`RewriterBase::Listener::notifyOperationReplaced` notifies observers that an op is about to be replaced with a range of values. This notification is not very useful for ops without results, because it does not specify the replacement op (and it cannot be deduced from the replacement values). It provides no additional information over the `notifyOperationRemoved` notification. This revision adds an additional notification when a rewriter replaces an op with another op. By default, this notification triggers the original "op replaced with values" notification, so there is no functional change for existing code. This new API is useful for the transform dialect, which needs to track op replacements. (Updated in a subsequent revision.) Also includes minor documentation improvements. Differential Revision: https://reviews.llvm.org/D152814
190 lines
7.3 KiB
C++
190 lines
7.3 KiB
C++
//===- EmulateAtomics.cpp - Emulate unsupported AMDGPU atomics ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/IR/BuiltinAttributes.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
namespace mlir::amdgpu {
|
|
#define GEN_PASS_DEF_AMDGPUEMULATEATOMICSPASS
|
|
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h.inc"
|
|
} // namespace mlir::amdgpu
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::amdgpu;
|
|
|
|
namespace {
|
|
struct AmdgpuEmulateAtomicsPass
|
|
: public amdgpu::impl::AmdgpuEmulateAtomicsPassBase<
|
|
AmdgpuEmulateAtomicsPass> {
|
|
using AmdgpuEmulateAtomicsPassBase<
|
|
AmdgpuEmulateAtomicsPass>::AmdgpuEmulateAtomicsPassBase;
|
|
void runOnOperation() override;
|
|
};
|
|
|
|
template <typename AtomicOp, typename ArithOp>
|
|
struct RawBufferAtomicByCasPattern : public OpConversionPattern<AtomicOp> {
|
|
using OpConversionPattern<AtomicOp>::OpConversionPattern;
|
|
using Adaptor = typename AtomicOp::Adaptor;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AtomicOp atomicOp, Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
enum class DataArgAction : unsigned char {
|
|
Duplicate,
|
|
Drop,
|
|
};
|
|
} // namespace
|
|
|
|
// Fix up the fact that, when we're migrating from a general bugffer atomic
|
|
// to a load or to a CAS, the number of openrands, and thus the number of
|
|
// entries needed in operand_segment_sizes, needs to change. We use this method
|
|
// because we'd like to preserve unknown attributes on the atomic instead of
|
|
// discarding them.
|
|
static void patchOperandSegmentSizes(ArrayRef<NamedAttribute> attrs,
|
|
SmallVectorImpl<NamedAttribute> &newAttrs,
|
|
DataArgAction action) {
|
|
newAttrs.reserve(attrs.size());
|
|
for (NamedAttribute attr : attrs) {
|
|
if (attr.getName().getValue() != "operand_segment_sizes") {
|
|
newAttrs.push_back(attr);
|
|
continue;
|
|
}
|
|
auto segmentAttr = cast<DenseI32ArrayAttr>(attr.getValue());
|
|
MLIRContext *context = segmentAttr.getContext();
|
|
DenseI32ArrayAttr newSegments;
|
|
switch (action) {
|
|
case DataArgAction::Drop:
|
|
newSegments = DenseI32ArrayAttr::get(
|
|
context, segmentAttr.asArrayRef().drop_front());
|
|
break;
|
|
case DataArgAction::Duplicate: {
|
|
SmallVector<int32_t> newVals;
|
|
ArrayRef<int32_t> oldVals = segmentAttr.asArrayRef();
|
|
newVals.push_back(oldVals[0]);
|
|
newVals.append(oldVals.begin(), oldVals.end());
|
|
newSegments = DenseI32ArrayAttr::get(context, newVals);
|
|
break;
|
|
}
|
|
}
|
|
newAttrs.push_back(NamedAttribute(attr.getName(), newSegments));
|
|
}
|
|
}
|
|
|
|
template <typename AtomicOp, typename ArithOp>
|
|
LogicalResult RawBufferAtomicByCasPattern<AtomicOp, ArithOp>::matchAndRewrite(
|
|
AtomicOp atomicOp, Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Location loc = atomicOp.getLoc();
|
|
|
|
ArrayRef<NamedAttribute> origAttrs = atomicOp->getAttrs();
|
|
ValueRange operands = adaptor.getOperands();
|
|
Value data = operands.take_front()[0];
|
|
ValueRange invariantArgs = operands.drop_front();
|
|
Type dataType = data.getType();
|
|
|
|
SmallVector<NamedAttribute> loadAttrs;
|
|
patchOperandSegmentSizes(origAttrs, loadAttrs, DataArgAction::Drop);
|
|
Value initialLoad =
|
|
rewriter.create<RawBufferLoadOp>(loc, dataType, invariantArgs, loadAttrs);
|
|
Block *currentBlock = rewriter.getInsertionBlock();
|
|
Block *afterAtomic =
|
|
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
|
|
Block *loopBlock = rewriter.createBlock(afterAtomic, {dataType}, {loc});
|
|
|
|
rewriter.setInsertionPointToEnd(currentBlock);
|
|
rewriter.create<cf::BranchOp>(loc, loopBlock, initialLoad);
|
|
|
|
rewriter.setInsertionPointToEnd(loopBlock);
|
|
Value prevLoad = loopBlock->getArgument(0);
|
|
Value operated = rewriter.create<ArithOp>(loc, data, prevLoad);
|
|
|
|
SmallVector<NamedAttribute> cmpswapAttrs;
|
|
patchOperandSegmentSizes(origAttrs, cmpswapAttrs, DataArgAction::Duplicate);
|
|
SmallVector<Value> cmpswapArgs = {operated, prevLoad};
|
|
cmpswapArgs.append(invariantArgs.begin(), invariantArgs.end());
|
|
Value atomicRes = rewriter.create<RawBufferAtomicCmpswapOp>(
|
|
loc, dataType, cmpswapArgs, cmpswapAttrs);
|
|
|
|
// We care about exact bitwise equality here, so do some bitcasts.
