Files
clang-p2996/llvm/lib/Target/AVR/AsmParser/AVRAsmParser.cpp
Sergei Barannikov af20c1c129 [MC] Add three-state parseDirective as a replacement for ParseDirective
Conventionally, parsing methods return false on success and true on
error. However, directive parsing methods need a third state: the
directive is not target specific. AsmParser::parseStatement detected
this case by using a fragile heuristic: if the target parser did not
consume any tokens, the directive is assumed to be not target-specific.

Some targets fail to follow the convention: they return success after
emitting an error or do not consume the entire line and return failure
on successful parsing. This was partially worked around by checking for
pending errors in parseStatement.

This patch tries to improve the situation by introducing parseDirective
method that returns ParseStatus -- three-state class. The new method
should eventually replace the old one returning bool.

ParseStatus is intentionally implicitly constructible from bool to allow
uses like `return Error(Loc, "message")`. It also has a potential to
replace OperandMatchResulTy as it is more convenient to use due to the
implicit construction from bool and more type safe.

Reviewed By: MaskRay

Differential Revision: https://reviews.llvm.org/D154101
2023-07-01 04:33:28 +03:00

785 lines
24 KiB
C++

//===---- AVRAsmParser.cpp - Parse AVR assembly to MCInst instructions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AVR.h"
#include "AVRRegisterInfo.h"
#include "MCTargetDesc/AVRMCELFStreamer.h"
#include "MCTargetDesc/AVRMCExpr.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"
#include "TargetInfo/AVRTargetInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <array>
#include <sstream>
#define DEBUG_TYPE "avr-asm-parser"
using namespace llvm;
namespace {
/// Parses AVR assembly from a stream.
class AVRAsmParser : public MCTargetAsmParser {
const MCSubtargetInfo &STI;
MCAsmParser &Parser;
const MCRegisterInfo *MRI;
const std::string GENERATE_STUBS = "gs";
enum AVRMatchResultTy {
Match_InvalidRegisterOnTiny = FIRST_TARGET_MATCH_RESULT_TY + 1,
};
#define GET_ASSEMBLER_HEADER
#include "AVRGenAsmMatcher.inc"
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
OperandMatchResultTy tryParseRegister(MCRegister &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
ParseStatus parseDirective(AsmToken DirectiveID) override;
OperandMatchResultTy parseMemriOperand(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, bool maybeReg);
int parseRegisterName(unsigned (*matchFn)(StringRef));
int parseRegisterName();
int parseRegister(bool RestoreOnFailure = false);
bool tryParseRegisterOperand(OperandVector &Operands);
bool tryParseExpression(OperandVector &Operands);
bool tryParseRelocExpression(OperandVector &Operands);
void eatComma();
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
unsigned toDREG(unsigned Reg, unsigned From = AVR::sub_lo) {
MCRegisterClass const *Class = &AVRMCRegisterClasses[AVR::DREGSRegClassID];
return MRI->getMatchingSuperReg(Reg, From, Class);
}
bool emit(MCInst &Instruction, SMLoc const &Loc, MCStreamer &Out) const;
bool invalidOperand(SMLoc const &Loc, OperandVector const &Operands,
uint64_t const &ErrorInfo);
bool missingFeature(SMLoc const &Loc, uint64_t const &ErrorInfo);
ParseStatus parseLiteralValues(unsigned SizeInBytes, SMLoc L);
public:
AVRAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII), STI(STI), Parser(Parser) {
MCAsmParserExtension::Initialize(Parser);
MRI = getContext().getRegisterInfo();
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmParser &getParser() const { return Parser; }
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
};
/// An parsed AVR assembly operand.
