers. There are are more known RT bottlenecks, such as: - Large environment sizes, and `removeDead`. See more about the failed attempt on improving it at: https://discourse.llvm.org/t/unsuccessful-attempts-to-fix-a-slow-analysis-case-related-to-removedead-and-environment-size/84650 - Large chunk of time could be spend inside `assume`, to reach a fixed point. This is something we want to look into a bit later if we have time. We have 3'075'607 entry points in our test set. About 393'352 entry points ran longer than 1 second when measured. To give a sense of the distribution, if we ignore the slowest 500 entry points, then the maximum entry point runs for about 14 seconds. These 500 slow entry points are in 332 translation units. By this patch, out of the slowest 500 entry points, 72 entry points were improved by at least 10x after this change. We measured no RT regression on the "usual" entry points.  (The dashed lines represent the maximum of their RT) CPP-6092
687 lines
23 KiB
C++
687 lines
23 KiB
C++
//= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements ProgramState and ProgramStateManager.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Basic/JsonSupport.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
namespace clang { namespace ento {
|
|
/// Increments the number of times this state is referenced.
|
|
|
|
void ProgramStateRetain(const ProgramState *state) {
|
|
++const_cast<ProgramState*>(state)->refCount;
|
|
}
|
|
|
|
/// Decrement the number of times this state is referenced.
|
|
void ProgramStateRelease(const ProgramState *state) {
|
|
assert(state->refCount > 0);
|
|
ProgramState *s = const_cast<ProgramState*>(state);
|
|
if (--s->refCount == 0) {
|
|
ProgramStateManager &Mgr = s->getStateManager();
|
|
Mgr.StateSet.RemoveNode(s);
|
|
s->~ProgramState();
|
|
Mgr.freeStates.push_back(s);
|
|
}
|
|
}
|
|
}}
|
|
|
|
ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
|
|
StoreRef st, GenericDataMap gdm)
|
|
: stateMgr(mgr),
|
|
Env(env),
|
|
store(st.getStore()),
|
|
GDM(gdm),
|
|
refCount(0) {
|
|
stateMgr->getStoreManager().incrementReferenceCount(store);
|
|
}
|
|
|
|
ProgramState::ProgramState(const ProgramState &RHS)
|
|
: stateMgr(RHS.stateMgr), Env(RHS.Env), store(RHS.store), GDM(RHS.GDM),
|
|
PosteriorlyOverconstrained(RHS.PosteriorlyOverconstrained), refCount(0) {
|
|
stateMgr->getStoreManager().incrementReferenceCount(store);
|
|
}
|
|
|
|
ProgramState::~ProgramState() {
|
|
if (store)
|
|
stateMgr->getStoreManager().decrementReferenceCount(store);
|
|
}
|
|
|
|
int64_t ProgramState::getID() const {
|
|
return getStateManager().Alloc.identifyKnownAlignedObject<ProgramState>(this);
|
|
}
|
|
|
|
ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
|
|
StoreManagerCreator CreateSMgr,
|
|
ConstraintManagerCreator CreateCMgr,
|
|
llvm::BumpPtrAllocator &alloc,
|
|
ExprEngine *ExprEng)
|
|
: Eng(ExprEng), EnvMgr(alloc), GDMFactory(alloc),
|
|
svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
|
|
CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
|
|
StoreMgr = (*CreateSMgr)(*this);
|
|
ConstraintMgr = (*CreateCMgr)(*this, ExprEng);
|
|
}
|
|
|
|
|
|
ProgramStateManager::~ProgramStateManager() {
|
|
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
|
|
I!=E; ++I)
|
|
I->second.second(I->second.first);
|
|
}
|
|
|
|
ProgramStateRef ProgramStateManager::removeDeadBindingsFromEnvironmentAndStore(
|
|
ProgramStateRef state, const StackFrameContext *LCtx,
|
|
SymbolReaper &SymReaper) {
|
|
|
|
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
|
|
// The roots are any Block-level exprs and Decls that our liveness algorithm
|
|
// tells us are live. We then see what Decls they may reference, and keep
|
|
// those around. This code more than likely can be made faster, and the
|
|
// frequency of which this method is called should be experimented with
|
|
// for optimum performance.
|
|
ProgramState NewState = *state;
|
|
|
|
NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
|
|
|
|
// Clean up the store.
