Files
clang-p2996/llvm/test/CodeGen/AArch64/sve-split-insert-elt.ll
Igor Kudrin 6e54fccede [AArch64] Emit fewer CFI instructions for synchronous unwind tables
The instruction-precise, or asynchronous, unwind tables usually take up
much more space than the synchronous ones. If a user is concerned about
the load size of the program and does not need the features provided
with the asynchronous tables, the compiler should be able to generate
the more compact variant.

This patch changes the generation of CFI instructions for these cases so
that they all come in one chunk in the prolog; it emits only one
`.cfi_def_cfa*` instruction followed by `.cfi_offset` ones after all
stack adjustments and register spills, and avoids generating CFI
instructions in the epilog(s) as well as any other exceeding CFI
instructions like `.cfi_remember_state` and `.cfi_restore_state`.
Effectively, it reverses the effects of D111411 and D114545 on functions
with the `uwtable(sync)` attribute. As a side effect, it also restores
the behavior on functions that have neither `uwtable` nor `nounwind`
attributes.

Differential Revision: https://reviews.llvm.org/D153098
2023-07-01 16:31:09 -07:00

187 lines
7.3 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=aarch64-linux-gnu -mattr=+sve < %s | FileCheck %s
; INSERT VECTOR ELT
define <vscale x 8 x i8> @promote_insert_8i8(<vscale x 8 x i8> %a, i8 %elt, i64 %idx) {
; CHECK-LABEL: promote_insert_8i8:
; CHECK: // %bb.0:
; CHECK-NEXT: index z1.h, #0, #1
; CHECK-NEXT: mov z2.h, w1
; CHECK-NEXT: ptrue p0.h
; CHECK-NEXT: cmpeq p0.h, p0/z, z1.h, z2.h
; CHECK-NEXT: mov z0.h, p0/m, w0
; CHECK-NEXT: ret
%ins = insertelement <vscale x 8 x i8> %a, i8 %elt, i64 %idx
ret <vscale x 8 x i8> %ins
}
define <vscale x 32 x i8> @split_insert_32i8_idx(<vscale x 32 x i8> %a, i8 %elt, i64 %idx) {
; CHECK-LABEL: split_insert_32i8_idx:
; CHECK: // %bb.0:
; CHECK-NEXT: str x29, [sp, #-16]! // 8-byte Folded Spill
; CHECK-NEXT: addvl sp, sp, #-2
; CHECK-NEXT: .cfi_escape 0x0f, 0x0c, 0x8f, 0x00, 0x11, 0x10, 0x22, 0x11, 0x10, 0x92, 0x2e, 0x00, 0x1e, 0x22 // sp + 16 + 16 * VG
; CHECK-NEXT: .cfi_offset w29, -16
; CHECK-NEXT: mov x8, #-1
; CHECK-NEXT: mov x9, sp
; CHECK-NEXT: ptrue p0.b
; CHECK-NEXT: st1b { z1.b }, p0, [sp, #1, mul vl]
; CHECK-NEXT: st1b { z0.b }, p0, [sp]
; CHECK-NEXT: addvl x8, x8, #2
; CHECK-NEXT: cmp x1, x8
; CHECK-NEXT: csel x8, x1, x8, lo
; CHECK-NEXT: strb w0, [x9, x8]
; CHECK-NEXT: ld1b { z0.b }, p0/z, [sp]
; CHECK-NEXT: ld1b { z1.b }, p0/z, [sp, #1, mul vl]
; CHECK-NEXT: addvl sp, sp, #2
; CHECK-NEXT: ldr x29, [sp], #16 // 8-byte Folded Reload
; CHECK-NEXT: ret
%ins = insertelement <vscale x 32 x i8> %a, i8 %elt, i64 %idx
ret <vscale x 32 x i8> %ins
}