class AVROperand : public MCParsedAsmOperand {
typedef MCParsedAsmOperand Base;
enum KindTy { k_Immediate, k_Register, k_Token, k_Memri } Kind;
public:
AVROperand(StringRef Tok, SMLoc const &S)
: Kind(k_Token), Tok(Tok), Start(S), End(S) {}
AVROperand(unsigned Reg, SMLoc const &S, SMLoc const &E)
: Kind(k_Register), RegImm({Reg, nullptr}), Start(S), End(E) {}
AVROperand(MCExpr const *Imm, SMLoc const &S, SMLoc const &E)
: Kind(k_Immediate), RegImm({0, Imm}), Start(S), End(E) {}
AVROperand(unsigned Reg, MCExpr const *Imm, SMLoc const &S, SMLoc const &E)
: Kind(k_Memri), RegImm({Reg, Imm}), Start(S), End(E) {}
struct RegisterImmediate {
unsigned Reg;
MCExpr const *Imm;
};
union {
StringRef Tok;
RegisterImmediate RegImm;
};
SMLoc Start, End;
public:
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Register && "Unexpected operand kind");
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediate when possible
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Immediate && "Unexpected operand kind");
assert(N == 1 && "Invalid number of operands!");
const MCExpr *Expr = getImm();
addExpr(Inst, Expr);
}
/// Adds the contained reg+imm operand to an instruction.
void addMemriOperands(MCInst &Inst, unsigned N) const {
assert(Kind == k_Memri && "Unexpected operand kind");
assert(N == 2 && "Invalid number of operands");
Inst.addOperand(MCOperand::createReg(getReg()));
addExpr(Inst, getImm());
}
void addImmCom8Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// The operand is actually a imm8, but we have its bitwise
// negation in the assembly source, so twiddle it here.
const auto *CE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(~(uint8_t)CE->getValue()));
}
bool isImmCom8() const {
if (!isImm())
return false;
const auto *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE)
return false;
int64_t Value = CE->getValue();
return isUInt<8>(Value);
}
bool isReg() const override { return Kind == k_Register; }
bool isImm() const override { return Kind == k_Immediate; }
bool isToken() const override { return Kind == k_Token; }
bool isMem() const override { return Kind == k_Memri; }
bool isMemri() const { return Kind == k_Memri; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return Tok;
}
unsigned getReg() const override {
assert((Kind == k_Register || Kind == k_Memri) && "Invalid access!");
return RegImm.Reg;
}
const MCExpr *getImm() const {
assert((Kind == k_Immediate || Kind == k_Memri) && "Invalid access!");
return RegImm.Imm;
}
static std::unique_ptr<AVROperand> CreateToken(StringRef Str, SMLoc S) {
return std::make_unique<AVROperand>(Str, S);
}
static std::unique_ptr<AVROperand> CreateReg(unsigned RegNum, SMLoc S,
SMLoc E) {
return std::make_unique<AVROperand>(RegNum, S, E);
}
static std::unique_ptr<AVROperand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E) {
return std::make_unique<AVROperand>(Val, S, E);
}
static std::unique_ptr<AVROperand>
CreateMemri(unsigned RegNum, const MCExpr *Val, SMLoc S, SMLoc E) {
return std::make_unique<AVROperand>(RegNum, Val, S, E);
}
void makeToken(StringRef Token) {
Kind = k_Token;
Tok = Token;
}
void makeReg(unsigned RegNo) {
Kind = k_Register;
RegImm = {RegNo, nullptr};
}
void makeImm(MCExpr const *Ex) {
Kind = k_Immediate;
RegImm = {0, Ex};
}
void makeMemri(unsigned RegNo, MCExpr const *Imm) {
Kind = k_Memri;
RegImm = {RegNo, Imm};
}
SMLoc getStartLoc() const override { return Start; }
SMLoc getEndLoc() const override { return End; }
void print(raw_ostream &O) const override {
switch (Kind) {
case k_Token:
O << "Token: \"" << getToken() << "\"";
break;
case k_Register:
O << "Register: " << getReg();
break;
case k_Immediate:
O << "Immediate: \"" << *getImm() << "\"";
break;
case k_Memri: {
// only manually print the size for non-negative values,
// as the sign is inserted automatically.
O << "Memri: \"" << getReg() << '+' << *getImm() << "\"";
break;
}
}
O << "\n";
}
};
} // end anonymous namespace.