|
|
StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
|
|
SymReaper);
|
|
NewState.setStore(newStore);
|
|
SymReaper.setReapedStore(newStore);
|
|
|
|
return getPersistentState(NewState);
|
|
}
|
|
|
|
ProgramStateRef ProgramState::bindLoc(Loc LV,
|
|
SVal V,
|
|
const LocationContext *LCtx,
|
|
bool notifyChanges) const {
|
|
ProgramStateManager &Mgr = getStateManager();
|
|
ExprEngine &Eng = Mgr.getOwningEngine();
|
|
ProgramStateRef State = makeWithStore(Mgr.StoreMgr->Bind(getStore(), LV, V));
|
|
const MemRegion *MR = LV.getAsRegion();
|
|
|
|
if (MR && notifyChanges)
|
|
return Eng.processRegionChange(State, MR, LCtx);
|
|
|
|
return State;
|
|
}
|
|
|
|
ProgramStateRef
|
|
ProgramState::bindDefaultInitial(SVal loc, SVal V,
|
|
const LocationContext *LCtx) const {
|
|
ProgramStateManager &Mgr = getStateManager();
|
|
const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
|
|
BindResult BindRes = Mgr.StoreMgr->BindDefaultInitial(getStore(), R, V);
|
|
ProgramStateRef State = makeWithStore(BindRes);
|
|
return Mgr.getOwningEngine().processRegionChange(State, R, LCtx);
|
|
}
|
|
|
|
ProgramStateRef
|
|
ProgramState::bindDefaultZero(SVal loc, const LocationContext *LCtx) const {
|
|
ProgramStateManager &Mgr = getStateManager();
|
|
const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
|
|
BindResult BindRes = Mgr.StoreMgr->BindDefaultZero(getStore(), R);
|
|
ProgramStateRef State = makeWithStore(BindRes);
|
|
return Mgr.getOwningEngine().processRegionChange(State, R, LCtx);
|
|
}
|
|
|
|
typedef ArrayRef<const MemRegion *> RegionList;
|
|
typedef ArrayRef<SVal> ValueList;
|
|
|
|
ProgramStateRef ProgramState::invalidateRegions(
|
|
RegionList Regions, const Stmt *S, unsigned Count,
|
|
const LocationContext *LCtx, bool CausedByPointerEscape,
|
|
InvalidatedSymbols *IS, const CallEvent *Call,
|
|
RegionAndSymbolInvalidationTraits *ITraits) const {
|
|
SmallVector<SVal, 8> Values;
|
|
for (const MemRegion *Reg : Regions)
|
|
Values.push_back(loc::MemRegionVal(Reg));
|
|
|
|
return invalidateRegions(Values, S, Count, LCtx, CausedByPointerEscape, IS,
|
|
Call, ITraits);
|
|
}
|
|
|
|
ProgramStateRef ProgramState::invalidateRegions(
|
|
ValueList Values, const Stmt *S, unsigned Count,
|
|
const LocationContext *LCtx, bool CausedByPointerEscape,
|
|
InvalidatedSymbols *IS, const CallEvent *Call,
|
|
RegionAndSymbolInvalidationTraits *ITraits) const {
|
|
|
|
ProgramStateManager &Mgr = getStateManager();
|
|
ExprEngine &Eng = Mgr.getOwningEngine();
|
|
|
|
InvalidatedSymbols InvalidatedSyms;
|
|
if (!IS)
|
|
IS = &InvalidatedSyms;
|
|
|
|
RegionAndSymbolInvalidationTraits ITraitsLocal;
|
|
if (!ITraits)
|
|
ITraits = &ITraitsLocal;
|
|
|
|
StoreManager::InvalidatedRegions TopLevelInvalidated;
|
|
StoreManager::InvalidatedRegions Invalidated;
|
|
const StoreRef &NewStore = Mgr.StoreMgr->invalidateRegions(
|
|
getStore(), Values, S, Count, LCtx, Call, *IS, *ITraits,
|
|
&TopLevelInvalidated, &Invalidated);
|
|
|
|
ProgramStateRef NewState = makeWithStore(NewStore);
|
|
|
|
if (CausedByPointerEscape) {
|
|
NewState = Eng.notifyCheckersOfPointerEscape(
|
|
NewState, IS, TopLevelInvalidated, Call, *ITraits);
|
|
}
|
|
|
|
return Eng.processRegionChanges(NewState, IS, TopLevelInvalidated,
|
|
Invalidated, LCtx, Call);
|
|
}
|
|
|
|
ProgramStateRef ProgramState::killBinding(Loc LV) const {
|
|
Store OldStore = getStore();
|
|
const StoreRef &newStore =
|
|
getStateManager().StoreMgr->killBinding(OldStore, LV);
|
|
|
|
if (newStore.getStore() == OldStore)
|
|
return this;
|
|
|
|
return makeWithStore(newStore);
|
|
}
|
|
|
|
/// We should never form a MemRegion that would wrap a TypedValueRegion of a
|
|
/// reference type. What we actually wanted was to create a MemRegion refering
|
|
/// to the pointee of that reference.