define <vscale x 8 x float> @split_insert_8f32_idx(<vscale x 8 x float> %a, float %elt, i64 %idx) {
; CHECK-LABEL: split_insert_8f32_idx:
; CHECK: // %bb.0:
; CHECK-NEXT: str x29, [sp, #-16]! // 8-byte Folded Spill
; CHECK-NEXT: addvl sp, sp, #-2
; CHECK-NEXT: .cfi_escape 0x0f, 0x0c, 0x8f, 0x00, 0x11, 0x10, 0x22, 0x11, 0x10, 0x92, 0x2e, 0x00, 0x1e, 0x22 // sp + 16 + 16 * VG
; CHECK-NEXT: .cfi_offset w29, -16
; CHECK-NEXT: cnth x8
; CHECK-NEXT: mov x9, sp
; CHECK-NEXT: sub x8, x8, #1
; CHECK-NEXT: ptrue p0.s
; CHECK-NEXT: cmp x0, x8
; CHECK-NEXT: st1w { z1.s }, p0, [sp, #1, mul vl]
; CHECK-NEXT: csel x8, x0, x8, lo
; CHECK-NEXT: st1w { z0.s }, p0, [sp]
; CHECK-NEXT: str s2, [x9, x8, lsl #2]
; CHECK-NEXT: ld1w { z0.s }, p0/z, [sp]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [sp, #1, mul vl]
; CHECK-NEXT: addvl sp, sp, #2
; CHECK-NEXT: ldr x29, [sp], #16 // 8-byte Folded Reload
; CHECK-NEXT: ret
%ins = insertelement <vscale x 8 x float> %a, float %elt, i64 %idx
ret <vscale x 8 x float> %ins
}
define <vscale x 8 x i64> @split_insert_8i64_idx(<vscale x 8 x i64> %a, i64 %elt, i64 %idx) {
; CHECK-LABEL: split_insert_8i64_idx:
; CHECK: // %bb.0:
; CHECK-NEXT: str x29, [sp, #-16]! // 8-byte Folded Spill
; CHECK-NEXT: addvl sp, sp, #-4
; CHECK-NEXT: .cfi_escape 0x0f, 0x0c, 0x8f, 0x00, 0x11, 0x10, 0x22, 0x11, 0x20, 0x92, 0x2e, 0x00, 0x1e, 0x22 // sp + 16 + 32 * VG
; CHECK-NEXT: .cfi_offset w29, -16
; CHECK-NEXT: cnth x8
; CHECK-NEXT: mov x9, sp
; CHECK-NEXT: sub x8, x8, #1
; CHECK-NEXT: ptrue p0.d
; CHECK-NEXT: cmp x1, x8
; CHECK-NEXT: st1d { z3.d }, p0, [sp, #3, mul vl]
; CHECK-NEXT: csel x8, x1, x8, lo
; CHECK-NEXT: st1d { z2.d }, p0, [sp, #2, mul vl]
; CHECK-NEXT: st1d { z1.d }, p0, [sp, #1, mul vl]
; CHECK-NEXT: st1d { z0.d }, p0, [sp]
; CHECK-NEXT: str x0, [x9, x8, lsl #3]
; CHECK-NEXT: ld1d { z0.d }, p0/z, [sp]
; CHECK-NEXT: ld1d { z1.d }, p0/z, [sp, #1, mul vl]
; CHECK-NEXT: ld1d { z2.d }, p0/z, [sp, #2, mul vl]
; CHECK-NEXT: ld1d { z3.d }, p0/z, [sp, #3, mul vl]
; CHECK-NEXT: addvl sp, sp, #4
; CHECK-NEXT: ldr x29, [sp], #16 // 8-byte Folded Reload
; CHECK-NEXT: ret
%ins = insertelement <vscale x 8 x i64> %a, i64 %elt, i64 %idx
ret <vscale x 8 x i64> %ins
}
; INSERT VECTOR ELT, CONSTANT IDX
define <vscale x 4 x i16> @promote_insert_4i16(<vscale x 4 x i16> %a, i16 %elt) {
; CHECK-LABEL: promote_insert_4i16:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #5
; CHECK-NEXT: index z2.s, #0, #1
; CHECK-NEXT: ptrue p0.s
; CHECK-NEXT: mov z1.s, w8
; CHECK-NEXT: cmpeq p0.s, p0/z, z2.s, z1.s
; CHECK-NEXT: mov z0.s, p0/m, w0
; CHECK-NEXT: ret
%ins = insertelement <vscale x 4 x i16> %a, i16 %elt, i64 5
ret <vscale x 4 x i16> %ins
}
; In this test, the index is small enough that we know it will be in the
