Files
clang-p2996/llvm/lib/MC/MCPseudoProbe.cpp
Hongtao Yu abe34ce4e3 [Pseudo Probe] Remove the assert of allowing only one call probe for a callsite.
Compiler-generated static symbols, such as the global initializers, can shared the same name and can coexist in the binary. As a result, their pseudo probes are all kept in the binary too. This could cause multiple call probes decoded against one callsite, as probes are decoded against there owning functions by name. I'm temporarily disabling an assert to keep the debug build green until we have a better fix.

Reviewed By: wenlei

Differential Revision: https://reviews.llvm.org/D153588
2023-06-23 16:41:14 -07:00

634 lines
22 KiB
C++

//===- lib/MC/MCPseudoProbe.cpp - Pseudo probe encoding support ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFragment.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <memory>
#include <sstream>
#include <vector>
#define DEBUG_TYPE "mcpseudoprobe"
using namespace llvm;
using namespace support;
#ifndef NDEBUG
int MCPseudoProbeTable::DdgPrintIndent = 0;
#endif
static const MCExpr *buildSymbolDiff(MCObjectStreamer *MCOS, const MCSymbol *A,
const MCSymbol *B) {
MCContext &Context = MCOS->getContext();
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
const MCExpr *ARef = MCSymbolRefExpr::create(A, Variant, Context);
const MCExpr *BRef = MCSymbolRefExpr::create(B, Variant, Context);
const MCExpr *AddrDelta =
MCBinaryExpr::create(MCBinaryExpr::Sub, ARef, BRef, Context);
return AddrDelta;
}
void MCPseudoProbe::emit(MCObjectStreamer *MCOS,
const MCPseudoProbe *LastProbe) const {
bool IsSentinel = isSentinelProbe(getAttributes());
assert((LastProbe || IsSentinel) &&
"Last probe should not be null for non-sentinel probes");
// Emit Index
MCOS->emitULEB128IntValue(Index);
// Emit Type and the flag:
// Type (bit 0 to 3), with bit 4 to 6 for attributes.
// Flag (bit 7, 0 - code address, 1 - address delta). This indicates whether
// the following field is a symbolic code address or an address delta.
// Emit FS discriminator
assert(Type <= 0xF && "Probe type too big to encode, exceeding 15");
auto NewAttributes = Attributes;
if (Discriminator)
NewAttributes |= (uint32_t)PseudoProbeAttributes::HasDiscriminator;
assert(NewAttributes <= 0x7 &&
"Probe attributes too big to encode, exceeding 7");
uint8_t PackedType = Type | (NewAttributes << 4);
uint8_t Flag =
!IsSentinel ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
MCOS->emitInt8(Flag | PackedType);
if (!IsSentinel) {
// Emit the delta between the address label and LastProbe.
const MCExpr *AddrDelta =
buildSymbolDiff(MCOS, Label, LastProbe->getLabel());
int64_t Delta;
if (AddrDelta->evaluateAsAbsolute(Delta, MCOS->getAssemblerPtr())) {
MCOS->emitSLEB128IntValue(Delta);
} else {
MCOS->insert(new MCPseudoProbeAddrFragment(AddrDelta));
}
} else {
// Emit the GUID of the split function that the sentinel probe represents.
MCOS->emitInt64(Guid);
}
if (Discriminator)
MCOS->emitULEB128IntValue(Discriminator);
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "Probe: " << Index << "\n";
});
}
void MCPseudoProbeInlineTree::addPseudoProbe(
const MCPseudoProbe &Probe, const MCPseudoProbeInlineStack &InlineStack) {
// The function should not be called on the root.
assert(isRoot() && "Should only be called on root");
// When it comes here, the input look like:
// Probe: GUID of C, ...
// InlineStack: [88, A], [66, B]
// which means, Function A inlines function B at call site with a probe id of
// 88, and B inlines C at probe 66. The tri-tree expects a tree path like {[0,
// A], [88, B], [66, C]} to locate the tree node where the probe should be
// added. Note that the edge [0, A] means A is the top-level function we are
// emitting probes for.