|
|
// These will fold away during lowering to the ROCDL dialect, where
|
|
// an int->float bitcast is introduced to account for the fact that cmpswap
|
|
// only takes integer arguments.
|
|
|
|
Value prevLoadForCompare = prevLoad;
|
|
Value atomicResForCompare = atomicRes;
|
|
if (auto floatDataTy = dyn_cast<FloatType>(dataType)) {
|
|
Type equivInt = rewriter.getIntegerType(floatDataTy.getWidth());
|
|
prevLoadForCompare =
|
|
rewriter.create<arith::BitcastOp>(loc, equivInt, prevLoad);
|
|
atomicResForCompare =
|
|
rewriter.create<arith::BitcastOp>(loc, equivInt, atomicRes);
|
|
}
|
|
Value canLeave = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, atomicResForCompare, prevLoadForCompare);
|
|
rewriter.create<cf::CondBranchOp>(loc, canLeave, afterAtomic, ValueRange{},
|
|
loopBlock, atomicRes);
|
|
rewriter.eraseOp(atomicOp);
|
|
return success();
|
|
}
|
|
|
|
void mlir::amdgpu::populateAmdgpuEmulateAtomicsPatterns(
|
|
ConversionTarget &target, RewritePatternSet &patterns, Chipset chipset) {
|
|
// gfx10 has no atomic adds.
|
|
if (chipset.majorVersion == 10 || chipset.majorVersion < 9 ||
|
|
(chipset.majorVersion == 9 && chipset.minorVersion < 0x08)) {
|
|
target.addIllegalOp<RawBufferAtomicFaddOp>();
|
|
}
|
|
// gfx9 has no to a very limited support for floating-point min and max.
|
|
if (chipset.majorVersion == 9) {
|
|
if (chipset.minorVersion >= 0x0a) {
|
|
// gfx90a supports f64 max (and min, but we don't have a min wrapper right
|
|
// now) but all other types need to be emulated.
|
|
target.addDynamicallyLegalOp<RawBufferAtomicFmaxOp>(
|
|
[](RawBufferAtomicFmaxOp op) -> bool {
|
|
return op.getValue().getType().isF64();
|
|
});
|
|
} else {
|
|
target.addIllegalOp<RawBufferAtomicFmaxOp>();
|
|
}
|
|
}
|
|
patterns
|
|
.add<RawBufferAtomicByCasPattern<RawBufferAtomicFaddOp, arith::AddFOp>,
|
|
RawBufferAtomicByCasPattern<RawBufferAtomicFmaxOp, arith::MaxFOp>>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
void AmdgpuEmulateAtomicsPass::runOnOperation() {
|
|
Operation *op = getOperation();
|
|
FailureOr<Chipset> maybeChipset = Chipset::parse(chipset);
|
|
if (failed(maybeChipset)) {
|
|
emitError(op->getLoc(), "Invalid chipset name: " + chipset);
|
|
return signalPassFailure();
|
|
}
|
|
|
|
MLIRContext &ctx = getContext();
|
|
ConversionTarget target(ctx);
|
|
RewritePatternSet patterns(&ctx);
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[](Operation *op) -> bool { return true; });
|
|
|
|
populateAmdgpuEmulateAtomicsPatterns(target, patterns, *maybeChipset);
|
|
if (failed(applyPartialConversion(op, target, std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|