Replacing D143754. Right now the LiveRangeSplitting during register allocation uses TargetOpcode::COPY instruction for splitting. For AMDGPU target that creates a problem as we have both vector and scalar copies. Vector copies perform a copy over a vector register but only on the lanes(threads) that are active. This is mostly sufficient however we do run into cases when we have to copy the entire vector register and not just active lane data. One major place where we need that is live range splitting. Allowing targets to use their own copy instructions(if defined) will provide a lot of flexibility and ease to lower these pseudo instructions to correct MIR. - Introduce getTargetCopyOpcode() virtual function and use if to generate copy in Live range splitting. - Replace necessary MI.isCopy() checks with TII.isCopyInstr() in register allocator pipeline. Reviewed By: arsenm, cdevadas, kparzysz Differential Revision: https://reviews.llvm.org/D150388
333 lines
12 KiB
C++
333 lines
12 KiB
C++
//===- CalcSpillWeights.cpp -----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/CalcSpillWeights.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/CodeGen/LiveInterval.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/VirtRegMap.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <tuple>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "calcspillweights"
|
|
|
|
void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
|
|
LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
|
|
<< "********** Function: " << MF.getName() << '\n');
|
|
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
|
Register Reg = Register::index2VirtReg(I);
|
|
if (MRI.reg_nodbg_empty(Reg))
|
|
continue;
|
|
calculateSpillWeightAndHint(LIS.getInterval(Reg));
|
|
}
|
|
}
|
|
|
|
// Return the preferred allocation register for reg, given a COPY instruction.
|
|
Register VirtRegAuxInfo::copyHint(const MachineInstr *MI, unsigned Reg,
|
|
const TargetRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI) {
|
|
unsigned Sub, HSub;
|
|
Register HReg;
|
|
if (MI->getOperand(0).getReg() == Reg) {
|
|
Sub = MI->getOperand(0).getSubReg();
|
|
HReg = MI->getOperand(1).getReg();
|
|
HSub = MI->getOperand(1).getSubReg();
|
|
} else {
|
|
Sub = MI->getOperand(1).getSubReg();
|
|
HReg = MI->getOperand(0).getReg();
|
|
HSub = MI->getOperand(0).getSubReg();
|
|
}
|
|
|
|
if (!HReg)
|
|
return 0;
|
|
|
|
if (HReg.isVirtual())
|
|
return Sub == HSub ? HReg : Register();
|
|
|
|
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
|
|
MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
|
|
if (RC->contains(CopiedPReg))
|
|
return CopiedPReg;
|
|
|
|
// Check if reg:sub matches so that a super register could be hinted.
|
|
if (Sub)
|
|
return TRI.getMatchingSuperReg(CopiedPReg, Sub, RC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Check if all values in LI are rematerializable
|
|
bool VirtRegAuxInfo::isRematerializable(const LiveInterval &LI,
|
|
const LiveIntervals &LIS,
|
|
const VirtRegMap &VRM,
|
|
const TargetInstrInfo &TII) {
|
|
Register Reg = LI.reg();
|
|
Register Original = VRM.getOriginal(Reg);
|
|
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
|
|
I != E; ++I) {
|
|
const VNInfo *VNI = *I;
|
|
if (VNI->isUnused())
|
|
continue;
|
|
if (VNI->isPHIDef())
|
|
return false;
|
|
|
|
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
|
|
assert(MI && "Dead valno in interval");
|
|
|
|
// Trace copies introduced by live range splitting. The inline
|
|
// spiller can rematerialize through these copies, so the spill
|
|
// weight must reflect this.
|
|
while (TII.isFullCopyInstr(*MI)) {
|
|
// The copy destination must match the interval register.
|
|
if (MI->getOperand(0).getReg() != Reg)
|
|
return false;
|
|
|
|
// Get the source register.
|
|
Reg = MI->getOperand(1).getReg();
|
|
|
|
// If the original (pre-splitting) registers match this
|
|
// copy came from a split.
|
|
if (!Reg.isVirtual() || VRM.getOriginal(Reg) != Original)
|
|
return false;
|
|
|
|
// Follow the copy live-in value.