// Auto-generated Match Functions
/// Maps from the set of all register names to a register number.
/// \note Generated by TableGen.
static unsigned MatchRegisterName(StringRef Name);
/// Maps from the set of all alternative registernames to a register number.
/// \note Generated by TableGen.
static unsigned MatchRegisterAltName(StringRef Name);
bool AVRAsmParser::invalidOperand(SMLoc const &Loc,
OperandVector const &Operands,
uint64_t const &ErrorInfo) {
SMLoc ErrorLoc = Loc;
char const *Diag = nullptr;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size()) {
Diag = "too few operands for instruction.";
} else {
AVROperand const &Op = (AVROperand const &)*Operands[ErrorInfo];
// TODO: See if we can do a better error than just "invalid ...".
if (Op.getStartLoc() != SMLoc()) {
ErrorLoc = Op.getStartLoc();
}
}
}
if (!Diag) {
Diag = "invalid operand for instruction";
}
return Error(ErrorLoc, Diag);
}
bool AVRAsmParser::missingFeature(llvm::SMLoc const &Loc,
uint64_t const &ErrorInfo) {
return Error(Loc, "instruction requires a CPU feature not currently enabled");
}
bool AVRAsmParser::emit(MCInst &Inst, SMLoc const &Loc, MCStreamer &Out) const {
Inst.setLoc(Loc);
Out.emitInstruction(Inst, STI);
return false;
}
bool AVRAsmParser::MatchAndEmitInstruction(SMLoc Loc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out, uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success:
return emit(Inst, Loc, Out);
case Match_MissingFeature:
return missingFeature(Loc, ErrorInfo);
case Match_InvalidOperand:
return invalidOperand(Loc, Operands, ErrorInfo);
case Match_MnemonicFail:
return Error(Loc, "invalid instruction");
case Match_InvalidRegisterOnTiny:
return Error(Loc, "invalid register on avrtiny");
default:
return true;
}
}
/// Parses a register name using a given matching function.
/// Checks for lowercase or uppercase if necessary.
int AVRAsmParser::parseRegisterName(unsigned (*matchFn)(StringRef)) {
StringRef Name = Parser.getTok().getString();
int RegNum = matchFn(Name);
// GCC supports case insensitive register names. Some of the AVR registers
// are all lower case, some are all upper case but non are mixed. We prefer
// to use the original names in the register definitions. That is why we
// have to test both upper and lower case here.
if (RegNum == AVR::NoRegister) {
RegNum = matchFn(Name.lower());
}
if (RegNum == AVR::NoRegister) {
RegNum = matchFn(Name.upper());
}
return RegNum;
}
int AVRAsmParser::parseRegisterName() {
int RegNum = parseRegisterName(&MatchRegisterName);
if (RegNum == AVR::NoRegister)
RegNum = parseRegisterName(&MatchRegisterAltName);
return RegNum;
}
int AVRAsmParser::parseRegister(bool RestoreOnFailure) {
int RegNum = AVR::NoRegister;
if (Parser.getTok().is(AsmToken::Identifier)) {
// Check for register pair syntax
if (Parser.getLexer().peekTok().is(AsmToken::Colon)) {
AsmToken HighTok = Parser.getTok();
Parser.Lex();
AsmToken ColonTok = Parser.getTok();
Parser.Lex(); // Eat high (odd) register and colon
if (Parser.getTok().is(AsmToken::Identifier)) {
// Convert lower (even) register to DREG
RegNum = toDREG(parseRegisterName());
}
if (RegNum == AVR::NoRegister && RestoreOnFailure) {
getLexer().UnLex(std::move(ColonTok));
getLexer().UnLex(std::move(HighTok));
}
} else {
RegNum = parseRegisterName();
}
}
return RegNum;
}
bool AVRAsmParser::tryParseRegisterOperand(OperandVector &Operands) {
int RegNo = parseRegister();
if (RegNo == AVR::NoRegister)
return true;
// Reject R0~R15 on avrtiny.
