Using MLIR attributes instead of metadata has many advantages: * No indirection: Attributes can simply refer to each other seemlessly without having to use the indirection of `SymbolRefAttr`. This also gives us correctness by construction in a lot of places as well * Multithreading safe: The Attribute infrastructure gives us thread-safety for free. Creating operations and inserting them into a block is not thread-safe. This is a major use case for e.g. the inliner in MLIR which runs in parallel * Easier to create: There is no need for a builder or a metadata region This patch therefore does exactly that. It leverages the new distinct attributes to create distinct access groups in a deterministic and threadsafe manner. Differential Revision: https://reviews.llvm.org/D155285
3365 lines
130 KiB
C++
3365 lines
130 KiB
C++
//===- LLVMDialect.cpp - LLVM IR Ops and Dialect registration -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the types and operation details for the LLVM IR dialect in
|
|
// MLIR, and the LLVM IR dialect. It also registers the dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "LLVMInlining.h"
|
|
#include "TypeDetail.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMAttrs.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
|
|
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/FunctionImplementation.h"
|
|
#include "mlir/IR/MLIRContext.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/Bitcode/BitcodeReader.h"
|
|
#include "llvm/Bitcode/BitcodeWriter.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/Mutex.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
|
|
#include <numeric>
|
|
#include <optional>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::LLVM;
|
|
using mlir::LLVM::cconv::getMaxEnumValForCConv;
|
|
using mlir::LLVM::linkage::getMaxEnumValForLinkage;
|
|
|
|
#include "mlir/Dialect/LLVMIR/LLVMOpsDialect.cpp.inc"
|
|
|
|
static constexpr const char kElemTypeAttrName[] = "elem_type";
|
|
|
|
static auto processFMFAttr(ArrayRef<NamedAttribute> attrs) {
|
|
SmallVector<NamedAttribute, 8> filteredAttrs(
|
|
llvm::make_filter_range(attrs, [&](NamedAttribute attr) {
|
|
if (attr.getName() == "fastmathFlags") {
|
|
auto defAttr =
|
|
FastmathFlagsAttr::get(attr.getValue().getContext(), {});
|
|
return defAttr != attr.getValue();
|
|
}
|
|
return true;
|
|
}));
|
|
return filteredAttrs;
|
|
}
|
|
|
|
static ParseResult parseLLVMOpAttrs(OpAsmParser &parser,
|
|
NamedAttrList &result) {
|
|
return parser.parseOptionalAttrDict(result);
|
|
}
|
|
|
|
static void printLLVMOpAttrs(OpAsmPrinter &printer, Operation *op,
|
|
DictionaryAttr attrs) {
|
|
printer.printOptionalAttrDict(processFMFAttr(attrs.getValue()));
|
|
}
|
|
|
|
/// Verifies `symbol`'s use in `op` to ensure the symbol is a valid and
|
|
/// fully defined llvm.func.
|
|
static LogicalResult verifySymbolAttrUse(FlatSymbolRefAttr symbol,
|
|
Operation *op,
|
|
SymbolTableCollection &symbolTable) {
|
|
StringRef name = symbol.getValue();
|
|
auto func =
|
|
symbolTable.lookupNearestSymbolFrom<LLVMFuncOp>(op, symbol.getAttr());
|
|
if (!func)
|
|
return op->emitOpError("'")
|
|
<< name << "' does not reference a valid LLVM function";
|
|
if (func.isExternal())
|
|
return op->emitOpError("'") << name << "' does not have a definition";
|
|
return success();
|
|
}
|
|
|
|
/// Returns a boolean type that has the same shape as `type`. It supports both
|
|
/// fixed size vectors as well as scalable vectors.