|
|
SVal ProgramState::desugarReference(SVal Val) const {
|
|
const auto *TyReg = dyn_cast_or_null<TypedValueRegion>(Val.getAsRegion());
|
|
if (!TyReg || !TyReg->getValueType()->isReferenceType())
|
|
return Val;
|
|
return getSVal(TyReg);
|
|
}
|
|
|
|
/// SymbolicRegions are expected to be wrapped by an ElementRegion as a
|
|
/// canonical representation. As a canonical representation, SymbolicRegions
|
|
/// should be wrapped by ElementRegions before getting a FieldRegion.
|
|
/// See f8643a9b31c4029942f67d4534c9139b45173504 why.
|
|
SVal ProgramState::wrapSymbolicRegion(SVal Val) const {
|
|
const auto *BaseReg = dyn_cast_or_null<SymbolicRegion>(Val.getAsRegion());
|
|
if (!BaseReg)
|
|
return Val;
|
|
|
|
StoreManager &SM = getStateManager().getStoreManager();
|
|
QualType ElemTy = BaseReg->getPointeeStaticType();
|
|
return loc::MemRegionVal{SM.GetElementZeroRegion(BaseReg, ElemTy)};
|
|
}
|
|
|
|
ProgramStateRef
|
|
ProgramState::enterStackFrame(const CallEvent &Call,
|
|
const StackFrameContext *CalleeCtx) const {
|
|
return makeWithStore(
|
|
getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx));
|
|
}
|
|
|
|
SVal ProgramState::getSelfSVal(const LocationContext *LCtx) const {
|
|
const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
|
|
if (!SelfDecl)
|
|
return SVal();
|
|
return getSVal(getRegion(SelfDecl, LCtx));
|
|
}
|
|
|
|
SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
|
|
// We only want to do fetches from regions that we can actually bind
|
|
// values. For example, SymbolicRegions of type 'id<...>' cannot
|
|
// have direct bindings (but their can be bindings on their subregions).
|
|
if (!R->isBoundable())
|
|
return UnknownVal();
|
|
|
|
if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
|
|
QualType T = TR->getValueType();
|
|
if (Loc::isLocType(T) || T->isIntegralOrEnumerationType())
|
|
return getSVal(R);
|
|
}
|
|
|
|
return UnknownVal();
|
|
}
|
|
|
|
SVal ProgramState::getSVal(Loc location, QualType T) const {
|
|
SVal V = getRawSVal(location, T);
|
|
|
|
// If 'V' is a symbolic value that is *perfectly* constrained to
|
|
// be a constant value, use that value instead to lessen the burden
|
|
// on later analysis stages (so we have less symbolic values to reason
|
|
// about).
|
|
// We only go into this branch if we can convert the APSInt value we have
|
|
// to the type of T, which is not always the case (e.g. for void).
|
|
if (!T.isNull() && (T->isIntegralOrEnumerationType() || Loc::isLocType(T))) {
|
|
if (SymbolRef sym = V.getAsSymbol()) {
|
|
if (const llvm::APSInt *Int = getStateManager()
|
|
.getConstraintManager()
|
|
.getSymVal(this, sym)) {
|
|
// FIXME: Because we don't correctly model (yet) sign-extension
|
|
// and truncation of symbolic values, we need to convert
|
|
// the integer value to the correct signedness and bitwidth.
|
|
//
|
|
// This shows up in the following:
|
|
//
|
|
// char foo();
|
|
// unsigned x = foo();
|
|
// if (x == 54)
|
|
// ...
|
|
//
|
|
// The symbolic value stored to 'x' is actually the conjured
|
|
// symbol for the call to foo(); the type of that symbol is 'char',
|
|
// not unsigned.