// Make a [0, A] edge.
// An empty inline stack means the function that the probe originates from
// is a top-level function.
InlineSite Top;
if (InlineStack.empty()) {
Top = InlineSite(Probe.getGuid(), 0);
} else {
Top = InlineSite(std::get<0>(InlineStack.front()), 0);
}
auto *Cur = getOrAddNode(Top);
// Make interior edges by walking the inline stack. Once it's done, Cur should
// point to the node that the probe originates from.
if (!InlineStack.empty()) {
auto Iter = InlineStack.begin();
auto Index = std::get<1>(*Iter);
Iter++;
for (; Iter != InlineStack.end(); Iter++) {
// Make an edge by using the previous probe id and current GUID.
Cur = Cur->getOrAddNode(InlineSite(std::get<0>(*Iter), Index));
Index = std::get<1>(*Iter);
}
Cur = Cur->getOrAddNode(InlineSite(Probe.getGuid(), Index));
}
Cur->Probes.push_back(Probe);
}
void MCPseudoProbeInlineTree::emit(MCObjectStreamer *MCOS,
const MCPseudoProbe *&LastProbe) {
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "Group [\n";
MCPseudoProbeTable::DdgPrintIndent += 2;
});
assert(!isRoot() && "Root should be handled seperately");
// Emit probes grouped by GUID.
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "GUID: " << Guid << "\n";
});
// Emit Guid
MCOS->emitInt64(Guid);
// Emit number of probes in this node, including a sentinel probe for
// top-level functions if needed.
bool NeedSentinel = false;
if (Parent->isRoot()) {
assert(isSentinelProbe(LastProbe->getAttributes()) &&
"Starting probe of a top-level function should be a sentinel probe");
// The main body of a split function doesn't need a sentinel probe.
if (LastProbe->getGuid() != Guid)
NeedSentinel = true;
}
MCOS->emitULEB128IntValue(Probes.size() + NeedSentinel);
// Emit number of direct inlinees
MCOS->emitULEB128IntValue(Children.size());
// Emit sentinel probe for top-level functions
if (NeedSentinel)
LastProbe->emit(MCOS, nullptr);
// Emit probes in this group
for (const auto &Probe : Probes) {
Probe.emit(MCOS, LastProbe);
LastProbe = &Probe;
}
// Emit sorted descendant. InlineSite is unique for each pair, so there will
// be no ordering of Inlinee based on MCPseudoProbeInlineTree*
using InlineeType = std::pair<InlineSite, MCPseudoProbeInlineTree *>;
auto Comparer = [](const InlineeType &A, const InlineeType &B) {
return A.first < B.first;
};
std::vector<InlineeType> Inlinees;
for (const auto &Child : Children)
Inlinees.emplace_back(Child.first, Child.second.get());
std::sort(Inlinees.begin(), Inlinees.end(), Comparer);
for (const auto &Inlinee : Inlinees) {
// Emit probe index
MCOS->emitULEB128IntValue(std::get<1>(Inlinee.first));
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
});
// Emit the group
Inlinee.second->emit(MCOS, LastProbe);
}
LLVM_DEBUG({
MCPseudoProbeTable::DdgPrintIndent -= 2;
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "]\n";
});
}
void MCPseudoProbeSections::emit(MCObjectStreamer *MCOS) {
MCContext &Ctx = MCOS->getContext();
for (auto &ProbeSec : MCProbeDivisions) {
const auto *FuncSym = ProbeSec.first;
const auto &Root = ProbeSec.second;
if (auto *S = Ctx.getObjectFileInfo()->getPseudoProbeSection(
FuncSym->getSection())) {
// Switch to the .pseudoprobe section or a comdat group.
MCOS->switchSection(S);
// Emit probes grouped by GUID.