|
|
static Type getI1SameShape(Type type) {
|
|
Type i1Type = IntegerType::get(type.getContext(), 1);
|
|
if (LLVM::isCompatibleVectorType(type))
|
|
return LLVM::getVectorType(i1Type, LLVM::getVectorNumElements(type));
|
|
return i1Type;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Printing, parsing and builder for LLVM::CmpOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ICmpOp::print(OpAsmPrinter &p) {
|
|
p << " \"" << stringifyICmpPredicate(getPredicate()) << "\" " << getOperand(0)
|
|
<< ", " << getOperand(1);
|
|
p.printOptionalAttrDict((*this)->getAttrs(), {"predicate"});
|
|
p << " : " << getLhs().getType();
|
|
}
|
|
|
|
void FCmpOp::print(OpAsmPrinter &p) {
|
|
p << " \"" << stringifyFCmpPredicate(getPredicate()) << "\" " << getOperand(0)
|
|
<< ", " << getOperand(1);
|
|
p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"predicate"});
|
|
p << " : " << getLhs().getType();
|
|
}
|
|
|
|
// <operation> ::= `llvm.icmp` string-literal ssa-use `,` ssa-use
|
|
// attribute-dict? `:` type
|
|
// <operation> ::= `llvm.fcmp` string-literal ssa-use `,` ssa-use
|
|
// attribute-dict? `:` type
|
|
template <typename CmpPredicateType>
|
|
static ParseResult parseCmpOp(OpAsmParser &parser, OperationState &result) {
|
|
StringAttr predicateAttr;
|
|
OpAsmParser::UnresolvedOperand lhs, rhs;
|
|
Type type;
|
|
SMLoc predicateLoc, trailingTypeLoc;
|
|
if (parser.getCurrentLocation(&predicateLoc) ||
|
|
parser.parseAttribute(predicateAttr, "predicate", result.attributes) ||
|
|
parser.parseOperand(lhs) || parser.parseComma() ||
|
|
parser.parseOperand(rhs) ||
|
|
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
|
|
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) ||
|
|
parser.resolveOperand(lhs, type, result.operands) ||
|
|
parser.resolveOperand(rhs, type, result.operands))
|
|
return failure();
|
|
|
|
// Replace the string attribute `predicate` with an integer attribute.
|
|
int64_t predicateValue = 0;
|
|
if (std::is_same<CmpPredicateType, ICmpPredicate>()) {
|
|
std::optional<ICmpPredicate> predicate =
|
|
symbolizeICmpPredicate(predicateAttr.getValue());
|
|
if (!predicate)
|
|
return parser.emitError(predicateLoc)
|
|
<< "'" << predicateAttr.getValue()
|
|
<< "' is an incorrect value of the 'predicate' attribute";
|
|
predicateValue = static_cast<int64_t>(*predicate);
|
|
} else {
|
|
std::optional<FCmpPredicate> predicate =
|
|
symbolizeFCmpPredicate(predicateAttr.getValue());
|
|
if (!predicate)
|
|
return parser.emitError(predicateLoc)
|
|
<< "'" << predicateAttr.getValue()
|
|
<< "' is an incorrect value of the 'predicate' attribute";
|
|
predicateValue = static_cast<int64_t>(*predicate);
|
|
}
|
|
|
|
result.attributes.set("predicate",
|
|
parser.getBuilder().getI64IntegerAttr(predicateValue));
|
|
|
|
// The result type is either i1 or a vector type <? x i1> if the inputs are
|
|
// vectors.
|
|
if (!isCompatibleType(type))
|
|
return parser.emitError(trailingTypeLoc,
|
|
"expected LLVM dialect-compatible type");
|
|
result.addTypes(getI1SameShape(type));
|
|
return success();
|
|
}
|
|
|
|
ParseResult ICmpOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
return parseCmpOp<ICmpPredicate>(parser, result);
|
|
}
|
|
|
|
ParseResult FCmpOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
return parseCmpOp<FCmpPredicate>(parser, result);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Printing, parsing and verification for LLVM::AllocaOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AllocaOp::print(OpAsmPrinter &p) {
|
|
Type elemTy = llvm::cast<LLVM::LLVMPointerType>(getType()).getElementType();
|
|
if (!elemTy)
|
|
elemTy = *getElemType();
|
|
|
|
auto funcTy =
|
|
FunctionType::get(getContext(), {getArraySize().getType()}, {getType()});
|
|
|
|
if (getInalloca())
|
|
p << " inalloca";
|
|
|
|
p << ' ' << getArraySize() << " x " << elemTy;
|
|
if (getAlignment() && *getAlignment() != 0)
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
{kElemTypeAttrName, getInallocaAttrName()});
|
|
else
|
|
p.printOptionalAttrDict(
|
|
(*this)->getAttrs(),
|
|
{getAlignmentAttrName(), kElemTypeAttrName, getInallocaAttrName()});
|
|
p << " : " << funcTy;
|
|
}
|
|
|
|
// <operation> ::= `llvm.alloca` `inalloca`? ssa-use `x` type
|
|
// attribute-dict? `:` type `,` type
|
|
ParseResult AllocaOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
OpAsmParser::UnresolvedOperand arraySize;
|
|
Type type, elemType;
|
|
SMLoc trailingTypeLoc;
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("inalloca")))
|
|
result.addAttribute(getInallocaAttrName(result.name),
|
|
UnitAttr::get(parser.getContext()));
|
|
|
|
if (parser.parseOperand(arraySize) || parser.parseKeyword("x") ||
|
|
parser.parseType(elemType) ||
|
|
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
|
|
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
|
|
return failure();
|
|
|
|
std::optional<NamedAttribute> alignmentAttr =
|
|
result.attributes.getNamed("alignment");
|
|
if (alignmentAttr.has_value()) {
|
|
auto alignmentInt = llvm::dyn_cast<IntegerAttr>(alignmentAttr->getValue());
|
|
if (!alignmentInt)
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"expected integer alignment");
|
|
if (alignmentInt.getValue().isZero())
|
|
result.attributes.erase("alignment");
|
|
}
|
|
|
|
// Extract the result type from the trailing function type.
