Files
clang-p2996/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp
Donát Nagy b88023c257 [analyzer][NFC] Use std::optional instead of custom "empty" state
This commit eliminates the uninitialized error state from the class
RegionRawOffsetV2 (which is locally used by the Clang Static Analyzer
checker alpha.security.ArrayBoundV2) and replaces its use with
std::optional.

Motivated by https://reviews.llvm.org/D148355#inline-1437928

Moreover, the code of RegionRawOffsetV2::computeOffset() is rearranged
to clarify its behavior. The helper function getValue() was eliminated
by picking a better initial value for the variable Offset; two other
helper functions were replaced by the lambda function Calc() because
this way it doesn't need to take the "context" objects as parameters.

This reorganization revealed some surprising (but not outright buggy)
behavior that's marked by a FIXME and will be revisited in a separate
commit.

Differential Revision: https://reviews.llvm.org/D149259
2023-05-04 12:56:15 +02:00

364 lines
14 KiB
C++

//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
class ArrayBoundCheckerV2 :
public Checker<check::Location> {
mutable std::unique_ptr<BuiltinBug> BT;
mutable std::unique_ptr<BugType> TaintBT;
enum OOB_Kind { OOB_Precedes, OOB_Excedes };
void reportOOB(CheckerContext &C, ProgramStateRef errorState,
OOB_Kind kind) const;
void reportTaintOOB(CheckerContext &C, ProgramStateRef errorState,
SVal TaintedSVal) const;
static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
public:
void checkLocation(SVal l, bool isLoad, const Stmt *S,
CheckerContext &C) const;
};
// FIXME: Eventually replace RegionRawOffset with this class.
class RegionRawOffsetV2 {
private:
const SubRegion *baseRegion;
NonLoc byteOffset;
public:
RegionRawOffsetV2(const SubRegion *base, NonLoc offset)
: baseRegion(base), byteOffset(offset) { assert(base); }
NonLoc getByteOffset() const { return byteOffset; }
const SubRegion *getRegion() const { return baseRegion; }
static std::optional<RegionRawOffsetV2>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location);
void dump() const;
void dumpToStream(raw_ostream &os) const;
};
}
// TODO: once the constraint manager is smart enough to handle non simplified
// symbolic expressions remove this function. Note that this can not be used in
// the constraint manager as is, since this does not handle overflows. It is
// safe to assume, however, that memory offsets will not overflow.
// NOTE: callers of this function need to be aware of the effects of overflows
// and signed<->unsigned conversions!
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant =
APSIntType(extent.getValue()).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, since it the result of scaling
// based on the size of a type which is never 0.
if ((extent.getValue() % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() / constant),
svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
QualType T = Value.getType(SVB.getContext());
if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) {
// In this case we reduced the bound check to a comparison of the form
// (symbol or value with unsigned type) < (negative number)
// which is always false. We are handling these cases separately because
// evalBinOpNN can perform a signed->unsigned conversion that turns the
// negative number into a huge positive value and leads to wildly
// inaccurate conclusions.
return {nullptr, State};
}
}
auto BelowThreshold =
SVB.evalBinOpNN(State, BO_LT, Value, Threshold, SVB.getConditionType()).getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
const Stmt* LoadS,
CheckerContext &checkerContext) const {
// NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
// some new logic here that reasons directly about memory region extents.
// Once that logic is more mature, we can bring it back to assumeInBound()
// for all clients to use.
//
// The algorithm we are using here for bounds checking is to see if the
// memory access is within the extent of the base region. Since we
// have some flexibility in defining the base region, we can achieve
// various levels of conservatism in our buffer overflow checking.
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(LoadS, checkerContext.getASTContext()))
return;
ProgramStateRef state = checkerContext.getState();
SValBuilder &svalBuilder = checkerContext.getSValBuilder();
const std::optional<RegionRawOffsetV2> &RawOffset =
RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
if (!RawOffset)
return;
NonLoc ByteOffset = RawOffset->getByteOffset();
// CHECK LOWER BOUND
const MemSpaceRegion *SR = RawOffset->getRegion()->getMemorySpace();
