Files
clang-p2996/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp
Garvit Gupta 0d3eee33f2 [RISCV] Add support for custom CSRs for Sifive S76.
Support for below CSRs is addeed -
1. Branch Prediction Mode CSR
2. Feature Disable CSR
3. Power Dial CSR
4. RNMI CSRs

spec:https://sifive.cdn.prismic.io/sifive/767804da-53b2-4893-97d5-b7c030ae0a94_s76mc_core_complex_manual_21G3.pdf

This patch removes AltName field from SysReg class because we are now using
separate class for custom vendor CSRs. Also, all use of AltName have been changed
to DeprecatedName because both were interchangeably used for old names which are
not in use in latest RISCV spec.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D153499
2023-07-14 09:51:15 -07:00

314 lines
10 KiB
C++

//===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone enum definitions for the RISC-V target
// useful for the compiler back-end and the MC libraries.
//
//===----------------------------------------------------------------------===//
#include "RISCVBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/RISCVISAInfo.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/TargetParser.h"
#include "llvm/TargetParser/Triple.h"
namespace llvm {
extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
namespace RISCVSysReg {
#define GET_SysRegsList_IMPL
#define GET_SiFiveRegsList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVSysReg
namespace RISCVInsnOpcode {
#define GET_RISCVOpcodesList_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVInsnOpcode
namespace RISCVABI {
ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
StringRef ABIName) {
auto TargetABI = getTargetABI(ABIName);
bool IsRV64 = TT.isArch64Bit();
bool IsRVE = FeatureBits[RISCV::FeatureRVE];
if (!ABIName.empty() && TargetABI == ABI_Unknown) {
errs()
<< "'" << ABIName
<< "' is not a recognized ABI for this target (ignoring target-abi)\n";
} else if (ABIName.startswith("ilp32") && IsRV64) {
errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (ABIName.startswith("lp64") && !IsRV64) {
errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
"target-abi)\n";
TargetABI = ABI_Unknown;
} else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
} else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
TargetABI != ABI_Unknown) {
// TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
errs()
<< "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
TargetABI = ABI_Unknown;
}
if (TargetABI != ABI_Unknown)
return TargetABI;
// If no explicit ABI is given, try to compute the default ABI.
auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
if (!ISAInfo)
report_fatal_error(ISAInfo.takeError());
return getTargetABI((*ISAInfo)->computeDefaultABI());
}
ABI getTargetABI(StringRef ABIName) {
auto TargetABI = StringSwitch<ABI>(ABIName)
.Case("ilp32", ABI_ILP32)
.Case("ilp32f", ABI_ILP32F)
.Case("ilp32d", ABI_ILP32D)
.Case("ilp32e", ABI_ILP32E)
.Case("lp64", ABI_LP64)
.Case("lp64f", ABI_LP64F)
.Case("lp64d", ABI_LP64D)
.Case("lp64e", ABI_LP64E)
.Default(ABI_Unknown);
return TargetABI;
}
// To avoid the BP value clobbered by a function call, we need to choose a
// callee saved register to save the value. RV32E only has X8 and X9 as callee
// saved registers and X8 will be used as fp. So we choose X9 as bp.
MCRegister getBPReg() { return RISCV::X9; }
// Returns the register holding shadow call stack pointer.
MCRegister getSCSPReg() { return RISCV::X3; }
} // namespace RISCVABI
namespace RISCVFeatures {
void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV64 target requires an RV64 CPU");
if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
report_fatal_error("RV32 target requires an RV32 CPU");
if (FeatureBits[RISCV::Feature32Bit] &&
FeatureBits[RISCV::Feature64Bit])
report_fatal_error("RV32 and RV64 can't be combined");
}
llvm::Expected<std::unique_ptr<RISCVISAInfo>>
parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
unsigned XLen = IsRV64 ? 64 : 32;
std::vector<std::string> FeatureVector;
// Convert FeatureBitset to FeatureVector.
for (auto Feature : RISCVFeatureKV) {
if (FeatureBits[Feature.Value] &&
llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
FeatureVector.push_back(std::string("+") + Feature.Key);
}
return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
}
} // namespace RISCVFeatures