|
|
auto funcType = llvm::dyn_cast<FunctionType>(type);
|
|
if (!funcType || funcType.getNumInputs() != 1 ||
|
|
funcType.getNumResults() != 1)
|
|
return parser.emitError(
|
|
trailingTypeLoc,
|
|
"expected trailing function type with one argument and one result");
|
|
|
|
if (parser.resolveOperand(arraySize, funcType.getInput(0), result.operands))
|
|
return failure();
|
|
|
|
Type resultType = funcType.getResult(0);
|
|
if (auto ptrResultType = llvm::dyn_cast<LLVMPointerType>(resultType)) {
|
|
if (ptrResultType.isOpaque())
|
|
result.addAttribute(kElemTypeAttrName, TypeAttr::get(elemType));
|
|
}
|
|
|
|
result.addTypes({funcType.getResult(0)});
|
|
return success();
|
|
}
|
|
|
|
/// Checks that the elemental type is present in either the pointer type or
|
|
/// the attribute, but not both.
|
|
static LogicalResult verifyOpaquePtr(Operation *op, LLVMPointerType ptrType,
|
|
std::optional<Type> ptrElementType) {
|
|
if (ptrType.isOpaque() && !ptrElementType.has_value()) {
|
|
return op->emitOpError() << "expected '" << kElemTypeAttrName
|
|
<< "' attribute if opaque pointer type is used";
|
|
}
|
|
if (!ptrType.isOpaque() && ptrElementType.has_value()) {
|
|
return op->emitOpError()
|
|
<< "unexpected '" << kElemTypeAttrName
|
|
<< "' attribute when non-opaque pointer type is used";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult AllocaOp::verify() {
|
|
LLVMPointerType ptrType = llvm::cast<LLVMPointerType>(getType());
|
|
if (failed(verifyOpaquePtr(getOperation(), ptrType, getElemType())))
|
|
return failure();
|
|
|
|
Type elemTy =
|
|
(ptrType.isOpaque()) ? *getElemType() : ptrType.getElementType();
|
|
// Only certain target extension types can be used in 'alloca'.
|
|
if (auto targetExtType = dyn_cast<LLVMTargetExtType>(elemTy);
|
|
targetExtType && !targetExtType.supportsMemOps())
|
|
return emitOpError()
|
|
<< "this target extension type cannot be used in alloca";
|
|
|
|
return success();
|
|
}
|
|
|
|
Type AllocaOp::getResultPtrElementType() {
|
|
// This will become trivial once non-opaque pointers are gone.