// Emit sorted descendant. InlineSite is unique for each pair, so there
// will be no ordering of Inlinee based on MCPseudoProbeInlineTree*
using InlineeType = std::pair<InlineSite, MCPseudoProbeInlineTree *>;
auto Comparer = [](const InlineeType &A, const InlineeType &B) {
return A.first < B.first;
};
std::vector<InlineeType> Inlinees;
for (const auto &Child : Root.getChildren())
Inlinees.emplace_back(Child.first, Child.second.get());
std::sort(Inlinees.begin(), Inlinees.end(), Comparer);
for (const auto &Inlinee : Inlinees) {
// Emit the group guarded by a sentinel probe.
MCPseudoProbe SentinelProbe(
const_cast<MCSymbol *>(FuncSym), MD5Hash(FuncSym->getName()),
(uint32_t)PseudoProbeReservedId::Invalid,
(uint32_t)PseudoProbeType::Block,
(uint32_t)PseudoProbeAttributes::Sentinel, 0);
const MCPseudoProbe *Probe = &SentinelProbe;
Inlinee.second->emit(MCOS, Probe);
}
}
}
}
//
// This emits the pseudo probe tables.
//
void MCPseudoProbeTable::emit(MCObjectStreamer *MCOS) {
MCContext &Ctx = MCOS->getContext();
auto &ProbeTable = Ctx.getMCPseudoProbeTable();
// Bail out early so we don't switch to the pseudo_probe section needlessly
// and in doing so create an unnecessary (if empty) section.
auto &ProbeSections = ProbeTable.getProbeSections();
if (ProbeSections.empty())
return;
LLVM_DEBUG(MCPseudoProbeTable::DdgPrintIndent = 0);
// Put out the probe.
ProbeSections.emit(MCOS);
}
static StringRef getProbeFNameForGUID(const GUIDProbeFunctionMap &GUID2FuncMAP,
uint64_t GUID) {
auto It = GUID2FuncMAP.find(GUID);
assert(It != GUID2FuncMAP.end() &&
"Probe function must exist for a valid GUID");
return It->second.FuncName;
}
void MCPseudoProbeFuncDesc::print(raw_ostream &OS) {
OS << "GUID: " << FuncGUID << " Name: " << FuncName << "\n";
OS << "Hash: " << FuncHash << "\n";
}
void MCDecodedPseudoProbe::getInlineContext(
SmallVectorImpl<MCPseduoProbeFrameLocation> &ContextStack,
const GUIDProbeFunctionMap &GUID2FuncMAP) const {
uint32_t Begin = ContextStack.size();
MCDecodedPseudoProbeInlineTree *Cur = InlineTree;
// It will add the string of each node's inline site during iteration.
// Note that it won't include the probe's belonging function(leaf location)
while (Cur->hasInlineSite()) {
StringRef FuncName = getProbeFNameForGUID(GUID2FuncMAP, Cur->Parent->Guid);
ContextStack.emplace_back(
MCPseduoProbeFrameLocation(FuncName, std::get<1>(Cur->ISite)));
Cur = static_cast<MCDecodedPseudoProbeInlineTree *>(Cur->Parent);
}
// Make the ContextStack in caller-callee order
std::reverse(ContextStack.begin() + Begin, ContextStack.end());
}
std::string MCDecodedPseudoProbe::getInlineContextStr(
const GUIDProbeFunctionMap &GUID2FuncMAP) const {
std::ostringstream OContextStr;
SmallVector<MCPseduoProbeFrameLocation, 16> ContextStack;
getInlineContext(ContextStack, GUID2FuncMAP);
for (auto &Cxt : ContextStack) {
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << Cxt.first.str() << ":" << Cxt.second;
}
return OContextStr.str();
}
static const char *PseudoProbeTypeStr[3] = {"Block", "IndirectCall",
"DirectCall"};
void MCDecodedPseudoProbe::print(raw_ostream &OS,
const GUIDProbeFunctionMap &GUID2FuncMAP,