if (AVR::R0 <= RegNo && RegNo <= AVR::R15 &&
STI.hasFeature(AVR::FeatureTinyEncoding))
return Error(Parser.getTok().getLoc(), "invalid register on avrtiny");
AsmToken const &T = Parser.getTok();
Operands.push_back(AVROperand::CreateReg(RegNo, T.getLoc(), T.getEndLoc()));
Parser.Lex(); // Eat register token.
return false;
}
bool AVRAsmParser::tryParseExpression(OperandVector &Operands) {
SMLoc S = Parser.getTok().getLoc();
if (!tryParseRelocExpression(Operands))
return false;
if ((Parser.getTok().getKind() == AsmToken::Plus ||
Parser.getTok().getKind() == AsmToken::Minus) &&
Parser.getLexer().peekTok().getKind() == AsmToken::Identifier) {
// Don't handle this case - it should be split into two
// separate tokens.
return true;
}
// Parse (potentially inner) expression
MCExpr const *Expression;
if (getParser().parseExpression(Expression))
return true;
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AVROperand::CreateImm(Expression, S, E));
return false;
}
bool AVRAsmParser::tryParseRelocExpression(OperandVector &Operands) {
bool isNegated = false;
AVRMCExpr::VariantKind ModifierKind = AVRMCExpr::VK_AVR_None;
SMLoc S = Parser.getTok().getLoc();
// Reject the form in which sign comes first. This behaviour is
// in accordance with avr-gcc.
AsmToken::TokenKind CurTok = Parser.getLexer().getKind();
if (CurTok == AsmToken::Minus || CurTok == AsmToken::Plus)
return true;
// Check for sign.
AsmToken tokens[2];
if (Parser.getLexer().peekTokens(tokens) == 2)
if (tokens[0].getKind() == AsmToken::LParen &&
tokens[1].getKind() == AsmToken::Minus)
isNegated = true;
// Check if we have a target specific modifier (lo8, hi8, &c)
if (CurTok != AsmToken::Identifier ||
Parser.getLexer().peekTok().getKind() != AsmToken::LParen) {
// Not a reloc expr
return true;
}
StringRef ModifierName = Parser.getTok().getString();
ModifierKind = AVRMCExpr::getKindByName(ModifierName);
if (ModifierKind != AVRMCExpr::VK_AVR_None) {
Parser.Lex();
Parser.Lex(); // Eat modifier name and parenthesis
if (Parser.getTok().getString() == GENERATE_STUBS &&
Parser.getTok().getKind() == AsmToken::Identifier) {
std::string GSModName = ModifierName.str() + "_" + GENERATE_STUBS;
ModifierKind = AVRMCExpr::getKindByName(GSModName);
if (ModifierKind != AVRMCExpr::VK_AVR_None)
Parser.Lex(); // Eat gs modifier name
}
} else {
return Error(Parser.getTok().getLoc(), "unknown modifier");
}
if (tokens[1].getKind() == AsmToken::Minus ||
tokens[1].getKind() == AsmToken::Plus) {
Parser.Lex();
assert(Parser.getTok().getKind() == AsmToken::LParen);
Parser.Lex(); // Eat the sign and parenthesis
}
MCExpr const *InnerExpression;
if (getParser().parseExpression(InnerExpression))
return true;
if (tokens[1].getKind() == AsmToken::Minus ||
tokens[1].getKind() == AsmToken::Plus) {
assert(Parser.getTok().getKind() == AsmToken::RParen);
Parser.Lex(); // Eat closing parenthesis
}
// If we have a modifier wrap the inner expression
assert(Parser.getTok().getKind() == AsmToken::RParen);
Parser.Lex(); // Eat closing parenthesis
MCExpr const *Expression =
AVRMCExpr::create(ModifierKind, InnerExpression, isNegated, getContext());
SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(AVROperand::CreateImm(Expression, S, E));
return false;
}
bool AVRAsmParser::parseOperand(OperandVector &Operands, bool maybeReg) {
LLVM_DEBUG(dbgs() << "parseOperand\n");
switch (getLexer().getKind()) {
default:
return Error(Parser.getTok().getLoc(), "unexpected token in operand");
case AsmToken::Identifier:
// Try to parse a register, fall through to the next case if it fails.