// Encode VTYPE into the binary format used by the the VSETVLI instruction which
// is used by our MC layer representation.
//
// Bits | Name | Description
// -----+------------+------------------------------------------------
// 7 | vma | Vector mask agnostic
// 6 | vta | Vector tail agnostic
// 5:3 | vsew[2:0] | Standard element width (SEW) setting
// 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
bool TailAgnostic, bool MaskAgnostic) {
assert(isValidSEW(SEW) && "Invalid SEW");
unsigned VLMULBits = static_cast<unsigned>(VLMUL);
unsigned VSEWBits = encodeSEW(SEW);
unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
if (TailAgnostic)
VTypeI |= 0x40;
if (MaskAgnostic)
VTypeI |= 0x80;
return VTypeI;
}
std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
switch (VLMUL) {
default:
llvm_unreachable("Unexpected LMUL value!");
case RISCVII::VLMUL::LMUL_1:
case RISCVII::VLMUL::LMUL_2:
case RISCVII::VLMUL::LMUL_4:
case RISCVII::VLMUL::LMUL_8:
return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
case RISCVII::VLMUL::LMUL_F2:
case RISCVII::VLMUL::LMUL_F4:
case RISCVII::VLMUL::LMUL_F8:
return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
}
}
void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
unsigned Sew = getSEW(VType);
OS << "e" << Sew;
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
if (Fractional)
OS << ", mf";
else
OS << ", m";
OS << LMul;
if (isTailAgnostic(VType))
OS << ", ta";
else
OS << ", tu";
if (isMaskAgnostic(VType))
OS << ", ma";
else
OS << ", mu";
}
unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
// Convert LMul to a fixed point value with 3 fractional bits.
LMul = Fractional ? (8 / LMul) : (LMul * 8);
assert(SEW >= 8 && "Unexpected SEW value");
return (SEW * 8) / LMul;
}
// Include the auto-generated portion of the compress emitter.
#define GEN_UNCOMPRESS_INSTR
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
const MCSubtargetInfo &STI) {
return compressInst(OutInst, MI, STI);
}
bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
const MCSubtargetInfo &STI) {
return uncompressInst(OutInst, MI, STI);
}
// Lookup table for fli.s for entries 2-31.
static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
{0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
{0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
{0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
{0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
{0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
{0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
{0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
{0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
{0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
{0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
};
int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
&FPImm.getSemantics() == &APFloat::IEEEdouble() ||
&FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
"Unexpected semantics");
// Handle the minimum normalized value which is different for each type.
if (FPImm.isSmallestNormalized())
return 1;
// Convert to single precision to use its lookup table.
bool LosesInfo;
APFloat::opStatus Status = FPImm.convert(
APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
if (Status != APFloat::opOK || LosesInfo)
return -1;
APInt Imm = FPImm.bitcastToAPInt();
if (Imm.extractBitsAsZExtValue(21, 0) != 0)
return -1;
bool Sign = Imm.extractBitsAsZExtValue(1, 31);
uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
EMI->second != Mantissa)
return -1;
// Table doesn't have entry 0 or 1.
int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
// The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
if (Sign) {
if (Entry == 16)
return 0;
return false;
}
return Entry;
}
float RISCVLoadFPImm::getFPImm(unsigned Imm) {
assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
// Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
uint32_t Sign = 0;
if (Imm == 0) {
Sign = 0b1;
Imm = 16;
}
uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
return bit_cast<float>(I);
}
void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
OS << "{ra";
if (SlistEncode > 4) {
OS << ", s0";
if (SlistEncode == 15)
OS << "-s11";
else if (SlistEncode > 5 && SlistEncode <= 14)
OS << "-s" << (SlistEncode - 5);
}
OS << "}";
}
void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; }
} // namespace llvm