|
|
const LiveInterval &SrcLI = LIS.getInterval(Reg);
|
|
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
|
|
VNI = SrcQ.valueIn();
|
|
assert(VNI && "Copy from non-existing value");
|
|
if (VNI->isPHIDef())
|
|
return false;
|
|
MI = LIS.getInstructionFromIndex(VNI->def);
|
|
assert(MI && "Dead valno in interval");
|
|
}
|
|
|
|
if (!TII.isTriviallyReMaterializable(*MI))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
|
|
return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
|
|
[](MachineOperand &MO) {
|
|
MachineInstr *MI = MO.getParent();
|
|
if (MI->getOpcode() != TargetOpcode::STATEPOINT)
|
|
return false;
|
|
return StatepointOpers(MI).getVarIdx() <= MO.getOperandNo();
|
|
});
|
|
}
|
|
|
|
void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
|
|
float Weight = weightCalcHelper(LI);
|
|
// Check if unspillable.
|
|
if (Weight < 0)
|
|
return;
|
|
LI.setWeight(Weight);
|
|
}
|
|
|
|
float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
|
|
SlotIndex *End) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
|
|
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
|
|
MachineBasicBlock *MBB = nullptr;
|
|
MachineLoop *Loop = nullptr;
|
|
bool IsExiting = false;
|
|
float TotalWeight = 0;
|
|
unsigned NumInstr = 0; // Number of instructions using LI
|
|
SmallPtrSet<MachineInstr *, 8> Visited;
|
|
|
|
std::pair<unsigned, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());
|
|
|
|
if (LI.isSpillable()) {
|
|
Register Reg = LI.reg();
|
|
Register Original = VRM.getOriginal(Reg);
|
|
const LiveInterval &OrigInt = LIS.getInterval(Original);
|
|
// li comes from a split of OrigInt. If OrigInt was marked
|
|
// as not spillable, make sure the new interval is marked
|
|
// as not spillable as well.
|
|
if (!OrigInt.isSpillable())
|
|
LI.markNotSpillable();
|
|
}
|
|
|
|
// Don't recompute spill weight for an unspillable register.
|
|
bool IsSpillable = LI.isSpillable();
|
|
|
|
bool IsLocalSplitArtifact = Start && End;
|
|
|
|
// Do not update future local split artifacts.
|
|
bool ShouldUpdateLI = !IsLocalSplitArtifact;
|
|
|
|
if (IsLocalSplitArtifact) {
|
|
MachineBasicBlock *LocalMBB = LIS.getMBBFromIndex(*End);
|
|
assert(LocalMBB == LIS.getMBBFromIndex(*Start) &&
|
|
"start and end are expected to be in the same basic block");
|
|
|
|
// Local split artifact will have 2 additional copy instructions and they
|
|
// will be in the same BB.
|
|
// localLI = COPY other
|
|
// ...
|
|
// other = COPY localLI
|
|
TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, LocalMBB);
|
|
TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, LocalMBB);
|
|
|
|
NumInstr += 2;
|
|
}
|
|
|
|
// CopyHint is a sortable hint derived from a COPY instruction.
|
|
struct CopyHint {
|
|
const Register Reg;
|
|
const float Weight;
|
|
CopyHint(Register R, float W) : Reg(R), Weight(W) {}
|
|
bool operator<(const CopyHint &Rhs) const {
|
|
// Always prefer any physreg hint.
|
|
if (Reg.isPhysical() != Rhs.Reg.isPhysical())
|
|
return Reg.isPhysical();
|
|
if (Weight != Rhs.Weight)
|
|
return (Weight > Rhs.Weight);
|
|
return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
|
|
}
|
|
};
|
|
|
|
std::set<CopyHint> CopyHints;
|
|
DenseMap<unsigned, float> Hint;
|
|
for (MachineRegisterInfo::reg_instr_nodbg_iterator
|
|
I = MRI.reg_instr_nodbg_begin(LI.reg()),
|
|
E = MRI.reg_instr_nodbg_end();
|
|
I != E;) {
|
|
MachineInstr *MI = &*(I++);
|
|
|
|
// For local split artifacts, we are interested only in instructions between
|
|
// the expected start and end of the range.