|
|
APSIntPtr NewV = getBasicVals().Convert(T, *Int);
|
|
if (V.getAs<Loc>())
|
|
return loc::ConcreteInt(NewV);
|
|
return nonloc::ConcreteInt(NewV);
|
|
}
|
|
}
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
ProgramStateRef ProgramState::BindExpr(const Stmt *S,
|
|
const LocationContext *LCtx,
|
|
SVal V, bool Invalidate) const{
|
|
Environment NewEnv =
|
|
getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
|
|
Invalidate);
|
|
if (NewEnv == Env)
|
|
return this;
|
|
|
|
ProgramState NewSt = *this;
|
|
NewSt.Env = NewEnv;
|
|
return getStateManager().getPersistentState(NewSt);
|
|
}
|
|
|
|
[[nodiscard]] std::pair<ProgramStateRef, ProgramStateRef>
|
|
ProgramState::assumeInBoundDual(DefinedOrUnknownSVal Idx,
|
|
DefinedOrUnknownSVal UpperBound,
|
|
QualType indexTy) const {
|
|
if (Idx.isUnknown() || UpperBound.isUnknown())
|
|
return {this, this};
|
|
|
|
// Build an expression for 0 <= Idx < UpperBound.
|
|
// This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
|
|
// FIXME: This should probably be part of SValBuilder.
|
|
ProgramStateManager &SM = getStateManager();
|
|
SValBuilder &svalBuilder = SM.getSValBuilder();
|
|
ASTContext &Ctx = svalBuilder.getContext();
|
|
|
|
// Get the offset: the minimum value of the array index type.
|
|
BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
|
|
if (indexTy.isNull())
|
|
indexTy = svalBuilder.getArrayIndexType();
|
|
nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
|
|
|
|
// Adjust the index.
|
|
SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
|
|
Idx.castAs<NonLoc>(), Min, indexTy);
|
|
if (newIdx.isUnknownOrUndef())
|
|
return {this, this};
|
|
|
|
// Adjust the upper bound.
|
|
SVal newBound =
|
|
svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
|
|
Min, indexTy);
|
|
|
|
if (newBound.isUnknownOrUndef())
|
|
return {this, this};
|
|
|
|
// Build the actual comparison.
|
|
SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
|
|
newBound.castAs<NonLoc>(), Ctx.IntTy);
|
|
if (inBound.isUnknownOrUndef())
|
|
return {this, this};
|
|
|
|
// Finally, let the constraint manager take care of it.
|
|
ConstraintManager &CM = SM.getConstraintManager();
|
|
return CM.assumeDual(this, inBound.castAs<DefinedSVal>());
|
|
}
|
|
|
|
ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
|
|
DefinedOrUnknownSVal UpperBound,
|
|
bool Assumption,
|
|
QualType indexTy) const {
|
|
std::pair<ProgramStateRef, ProgramStateRef> R =
|
|
assumeInBoundDual(Idx, UpperBound, indexTy);
|
|
return Assumption ? R.first : R.second;
|
|
}
|
|
|
|
ConditionTruthVal ProgramState::isNonNull(SVal V) const {
|
|
ConditionTruthVal IsNull = isNull(V);
|
|
if (IsNull.isUnderconstrained())
|
|
return IsNull;
|
|
return ConditionTruthVal(!IsNull.getValue());
|
|
}
|
|
|
|
ConditionTruthVal ProgramState::areEqual(SVal Lhs, SVal Rhs) const {
|
|
return stateMgr->getSValBuilder().areEqual(this, Lhs, Rhs);
|
|
}
|
|
|
|
ConditionTruthVal ProgramState::isNull(SVal V) const {
|
|
if (V.isZeroConstant())
|
|
return true;
|
|
|
|
if (V.isConstant())
|
|
return false;
|
|
|
|
SymbolRef Sym = V.getAsSymbol(/* IncludeBaseRegion */ true);
|
|
if (!Sym)
|
|
return ConditionTruthVal();
|
|
|
|
return getStateManager().ConstraintMgr->isNull(this, Sym);
|
|
}
|
|
|
|
ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
|
|
ProgramState State(this,
|
|
EnvMgr.getInitialEnvironment(),
|
|
StoreMgr->getInitialStore(InitLoc),
|
|
GDMFactory.getEmptyMap());
|
|
|
|
return getPersistentState(State);
|
|
}
|
|
|
|
ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
|
|
ProgramStateRef FromState,
|
|
ProgramStateRef GDMState) {
|
|
ProgramState NewState(*FromState);
|
|
NewState.GDM = GDMState->GDM;
|
|
return getPersistentState(NewState);
|
|
}
|
|
|
|
ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
State.Profile(ID);
|
|
void *InsertPos;
|
|
|
|
if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
|
|
return I;
|
|
|
|
ProgramState *newState = nullptr;
|
|
if (!freeStates.empty()) {
|
|
newState = freeStates.back();
|
|
freeStates.pop_back();
|
|
}
|
|
else {
|
|
newState = Alloc.Allocate<ProgramState>();
|
|
}
|
|
new (newState) ProgramState(State);
|
|
StateSet.InsertNode(newState, InsertPos);
|
|
return newState;
|
|
}
|
|
|
|
ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
|
|
ProgramState NewSt(*this);
|
|
NewSt.setStore(store);
|
|
return getStateManager().getPersistentState(NewSt);
|
|
}
|
|
|
|
ProgramStateRef ProgramState::makeWithStore(const BindResult &BindRes) const {
|
|
ExprEngine &Eng = getStateManager().getOwningEngine();
|
|
ProgramStateRef State = makeWithStore(BindRes.ResultingStore);
|
|
|
|
// We must always notify the checkers for failing binds because otherwise they
|
|
// may keep stale traits for these symbols.