if (!llvm::isa<UnknownSpaceRegion>(SR)) {
// A pointer to UnknownSpaceRegion may point to the middle of
// an allocated region.
auto [state_precedesLowerBound, state_withinLowerBound] =
compareValueToThreshold(state, ByteOffset,
svalBuilder.makeZeroArrayIndex(), svalBuilder);
if (state_precedesLowerBound && !state_withinLowerBound) {
// We know that the index definitely precedes the lower bound.
reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
return;
}
if (state_withinLowerBound)
state = state_withinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size =
getDynamicExtent(state, RawOffset->getRegion(), svalBuilder);
if (auto KnownSize = Size.getAs<NonLoc>()) {
auto [state_withinUpperBound, state_exceedsUpperBound] =
compareValueToThreshold(state, ByteOffset, *KnownSize, svalBuilder);
if (state_exceedsUpperBound) {
if (!state_withinUpperBound) {
// We know that the index definitely exceeds the upper bound.
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
return;
}
if (isTainted(state, ByteOffset)) {
// Both cases are possible, but the index is tainted, so report.
reportTaintOOB(checkerContext, state_exceedsUpperBound, ByteOffset);
return;
}
}
if (state_withinUpperBound)
state = state_withinUpperBound;
}
checkerContext.addTransition(state);
}
void ArrayBoundCheckerV2::reportTaintOOB(CheckerContext &checkerContext,
ProgramStateRef errorState,
SVal TaintedSVal) const {
ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
if (!errorNode)
return;
if (!TaintBT)
TaintBT.reset(
new BugType(this, "Out-of-bound access", categories::TaintedData));
SmallString<256> buf;
llvm::raw_svector_ostream os(buf);
os << "Out of bound memory access (index is tainted)";
auto BR =
std::make_unique<PathSensitiveBugReport>(*TaintBT, os.str(), errorNode);
// Track back the propagation of taintedness.
for (SymbolRef Sym : getTaintedSymbols(errorState, TaintedSVal)) {
BR->markInteresting(Sym);
}
checkerContext.emitReport(std::move(BR));
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
ProgramStateRef errorState,
OOB_Kind kind) const {
ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
if (!errorNode)
return;
if (!BT)
BT.reset(new BuiltinBug(this, "Out-of-bound access"));
// FIXME: This diagnostics are preliminary. We should get far better
// diagnostics for explaining buffer overruns.
SmallString<256> buf;
llvm::raw_svector_ostream os(buf);
os << "Out of bound memory access ";
switch (kind) {
case OOB_Precedes:
os << "(accessed memory precedes memory block)";
break;
case OOB_Excedes:
os << "(access exceeds upper limit of memory block)";
break;
}
auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode);
checkerContext.emitReport(std::move(BR));
}
bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
SourceLocation Loc = S->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const {
dumpToStream(llvm::errs());
}
void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
}
#endif
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
std::optional<RegionRawOffsetV2>
RegionRawOffsetV2::computeOffset(ProgramStateRef State, SValBuilder &SVB,
SVal Location) {
QualType T = SVB.getArrayIndexType();
auto Calc = [&SVB, State, T](BinaryOperatorKind Op, NonLoc LHS, NonLoc RHS) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, LHS, RHS, T).getAs<NonLoc>();
};
const MemRegion *Region = Location.getAsRegion();
NonLoc Offset = SVB.makeZeroArrayIndex();
while (Region) {
if (const auto *ERegion = dyn_cast<ElementRegion>(Region)) {
if (const auto Index = ERegion->getIndex().getAs<NonLoc>()) {
QualType ElemType = ERegion->getElementType();
// If the element is an incomplete type, go no further.
if (ElemType->isIncompleteType())
return std::nullopt;
// Perform Offset += Index * sizeof(ElemType); then continue the offset
// calculations with SuperRegion:
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
if (auto Delta = Calc(BO_Mul, *Index, Size)) {
if (auto NewOffset = Calc(BO_Add, Offset, *Delta)) {
Offset = *NewOffset;
Region = ERegion->getSuperRegion();
continue;
}
}
}
} else if (const auto *SRegion = dyn_cast<SubRegion>(Region)) {
// NOTE: The dyn_cast<>() is expected to succeed, it'd be very surprising
// to see a MemSpaceRegion at this point.
// FIXME: We may return with {<Region>, 0} even if we didn't handle any
// ElementRegion layers. I think that this behavior was introduced
// accidentally by 8a4c760c204546aba566e302f299f7ed2e00e287 in 2011, so
// it may be useful to review it in the future.
return RegionRawOffsetV2(SRegion, Offset);
}
return std::nullopt;
}
return std::nullopt;
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}