|
|
SlotIndex SI = LIS.getInstructionIndex(*MI);
|
|
if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
|
|
continue;
|
|
|
|
NumInstr++;
|
|
bool identityCopy = false;
|
|
auto DestSrc = TII.isCopyInstr(*MI);
|
|
if (DestSrc) {
|
|
const MachineOperand *DestRegOp = DestSrc->Destination;
|
|
const MachineOperand *SrcRegOp = DestSrc->Source;
|
|
identityCopy = DestRegOp->getReg() == SrcRegOp->getReg() &&
|
|
DestRegOp->getSubReg() == SrcRegOp->getSubReg();
|
|
}
|
|
|
|
if (identityCopy || MI->isImplicitDef())
|
|
continue;
|
|
if (!Visited.insert(MI).second)
|
|
continue;
|
|
|
|
// For terminators that produce values, ask the backend if the register is
|
|
// not spillable.
|
|
if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) {
|
|
LI.markNotSpillable();
|
|
return -1.0f;
|
|
}
|
|
|
|
float Weight = 1.0f;
|
|
if (IsSpillable) {
|
|
// Get loop info for mi.
|
|
if (MI->getParent() != MBB) {
|
|
MBB = MI->getParent();
|
|
Loop = Loops.getLoopFor(MBB);
|
|
IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
|
|
}
|
|
|
|
// Calculate instr weight.
|
|
bool Reads, Writes;
|
|
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
|
|
Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI);
|
|
|
|
// Give extra weight to what looks like a loop induction variable update.
|
|
if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
|
|
Weight *= 3;
|
|
|
|
TotalWeight += Weight;
|
|
}
|
|
|
|
// Get allocation hints from copies.
|
|
if (!TII.isCopyInstr(*MI))
|
|
continue;
|
|
Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
|
|
if (!HintReg)
|
|
continue;
|
|
// Force hweight onto the stack so that x86 doesn't add hidden precision,
|
|
// making the comparison incorrectly pass (i.e., 1 > 1 == true??).
|
|
//
|
|
// FIXME: we probably shouldn't use floats at all.
|
|
volatile float HWeight = Hint[HintReg] += Weight;
|
|
if (HintReg.isVirtual() || MRI.isAllocatable(HintReg))
|
|
CopyHints.insert(CopyHint(HintReg, HWeight));
|
|
}
|
|
|
|
// Pass all the sorted copy hints to mri.
|
|
if (ShouldUpdateLI && CopyHints.size()) {
|
|
// Remove a generic hint if previously added by target.
|
|
if (TargetHint.first == 0 && TargetHint.second)
|
|
MRI.clearSimpleHint(LI.reg());
|
|
|
|
SmallSet<Register, 4> HintedRegs;
|
|
for (const auto &Hint : CopyHints) {
|
|
if (!HintedRegs.insert(Hint.Reg).second ||
|
|
(TargetHint.first != 0 && Hint.Reg == TargetHint.second))
|
|
// Don't add the same reg twice or the target-type hint again.
|
|
continue;
|
|
MRI.addRegAllocationHint(LI.reg(), Hint.Reg);
|
|
}
|
|
|
|
// Weakly boost the spill weight of hinted registers.
|
|
TotalWeight *= 1.01F;
|
|
}
|
|
|
|
// If the live interval was already unspillable, leave it that way.
|
|
if (!IsSpillable)
|
|
return -1.0;
|
|
|
|
// Mark li as unspillable if all live ranges are tiny and the interval
|
|
// is not live at any reg mask. If the interval is live at a reg mask
|
|
// spilling may be required. If li is live as use in statepoint instruction
|
|
// spilling may be required due to if we mark interval with use in statepoint
|
|
// as not spillable we are risky to end up with no register to allocate.
|
|
// At the same time STATEPOINT instruction is perfectly fine to have this
|
|
// operand on stack, so spilling such interval and folding its load from stack
|
|
// into instruction itself makes perfect sense.
|
|
if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
|
|
!LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
|
|
!isLiveAtStatepointVarArg(LI)) {
|
|
LI.markNotSpillable();
|
|
return -1.0;
|
|
}
|
|
|
|
// If all of the definitions of the interval are re-materializable,
|
|
// it is a preferred candidate for spilling.
|
|
// FIXME: this gets much more complicated once we support non-trivial
|
|
// re-materialization.
|
|
if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
|
|
TotalWeight *= 0.5F;
|
|
|
|
if (IsLocalSplitArtifact)
|
|
return normalize(TotalWeight, Start->distance(*End), NumInstr);
|
|
return normalize(TotalWeight, LI.getSize(), NumInstr);
|
|
}
|