|
|
// Eg., Malloc checker may report leaks if we failed to bind that symbol.
|
|
if (BindRes.FailedToBindValues.empty())
|
|
return State;
|
|
return Eng.escapeValues(State, BindRes.FailedToBindValues, PSK_EscapeOnBind);
|
|
}
|
|
|
|
ProgramStateRef ProgramState::cloneAsPosteriorlyOverconstrained() const {
|
|
ProgramState NewSt(*this);
|
|
NewSt.PosteriorlyOverconstrained = true;
|
|
return getStateManager().getPersistentState(NewSt);
|
|
}
|
|
|
|
void ProgramState::setStore(const StoreRef &newStore) {
|
|
Store newStoreStore = newStore.getStore();
|
|
if (newStoreStore)
|
|
stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
|
|
if (store)
|
|
stateMgr->getStoreManager().decrementReferenceCount(store);
|
|
store = newStoreStore;
|
|
}
|
|
|
|
SVal ProgramState::getLValue(const FieldDecl *D, SVal Base) const {
|
|
Base = desugarReference(Base);
|
|
Base = wrapSymbolicRegion(Base);
|
|
return getStateManager().StoreMgr->getLValueField(D, Base);
|
|
}
|
|
|
|
SVal ProgramState::getLValue(const IndirectFieldDecl *D, SVal Base) const {
|
|
StoreManager &SM = *getStateManager().StoreMgr;
|
|
Base = desugarReference(Base);
|
|
Base = wrapSymbolicRegion(Base);
|
|
|
|
// FIXME: This should work with `SM.getLValueField(D->getAnonField(), Base)`,
|
|
// but that would break some tests. There is probably a bug somewhere that it
|
|
// would expose.
|
|
for (const auto *I : D->chain()) {
|
|
Base = SM.getLValueField(cast<FieldDecl>(I), Base);
|
|
}
|
|
return Base;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State pretty-printing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ProgramState::printJson(raw_ostream &Out, const LocationContext *LCtx,
|
|
const char *NL, unsigned int Space,
|
|
bool IsDot) const {
|
|
Indent(Out, Space, IsDot) << "\"program_state\": {" << NL;
|
|
++Space;
|
|
|
|
ProgramStateManager &Mgr = getStateManager();
|
|
|
|
// Print the store.
|
|
Mgr.getStoreManager().printJson(Out, getStore(), NL, Space, IsDot);
|
|
|
|
// Print out the environment.
|
|
Env.printJson(Out, Mgr.getContext(), LCtx, NL, Space, IsDot);
|
|
|
|
// Print out the constraints.
|
|
Mgr.getConstraintManager().printJson(Out, this, NL, Space, IsDot);
|
|
|
|
// Print out the tracked dynamic types.
|
|
printDynamicTypeInfoJson(Out, this, NL, Space, IsDot);
|
|
|
|
// Print checker-specific data.