|
|
return getElemType().has_value() ? *getElemType()
|
|
: getResult().getType().getElementType();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVM::BrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SuccessorOperands BrOp::getSuccessorOperands(unsigned index) {
|
|
assert(index == 0 && "invalid successor index");
|
|
return SuccessorOperands(getDestOperandsMutable());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVM::CondBrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SuccessorOperands CondBrOp::getSuccessorOperands(unsigned index) {
|
|
assert(index < getNumSuccessors() && "invalid successor index");
|
|
return SuccessorOperands(index == 0 ? getTrueDestOperandsMutable()
|
|
: getFalseDestOperandsMutable());
|
|
}
|
|
|
|
void CondBrOp::build(OpBuilder &builder, OperationState &result,
|
|
Value condition, Block *trueDest, ValueRange trueOperands,
|
|
Block *falseDest, ValueRange falseOperands,
|
|
std::optional<std::pair<uint32_t, uint32_t>> weights) {
|
|
ElementsAttr weightsAttr;
|
|
if (weights)
|
|
weightsAttr =
|
|
builder.getI32VectorAttr({static_cast<int32_t>(weights->first),
|
|
static_cast<int32_t>(weights->second)});
|
|
|
|
build(builder, result, condition, trueOperands, falseOperands, weightsAttr,
|
|
/*loop_annotation=*/{}, trueDest, falseDest);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVM::SwitchOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
|
|
Block *defaultDestination, ValueRange defaultOperands,
|
|
DenseIntElementsAttr caseValues,
|
|
BlockRange caseDestinations,
|
|
ArrayRef<ValueRange> caseOperands,
|
|
ArrayRef<int32_t> branchWeights) {
|
|
ElementsAttr weightsAttr;
|
|
if (!branchWeights.empty())
|
|
weightsAttr = builder.getI32VectorAttr(llvm::to_vector<4>(branchWeights));
|
|
|
|
build(builder, result, value, defaultOperands, caseOperands, caseValues,
|
|
weightsAttr, defaultDestination, caseDestinations);
|
|
}
|
|
|
|
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
|
|
Block *defaultDestination, ValueRange defaultOperands,
|
|
ArrayRef<APInt> caseValues, BlockRange caseDestinations,
|
|
ArrayRef<ValueRange> caseOperands,
|
|
ArrayRef<int32_t> branchWeights) {
|
|
DenseIntElementsAttr caseValuesAttr;
|
|
if (!caseValues.empty()) {
|
|
ShapedType caseValueType = VectorType::get(
|
|
static_cast<int64_t>(caseValues.size()), value.getType());
|
|
caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues);
|
|
}
|
|
|
|
build(builder, result, value, defaultDestination, defaultOperands,
|
|
caseValuesAttr, caseDestinations, caseOperands, branchWeights);
|
|
}
|
|
|
|
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
|
|
Block *defaultDestination, ValueRange defaultOperands,
|
|
ArrayRef<int32_t> caseValues, BlockRange caseDestinations,
|
|
ArrayRef<ValueRange> caseOperands,
|
|
ArrayRef<int32_t> branchWeights) {
|
|
DenseIntElementsAttr caseValuesAttr;
|
|
if (!caseValues.empty()) {
|
|
ShapedType caseValueType = VectorType::get(
|
|
static_cast<int64_t>(caseValues.size()), value.getType());
|
|
caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues);
|
|
}
|
|
|
|
build(builder, result, value, defaultDestination, defaultOperands,
|
|
caseValuesAttr, caseDestinations, caseOperands, branchWeights);
|
|
}
|
|
|
|
/// <cases> ::= `[` (case (`,` case )* )? `]`
|
|
/// <case> ::= integer `:` bb-id (`(` ssa-use-and-type-list `)`)?
|
|
static ParseResult parseSwitchOpCases(
|
|
OpAsmParser &parser, Type flagType, DenseIntElementsAttr &caseValues,
|
|
SmallVectorImpl<Block *> &caseDestinations,
|
|
SmallVectorImpl<SmallVector<OpAsmParser::UnresolvedOperand>> &caseOperands,
|
|
SmallVectorImpl<SmallVector<Type>> &caseOperandTypes) {
|
|
if (failed(parser.parseLSquare()))
|
|
return failure();
|
|
if (succeeded(parser.parseOptionalRSquare()))
|
|
return success();
|
|
SmallVector<APInt> values;
|
|
unsigned bitWidth = flagType.getIntOrFloatBitWidth();
|
|
auto parseCase = [&]() {
|
|
int64_t value = 0;
|
|
if (failed(parser.parseInteger(value)))
|
|
return failure();
|
|
values.push_back(APInt(bitWidth, value));
|
|
|
|
Block *destination;
|
|
SmallVector<OpAsmParser::UnresolvedOperand> operands;
|
|
SmallVector<Type> operandTypes;
|
|