; low half of the vector and there is no need to go through the stack as
; done in the remaining tests
define <vscale x 32 x i8> @split_insert_32i8(<vscale x 32 x i8> %a, i8 %elt) {
; CHECK-LABEL: split_insert_32i8:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #3
; CHECK-NEXT: index z3.b, #0, #1
; CHECK-NEXT: ptrue p0.b
; CHECK-NEXT: mov z2.b, w8
; CHECK-NEXT: cmpeq p0.b, p0/z, z3.b, z2.b
; CHECK-NEXT: mov z0.b, p0/m, w0
; CHECK-NEXT: ret
%ins = insertelement <vscale x 32 x i8> %a, i8 %elt, i64 3
ret <vscale x 32 x i8> %ins
}
define <vscale x 32 x i16> @split_insert_32i16(<vscale x 32 x i16> %a, i16 %elt) {
; CHECK-LABEL: split_insert_32i16:
; CHECK: // %bb.0:
; CHECK-NEXT: str x29, [sp, #-16]! // 8-byte Folded Spill
; CHECK-NEXT: addvl sp, sp, #-4
; CHECK-NEXT: .cfi_escape 0x0f, 0x0c, 0x8f, 0x00, 0x11, 0x10, 0x22, 0x11, 0x20, 0x92, 0x2e, 0x00, 0x1e, 0x22 // sp + 16 + 32 * VG
; CHECK-NEXT: .cfi_offset w29, -16
; CHECK-NEXT: mov x8, #-1
; CHECK-NEXT: mov w9, #128
; CHECK-NEXT: ptrue p0.h
; CHECK-NEXT: st1h { z3.h }, p0, [sp, #3, mul vl]
; CHECK-NEXT: st1h { z2.h }, p0, [sp, #2, mul vl]
; CHECK-NEXT: addvl x8, x8, #2
; CHECK-NEXT: st1h { z1.h }, p0, [sp, #1, mul vl]
; CHECK-NEXT: cmp x8, #128
; CHECK-NEXT: st1h { z0.h }, p0, [sp]
; CHECK-NEXT: csel x8, x8, x9, lo
; CHECK-NEXT: mov x9, sp
; CHECK-NEXT: strh w0, [x9, x8, lsl #1]
; CHECK-NEXT: ld1h { z0.h }, p0/z, [sp]
; CHECK-NEXT: ld1h { z1.h }, p0/z, [sp, #1, mul vl]
; CHECK-NEXT: ld1h { z2.h }, p0/z, [sp, #2, mul vl]
; CHECK-NEXT: ld1h { z3.h }, p0/z, [sp, #3, mul vl]
; CHECK-NEXT: addvl sp, sp, #4
; CHECK-NEXT: ldr x29, [sp], #16 // 8-byte Folded Reload
; CHECK-NEXT: ret
%ins = insertelement <vscale x 32 x i16> %a, i16 %elt, i64 128
ret <vscale x 32 x i16> %ins
}
define <vscale x 8 x i32> @split_insert_8i32(<vscale x 8 x i32> %a, i32 %elt) {
; CHECK-LABEL: split_insert_8i32:
; CHECK: // %bb.0:
; CHECK-NEXT: str x29, [sp, #-16]! // 8-byte Folded Spill
; CHECK-NEXT: addvl sp, sp, #-2
; CHECK-NEXT: .cfi_escape 0x0f, 0x0c, 0x8f, 0x00, 0x11, 0x10, 0x22, 0x11, 0x10, 0x92, 0x2e, 0x00, 0x1e, 0x22 // sp + 16 + 16 * VG
; CHECK-NEXT: .cfi_offset w29, -16
; CHECK-NEXT: cnth x8
; CHECK-NEXT: mov w9, #16960
; CHECK-NEXT: movk w9, #15, lsl #16
; CHECK-NEXT: sub x8, x8, #1
; CHECK-NEXT: cmp x8, x9
; CHECK-NEXT: ptrue p0.s
; CHECK-NEXT: csel x8, x8, x9, lo
; CHECK-NEXT: mov x9, sp
; CHECK-NEXT: st1w { z1.s }, p0, [sp, #1, mul vl]
; CHECK-NEXT: st1w { z0.s }, p0, [sp]
; CHECK-NEXT: str w0, [x9, x8, lsl #2]
; CHECK-NEXT: ld1w { z0.s }, p0/z, [sp]
; CHECK-NEXT: ld1w { z1.s }, p0/z, [sp, #1, mul vl]
; CHECK-NEXT: addvl sp, sp, #2
; CHECK-NEXT: ldr x29, [sp], #16 // 8-byte Folded Reload
; CHECK-NEXT: ret
%ins = insertelement <vscale x 8 x i32> %a, i32 %elt, i64 1000000
ret <vscale x 8 x i32> %ins
}