bool ShowName) const {
OS << "FUNC: ";
if (ShowName) {
StringRef FuncName = getProbeFNameForGUID(GUID2FuncMAP, Guid);
OS << FuncName.str() << " ";
} else {
OS << Guid << " ";
}
OS << "Index: " << Index << " ";
if (Discriminator)
OS << "Discriminator: " << Discriminator << " ";
OS << "Type: " << PseudoProbeTypeStr[static_cast<uint8_t>(Type)] << " ";
std::string InlineContextStr = getInlineContextStr(GUID2FuncMAP);
if (InlineContextStr.size()) {
OS << "Inlined: @ ";
OS << InlineContextStr;
}
OS << "\n";
}
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnencodedNumber() {
if (Data + sizeof(T) > End) {
return std::error_code();
}
T Val = endian::readNext<T, little, unaligned>(Data);
return ErrorOr<T>(Val);
}
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnsignedNumber() {
unsigned NumBytesRead = 0;
uint64_t Val = decodeULEB128(Data, &NumBytesRead);
if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
return std::error_code();
}
Data += NumBytesRead;
return ErrorOr<T>(static_cast<T>(Val));
}
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readSignedNumber() {
unsigned NumBytesRead = 0;
int64_t Val = decodeSLEB128(Data, &NumBytesRead);
if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
return std::error_code();
}
Data += NumBytesRead;
return ErrorOr<T>(static_cast<T>(Val));
}
ErrorOr<StringRef> MCPseudoProbeDecoder::readString(uint32_t Size) {
StringRef Str(reinterpret_cast<const char *>(Data), Size);
if (Data + Size > End) {
return std::error_code();
}
Data += Size;
return ErrorOr<StringRef>(Str);
}
bool MCPseudoProbeDecoder::buildGUID2FuncDescMap(const uint8_t *Start,
std::size_t Size) {
// The pseudo_probe_desc section has a format like:
// .section .pseudo_probe_desc,"",@progbits
// .quad -5182264717993193164 // GUID
// .quad 4294967295 // Hash
// .uleb 3 // Name size
// .ascii "foo" // Name
// .quad -2624081020897602054
// .quad 174696971957
// .uleb 34
// .ascii "main"
Data = Start;
End = Data + Size;
while (Data < End) {
auto ErrorOrGUID = readUnencodedNumber<uint64_t>();
if (!ErrorOrGUID)
return false;
auto ErrorOrHash = readUnencodedNumber<uint64_t>();
if (!ErrorOrHash)
return false;
auto ErrorOrNameSize = readUnsignedNumber<uint32_t>();
if (!ErrorOrNameSize)
return false;
uint32_t NameSize = std::move(*ErrorOrNameSize);
auto ErrorOrName = readString(NameSize);
if (!ErrorOrName)
return false;
uint64_t GUID = std::move(*ErrorOrGUID);
uint64_t Hash = std::move(*ErrorOrHash);
StringRef Name = std::move(*ErrorOrName);
// Initialize PseudoProbeFuncDesc and populate it into GUID2FuncDescMap
GUID2FuncDescMap.emplace(GUID, MCPseudoProbeFuncDesc(GUID, Hash, Name));
}
assert(Data == End && "Have unprocessed data in pseudo_probe_desc section");
return true;
}
bool MCPseudoProbeDecoder::buildAddress2ProbeMap(
MCDecodedPseudoProbeInlineTree *Cur, uint64_t &LastAddr,
const Uint64Set &GuidFilter, const Uint64Map &FuncStartAddrs) {
// The pseudo_probe section encodes an inline forest and each tree has a
// format defined in MCPseudoProbe.h
uint32_t Index = 0;
bool IsTopLevelFunc = Cur == &DummyInlineRoot;
if (IsTopLevelFunc) {
// Use a sequential id for top level inliner.