|
|
Mgr.getOwningEngine().printJson(Out, this, LCtx, NL, Space, IsDot);
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << '}';
|
|
}
|
|
|
|
void ProgramState::printDOT(raw_ostream &Out, const LocationContext *LCtx,
|
|
unsigned int Space) const {
|
|
printJson(Out, LCtx, /*NL=*/"\\l", Space, /*IsDot=*/true);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void ProgramState::dump() const {
|
|
printJson(llvm::errs());
|
|
}
|
|
|
|
AnalysisManager& ProgramState::getAnalysisManager() const {
|
|
return stateMgr->getOwningEngine().getAnalysisManager();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Data Map.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void *const* ProgramState::FindGDM(void *K) const {
|
|
return GDM.lookup(K);
|
|
}
|
|
|
|
void*
|
|
ProgramStateManager::FindGDMContext(void *K,
|
|
void *(*CreateContext)(llvm::BumpPtrAllocator&),
|
|
void (*DeleteContext)(void*)) {
|
|
|
|
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
|
|
if (!p.first) {
|
|
p.first = CreateContext(Alloc);
|
|
p.second = DeleteContext;
|
|
}
|
|
|
|
return p.first;
|
|
}
|
|
|
|
ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
|
|
ProgramState::GenericDataMap M1 = St->getGDM();
|
|
ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
|
|
|
|
if (M1 == M2)
|
|
return St;
|
|
|
|
ProgramState NewSt = *St;
|
|
NewSt.GDM = M2;
|
|
return getPersistentState(NewSt);
|
|
}
|
|
|
|
ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
|
|
ProgramState::GenericDataMap OldM = state->getGDM();
|
|
ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
|
|
|
|
if (NewM == OldM)
|
|
return state;
|
|
|
|
ProgramState NewState = *state;
|
|
NewState.GDM = NewM;
|
|
return getPersistentState(NewState);
|
|
}
|
|
|
|
bool ScanReachableSymbols::scan(nonloc::LazyCompoundVal val) {
|
|
bool wasVisited = !visited.insert(val.getCVData()).second;
|
|
if (wasVisited)
|
|
return true;
|
|
|
|
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
|
|
// FIXME: We don't really want to use getBaseRegion() here because pointer
|
|
// arithmetic doesn't apply, but scanReachableSymbols only accepts base
|
|
// regions right now.
|
|
const MemRegion *R = val.getRegion()->getBaseRegion();
|
|
return StoreMgr.scanReachableSymbols(val.getStore(), R, *this);
|
|
}
|
|
|
|
bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
|
|
for (SVal V : val)
|
|
if (!scan(V))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScanReachableSymbols::scan(const SymExpr *sym) {
|
|
for (SymbolRef SubSym : sym->symbols()) {
|
|
bool wasVisited = !visited.insert(SubSym).second;
|
|
if (wasVisited)
|
|
continue;
|
|
|
|
if (!visitor.VisitSymbol(SubSym))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScanReachableSymbols::scan(SVal val) {
|
|
if (std::optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
|
|
return scan(X->getRegion());
|
|
|
|
if (std::optional<nonloc::LazyCompoundVal> X =
|
|
val.getAs<nonloc::LazyCompoundVal>())
|
|
return scan(*X);
|
|
|
|
if (std::optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
|
|
return scan(X->getLoc());
|
|
|
|
if (SymbolRef Sym = val.getAsSymbol())
|
|
return scan(Sym);
|
|
|
|
if (std::optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
|
|
return scan(*X);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScanReachableSymbols::scan(const MemRegion *R) {
|
|
if (isa<MemSpaceRegion>(R))
|
|
return true;
|
|
|
|
bool wasVisited = !visited.insert(R).second;
|
|
if (wasVisited)
|
|
return true;
|
|
|
|
if (!visitor.VisitMemRegion(R))
|
|
return false;
|
|
|
|
// If this is a symbolic region, visit the symbol for the region.
|
|
if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
|
|
if (!visitor.VisitSymbol(SR->getSymbol()))
|
|
return false;
|
|
|
|
// If this is a subregion, also visit the parent regions.
|
|
if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
|
|
const MemRegion *Super = SR->getSuperRegion();
|
|
if (!scan(Super))
|
|
return false;
|
|
|
|
// When we reach the topmost region, scan all symbols in it.
|
|
if (isa<MemSpaceRegion>(Super)) {
|
|
StoreManager &StoreMgr = state->getStateManager().getStoreManager();
|
|
if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Regions captured by a block are also implicitly reachable.
|
|
if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
|
|
for (auto Var : BDR->referenced_vars()) {
|
|
if (!scan(Var.getCapturedRegion()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
|
|
ScanReachableSymbols S(this, visitor);
|
|
return S.scan(val);
|
|
}
|
|
|
|
bool ProgramState::scanReachableSymbols(
|
|
llvm::iterator_range<region_iterator> Reachable,
|
|
SymbolVisitor &visitor) const {
|
|
ScanReachableSymbols S(this, visitor);
|
|
for (const MemRegion *R : Reachable) {
|
|
if (!S.scan(R))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|