if (maybeReg && !tryParseRegisterOperand(Operands)) {
return false;
}
[[fallthrough]];
case AsmToken::LParen:
case AsmToken::Integer:
case AsmToken::Dot:
return tryParseExpression(Operands);
case AsmToken::Plus:
case AsmToken::Minus: {
// If the sign preceeds a number, parse the number,
// otherwise treat the sign a an independent token.
switch (getLexer().peekTok().getKind()) {
case AsmToken::Integer:
case AsmToken::BigNum:
case AsmToken::Identifier:
case AsmToken::Real:
if (!tryParseExpression(Operands))
return false;
break;
default:
break;
}
// Treat the token as an independent token.
Operands.push_back(AVROperand::CreateToken(Parser.getTok().getString(),
Parser.getTok().getLoc()));
Parser.Lex(); // Eat the token.
return false;
}
}
// Could not parse operand
return true;
}
OperandMatchResultTy AVRAsmParser::parseMemriOperand(OperandVector &Operands) {
LLVM_DEBUG(dbgs() << "parseMemriOperand()\n");
SMLoc E, S;
MCExpr const *Expression;
int RegNo;
// Parse register.
{
RegNo = parseRegister();
if (RegNo == AVR::NoRegister)
return MatchOperand_ParseFail;
S = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Parser.Lex(); // Eat register token.
}
// Parse immediate;
{
if (getParser().parseExpression(Expression))
return MatchOperand_ParseFail;
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
}
Operands.push_back(AVROperand::CreateMemri(RegNo, Expression, S, E));
return MatchOperand_Success;
}
bool AVRAsmParser::parseRegister(MCRegister &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = parseRegister(/*RestoreOnFailure=*/false);
EndLoc = Parser.getTok().getLoc();
return (RegNo == AVR::NoRegister);
}
OperandMatchResultTy AVRAsmParser::tryParseRegister(MCRegister &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = Parser.getTok().getLoc();
RegNo = parseRegister(/*RestoreOnFailure=*/true);
EndLoc = Parser.getTok().getLoc();
if (RegNo == AVR::NoRegister)
return MatchOperand_NoMatch;
return MatchOperand_Success;
}
void AVRAsmParser::eatComma() {
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
} else {
// GCC allows commas to be omitted.
}
}
bool AVRAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Mnemonic, SMLoc NameLoc,
OperandVector &Operands) {
Operands.push_back(AVROperand::CreateToken(Mnemonic, NameLoc));
int OperandNum = -1;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
OperandNum++;
if (OperandNum > 0)
eatComma();
auto MatchResult = MatchOperandParserImpl(Operands, Mnemonic);
if (MatchResult == MatchOperand_Success) {
continue;
}
if (MatchResult == MatchOperand_ParseFail) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "failed to parse register and immediate pair");
}
// These specific operands should be treated as addresses/symbols/labels,
// other than registers.