Index = Cur->getChildren().size();
} else {
// Read inline site for inlinees
auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
if (!ErrorOrIndex)
return false;
Index = std::move(*ErrorOrIndex);
}
// Read guid
auto ErrorOrCurGuid = readUnencodedNumber<uint64_t>();
if (!ErrorOrCurGuid)
return false;
uint64_t Guid = std::move(*ErrorOrCurGuid);
// Decide if top-level node should be disgarded.
if (IsTopLevelFunc && !GuidFilter.empty() && !GuidFilter.count(Guid))
Cur = nullptr;
// If the incoming node is null, all its children nodes should be disgarded.
if (Cur) {
// Switch/add to a new tree node(inlinee)
Cur = Cur->getOrAddNode(std::make_tuple(Guid, Index));
Cur->Guid = Guid;
if (IsTopLevelFunc && !EncodingIsAddrBased) {
if (auto V = FuncStartAddrs.lookup(Guid))
LastAddr = V;
}
}
// Read number of probes in the current node.
auto ErrorOrNodeCount = readUnsignedNumber<uint32_t>();
if (!ErrorOrNodeCount)
return false;
uint32_t NodeCount = std::move(*ErrorOrNodeCount);
// Read number of direct inlinees
auto ErrorOrCurChildrenToProcess = readUnsignedNumber<uint32_t>();
if (!ErrorOrCurChildrenToProcess)
return false;
// Read all probes in this node
for (std::size_t I = 0; I < NodeCount; I++) {
// Read index
auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
if (!ErrorOrIndex)
return false;
uint32_t Index = std::move(*ErrorOrIndex);
// Read type | flag.
auto ErrorOrValue = readUnencodedNumber<uint8_t>();
if (!ErrorOrValue)
return false;
uint8_t Value = std::move(*ErrorOrValue);
uint8_t Kind = Value & 0xf;
uint8_t Attr = (Value & 0x70) >> 4;
// Read address
uint64_t Addr = 0;
if (Value & 0x80) {
auto ErrorOrOffset = readSignedNumber<int64_t>();
if (!ErrorOrOffset)
return false;
int64_t Offset = std::move(*ErrorOrOffset);
Addr = LastAddr + Offset;
} else {
auto ErrorOrAddr = readUnencodedNumber<int64_t>();
if (!ErrorOrAddr)
return false;
Addr = std::move(*ErrorOrAddr);
if (isSentinelProbe(Attr)) {
// For sentinel probe, the addr field actually stores the GUID of the
// split function. Convert it to the real address.
if (auto V = FuncStartAddrs.lookup(Addr))
Addr = V;
} else {
// For now we assume all probe encoding should be either based on
// leading probe address or function start address.
// The scheme is for downwards compatibility.
// TODO: retire this scheme once compatibility is no longer an issue.
EncodingIsAddrBased = true;
}
}
uint32_t Discriminator = 0;
if (hasDiscriminator(Attr)) {
auto ErrorOrDiscriminator = readUnsignedNumber<uint32_t>();
if (!ErrorOrDiscriminator)
return false;
Discriminator = std::move(*ErrorOrDiscriminator);
}
if (Cur && !isSentinelProbe(Attr)) {
// Populate Address2ProbesMap
auto &Probes = Address2ProbesMap[Addr];
Probes.emplace_back(Addr, Cur->Guid, Index, PseudoProbeType(Kind), Attr,
Discriminator, Cur);
Cur->addProbes(&Probes.back());
}
LastAddr = Addr;
}
uint32_t ChildrenToProcess = std::move(*ErrorOrCurChildrenToProcess);
for (uint32_t I = 0; I < ChildrenToProcess; I++) {
buildAddress2ProbeMap(Cur, LastAddr, GuidFilter, FuncStartAddrs);
}
return true;
}
bool MCPseudoProbeDecoder::buildAddress2ProbeMap(
const uint8_t *Start, std::size_t Size, const Uint64Set &GuidFilter,
const Uint64Map &FuncStartAddrs) {