if (parser.parseColon() || parser.parseSuccessor(destination))
|
|
return failure();
|
|
if (!parser.parseOptionalLParen()) {
|
|
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::None,
|
|
/*allowResultNumber=*/false) ||
|
|
parser.parseColonTypeList(operandTypes) || parser.parseRParen())
|
|
return failure();
|
|
}
|
|
caseDestinations.push_back(destination);
|
|
caseOperands.emplace_back(operands);
|
|
caseOperandTypes.emplace_back(operandTypes);
|
|
return success();
|
|
};
|
|
if (failed(parser.parseCommaSeparatedList(parseCase)))
|
|
return failure();
|
|
|
|
ShapedType caseValueType =
|
|
VectorType::get(static_cast<int64_t>(values.size()), flagType);
|
|
caseValues = DenseIntElementsAttr::get(caseValueType, values);
|
|
return parser.parseRSquare();
|
|
}
|
|
|
|
static void printSwitchOpCases(OpAsmPrinter &p, SwitchOp op, Type flagType,
|
|
DenseIntElementsAttr caseValues,
|
|
SuccessorRange caseDestinations,
|
|
OperandRangeRange caseOperands,
|
|
const TypeRangeRange &caseOperandTypes) {
|
|
p << '[';
|
|
p.printNewline();
|
|
if (!caseValues) {
|
|
p << ']';
|
|
return;
|
|
}
|
|
|
|
size_t index = 0;
|
|
llvm::interleave(
|
|
llvm::zip(caseValues, caseDestinations),
|
|
[&](auto i) {
|
|
p << " ";
|
|
p << std::get<0>(i).getLimitedValue();
|
|
p << ": ";
|
|
p.printSuccessorAndUseList(std::get<1>(i), caseOperands[index++]);
|
|
},
|
|
[&] {
|
|
p << ',';
|
|
p.printNewline();
|
|
});
|
|
p.printNewline();
|
|
p << ']';
|
|
}
|
|
|
|
LogicalResult SwitchOp::verify() {
|
|
if ((!getCaseValues() && !getCaseDestinations().empty()) ||
|
|
(getCaseValues() &&
|
|
getCaseValues()->size() !=
|
|
static_cast<int64_t>(getCaseDestinations().size())))
|
|
return emitOpError("expects number of case values to match number of "
|
|
"case destinations");
|
|
if (getBranchWeights() && getBranchWeights()->size() != getNumSuccessors())
|
|
return emitError("expects number of branch weights to match number of "
|
|
"successors: ")
|
|
<< getBranchWeights()->size() << " vs " << getNumSuccessors();
|
|
if (getCaseValues() &&
|
|
getValue().getType() != getCaseValues()->getElementType())
|
|
return emitError("expects case value type to match condition value type");
|
|
return success();
|
|
}
|
|
|
|
SuccessorOperands SwitchOp::getSuccessorOperands(unsigned index) {
|
|
assert(index < getNumSuccessors() && "invalid successor index");
|
|
return SuccessorOperands(index == 0 ? getDefaultOperandsMutable()
|
|
: getCaseOperandsMutable(index - 1));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Code for LLVM::GEPOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
constexpr int32_t GEPOp::kDynamicIndex;
|
|
|
|
GEPIndicesAdaptor<ValueRange> GEPOp::getIndices() {
|
|
return GEPIndicesAdaptor<ValueRange>(getRawConstantIndicesAttr(),
|
|
getDynamicIndices());
|
|
}
|
|
|
|
/// Returns the elemental type of any LLVM-compatible vector type or self.
|
|
static Type extractVectorElementType(Type type) {
|
|
if (auto vectorType = llvm::dyn_cast<VectorType>(type))
|
|
return vectorType.getElementType();
|
|
if (auto scalableVectorType = llvm::dyn_cast<LLVMScalableVectorType>(type))
|
|
return scalableVectorType.getElementType();
|
|
if (auto fixedVectorType = llvm::dyn_cast<LLVMFixedVectorType>(type))
|
|
return fixedVectorType.getElementType();
|
|
return type;
|
|
}
|
|
|
|
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
|
|
Value basePtr, ArrayRef<GEPArg> indices, bool inbounds,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
auto ptrType =
|
|
llvm::cast<LLVMPointerType>(extractVectorElementType(basePtr.getType()));
|
|
assert(!ptrType.isOpaque() &&
|
|
"expected non-opaque pointer, provide elementType explicitly when "
|
|
"opaque pointers are used");
|
|
build(builder, result, resultType, ptrType.getElementType(), basePtr, indices,
|
|
inbounds, attributes);
|
|
}
|
|
|
|
/// Destructures the 'indices' parameter into 'rawConstantIndices' and
|
|
/// 'dynamicIndices', encoding the former in the process. In the process,
|
|
/// dynamic indices which are used to index into a structure type are converted
|
|
/// to constant indices when possible. To do this, the GEPs element type should
|
|
/// be passed as first parameter.