bool maybeReg = true;
if (OperandNum == 1) {
std::array<StringRef, 8> Insts = {"lds", "adiw", "sbiw", "ldi"};
for (auto Inst : Insts) {
if (Inst == Mnemonic) {
maybeReg = false;
break;
}
}
} else if (OperandNum == 0) {
std::array<StringRef, 8> Insts = {"sts", "call", "rcall", "rjmp", "jmp"};
for (auto Inst : Insts) {
if (Inst == Mnemonic) {
maybeReg = false;
break;
}
}
}
if (parseOperand(Operands, maybeReg)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
Parser.Lex(); // Consume the EndOfStatement
return false;
}
ParseStatus AVRAsmParser::parseDirective(llvm::AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal.lower() == ".long")
return parseLiteralValues(SIZE_LONG, DirectiveID.getLoc());
if (IDVal.lower() == ".word" || IDVal.lower() == ".short")
return parseLiteralValues(SIZE_WORD, DirectiveID.getLoc());
if (IDVal.lower() == ".byte")
return parseLiteralValues(1, DirectiveID.getLoc());
return ParseStatus::NoMatch;
}
ParseStatus AVRAsmParser::parseLiteralValues(unsigned SizeInBytes, SMLoc L) {
MCAsmParser &Parser = getParser();
AVRMCELFStreamer &AVRStreamer =
static_cast<AVRMCELFStreamer &>(Parser.getStreamer());
AsmToken Tokens[2];
size_t ReadCount = Parser.getLexer().peekTokens(Tokens);
if (ReadCount == 2 && Parser.getTok().getKind() == AsmToken::Identifier &&
Tokens[0].getKind() == AsmToken::Minus &&
Tokens[1].getKind() == AsmToken::Identifier) {
MCSymbol *Symbol = getContext().getOrCreateSymbol(".text");
AVRStreamer.emitValueForModiferKind(Symbol, SizeInBytes, L,
AVRMCExpr::VK_AVR_None);
return ParseStatus::NoMatch;
}
if (Parser.getTok().getKind() == AsmToken::Identifier &&
Parser.getLexer().peekTok().getKind() == AsmToken::LParen) {
StringRef ModifierName = Parser.getTok().getString();
AVRMCExpr::VariantKind ModifierKind =
AVRMCExpr::getKindByName(ModifierName);
if (ModifierKind != AVRMCExpr::VK_AVR_None) {
Parser.Lex();
Parser.Lex(); // Eat the modifier and parenthesis
} else {
return Error(Parser.getTok().getLoc(), "unknown modifier");
}
MCSymbol *Symbol =
getContext().getOrCreateSymbol(Parser.getTok().getString());
AVRStreamer.emitValueForModiferKind(Symbol, SizeInBytes, L, ModifierKind);
Lex(); // Eat the symbol name.
if (parseToken(AsmToken::RParen))
return ParseStatus::Failure;
return parseEOL();
}
auto parseOne = [&]() -> bool {
const MCExpr *Value;
if (Parser.parseExpression(Value))
return true;
Parser.getStreamer().emitValue(Value, SizeInBytes, L);
return false;
};
return (parseMany(parseOne));
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAVRAsmParser() {
RegisterMCAsmParser<AVRAsmParser> X(getTheAVRTarget());
}
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "AVRGenAsmMatcher.inc"
// Uses enums defined in AVRGenAsmMatcher.inc
unsigned AVRAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned ExpectedKind) {
AVROperand &Op = static_cast<AVROperand &>(AsmOp);
MatchClassKind Expected = static_cast<MatchClassKind>(ExpectedKind);
// If need be, GCC converts bare numbers to register names
// It's ugly, but GCC supports it.
if (Op.isImm()) {
if (MCConstantExpr const *Const = dyn_cast<MCConstantExpr>(Op.getImm())) {
int64_t RegNum = Const->getValue();
// Reject R0~R15 on avrtiny.
if (0 <= RegNum && RegNum <= 15 &&
STI.hasFeature(AVR::FeatureTinyEncoding))
return Match_InvalidRegisterOnTiny;
std::ostringstream RegName;
RegName << "r" << RegNum;
RegNum = MatchRegisterName(RegName.str());
if (RegNum != AVR::NoRegister) {
Op.makeReg(RegNum);
if (validateOperandClass(Op, Expected) == Match_Success) {
return Match_Success;
}
}
// Let the other quirks try their magic.
}
}
if (Op.isReg()) {
// If the instruction uses a register pair but we got a single, lower
// register we perform a "class cast".
if (isSubclass(Expected, MCK_DREGS)) {
unsigned correspondingDREG = toDREG(Op.getReg());
if (correspondingDREG != AVR::NoRegister) {
Op.makeReg(correspondingDREG);
return validateOperandClass(Op, Expected);
}
}
}
return Match_InvalidOperand;
}