Data = Start;
End = Data + Size;
uint64_t LastAddr = 0;
while (Data < End)
buildAddress2ProbeMap(&DummyInlineRoot, LastAddr, GuidFilter,
FuncStartAddrs);
assert(Data == End && "Have unprocessed data in pseudo_probe section");
return true;
}
void MCPseudoProbeDecoder::printGUID2FuncDescMap(raw_ostream &OS) {
OS << "Pseudo Probe Desc:\n";
// Make the output deterministic
std::map<uint64_t, MCPseudoProbeFuncDesc> OrderedMap(GUID2FuncDescMap.begin(),
GUID2FuncDescMap.end());
for (auto &I : OrderedMap) {
I.second.print(OS);
}
}
void MCPseudoProbeDecoder::printProbeForAddress(raw_ostream &OS,
uint64_t Address) {
auto It = Address2ProbesMap.find(Address);
if (It != Address2ProbesMap.end()) {
for (auto &Probe : It->second) {
OS << " [Probe]:\t";
Probe.print(OS, GUID2FuncDescMap, true);
}
}
}
void MCPseudoProbeDecoder::printProbesForAllAddresses(raw_ostream &OS) {
std::vector<uint64_t> Addresses;
for (auto Entry : Address2ProbesMap)
Addresses.push_back(Entry.first);
llvm::sort(Addresses);
for (auto K : Addresses) {
OS << "Address:\t";
OS << K;
OS << "\n";
printProbeForAddress(OS, K);
}
}
const MCDecodedPseudoProbe *
MCPseudoProbeDecoder::getCallProbeForAddr(uint64_t Address) const {
auto It = Address2ProbesMap.find(Address);
if (It == Address2ProbesMap.end())
return nullptr;
const auto &Probes = It->second;
const MCDecodedPseudoProbe *CallProbe = nullptr;
for (const auto &Probe : Probes) {
if (Probe.isCall()) {
// Disabling the assert and returning first call probe seen so far.
// Subsequent call probes, if any, are ignored. Due to the the way
// .pseudo_probe section is decoded, probes of the same-named independent
// static functions are merged thus multiple call probes may be seen for a
// callsite. This should only happen to compiler-generated statics, with
// -funique-internal-linkage-names where user statics get unique names.
//
// TODO: re-enable or narrow down the assert to static functions only.
//
// assert(!CallProbe &&
// "There should be only one call probe corresponding to address "
// "which is a callsite.");
CallProbe = &Probe;
break;
}
}
return CallProbe;
}
const MCPseudoProbeFuncDesc *
MCPseudoProbeDecoder::getFuncDescForGUID(uint64_t GUID) const {
auto It = GUID2FuncDescMap.find(GUID);
assert(It != GUID2FuncDescMap.end() && "Function descriptor doesn't exist");
return &It->second;
}
void MCPseudoProbeDecoder::getInlineContextForProbe(
const MCDecodedPseudoProbe *Probe,
SmallVectorImpl<MCPseduoProbeFrameLocation> &InlineContextStack,
bool IncludeLeaf) const {
Probe->getInlineContext(InlineContextStack, GUID2FuncDescMap);
if (!IncludeLeaf)
return;
// Note that the context from probe doesn't include leaf frame,
// hence we need to retrieve and prepend leaf if requested.
const auto *FuncDesc = getFuncDescForGUID(Probe->getGuid());
InlineContextStack.emplace_back(
MCPseduoProbeFrameLocation(FuncDesc->FuncName, Probe->getIndex()));
}
const MCPseudoProbeFuncDesc *MCPseudoProbeDecoder::getInlinerDescForProbe(
const MCDecodedPseudoProbe *Probe) const {
MCDecodedPseudoProbeInlineTree *InlinerNode = Probe->getInlineTreeNode();
if (!InlinerNode->hasInlineSite())
return nullptr;
return getFuncDescForGUID(InlinerNode->Parent->Guid);
}