|
|
static void destructureIndices(Type currType, ArrayRef<GEPArg> indices,
|
|
SmallVectorImpl<int32_t> &rawConstantIndices,
|
|
SmallVectorImpl<Value> &dynamicIndices) {
|
|
for (const GEPArg &iter : indices) {
|
|
// If the thing we are currently indexing into is a struct we must turn
|
|
// any integer constants into constant indices. If this is not possible
|
|
// we don't do anything here. The verifier will catch it and emit a proper
|
|
// error. All other canonicalization is done in the fold method.
|
|
bool requiresConst = !rawConstantIndices.empty() &&
|
|
currType.isa_and_nonnull<LLVMStructType>();
|
|
if (Value val = llvm::dyn_cast_if_present<Value>(iter)) {
|
|
APInt intC;
|
|
if (requiresConst && matchPattern(val, m_ConstantInt(&intC)) &&
|
|
intC.isSignedIntN(kGEPConstantBitWidth)) {
|
|
rawConstantIndices.push_back(intC.getSExtValue());
|
|
} else {
|
|
rawConstantIndices.push_back(GEPOp::kDynamicIndex);
|
|
dynamicIndices.push_back(val);
|
|
}
|
|
} else {
|
|
rawConstantIndices.push_back(iter.get<GEPConstantIndex>());
|
|
}
|
|
|
|
// Skip for very first iteration of this loop. First index does not index
|
|
// within the aggregates, but is just a pointer offset.
|
|
if (rawConstantIndices.size() == 1 || !currType)
|
|
continue;
|
|
|
|
currType =
|
|
TypeSwitch<Type, Type>(currType)
|
|
.Case<VectorType, LLVMScalableVectorType, LLVMFixedVectorType,
|
|
LLVMArrayType>([](auto containerType) {
|
|
return containerType.getElementType();
|
|
})
|
|
.Case([&](LLVMStructType structType) -> Type {
|
|
int64_t memberIndex = rawConstantIndices.back();
|
|
if (memberIndex >= 0 && static_cast<size_t>(memberIndex) <
|
|
structType.getBody().size())
|
|
return structType.getBody()[memberIndex];
|
|
return nullptr;
|
|
})
|
|
.Default(Type(nullptr));
|
|
}
|
|
}
|
|
|
|
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
|
|
Type elementType, Value basePtr, ArrayRef<GEPArg> indices,
|
|
bool inbounds, ArrayRef<NamedAttribute> attributes) {
|
|
SmallVector<int32_t> rawConstantIndices;
|
|
SmallVector<Value> dynamicIndices;
|
|
destructureIndices(elementType, indices, rawConstantIndices, dynamicIndices);
|
|
|
|
result.addTypes(resultType);
|
|
result.addAttributes(attributes);
|
|
result.addAttribute(getRawConstantIndicesAttrName(result.name),
|
|
builder.getDenseI32ArrayAttr(rawConstantIndices));
|
|
if (inbounds) {
|
|
result.addAttribute(getInboundsAttrName(result.name),
|
|
builder.getUnitAttr());
|
|
}
|
|
if (llvm::cast<LLVMPointerType>(extractVectorElementType(basePtr.getType()))
|
|
.isOpaque())
|
|
result.addAttribute(kElemTypeAttrName, TypeAttr::get(elementType));
|
|
result.addOperands(basePtr);
|
|
result.addOperands(dynamicIndices);
|
|
}
|
|
|
|
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
|
|
Value basePtr, ValueRange indices, bool inbounds,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
build(builder, result, resultType, basePtr, SmallVector<GEPArg>(indices),
|
|
inbounds, attributes);
|
|
}
|
|
|
|
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
|
|
Type elementType, Value basePtr, ValueRange indices,
|
|
bool inbounds, ArrayRef<NamedAttribute> attributes) {
|
|
build(builder, result, resultType, elementType, basePtr,
|
|
SmallVector<GEPArg>(indices), inbounds, attributes);
|
|
}
|
|
|
|
static ParseResult
|
|
parseGEPIndices(OpAsmParser &parser,
|
|
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &indices,
|
|
DenseI32ArrayAttr &rawConstantIndices) {
|
|
SmallVector<int32_t> constantIndices;
|
|
|
|
auto idxParser = [&]() -> ParseResult {
|
|
int32_t constantIndex;
|
|
OptionalParseResult parsedInteger =
|
|
parser.parseOptionalInteger(constantIndex);
|
|
if (parsedInteger.has_value()) {
|
|
if (failed(parsedInteger.value()))
|
|
return failure();
|
|
constantIndices.push_back(constantIndex);
|
|
return success();
|
|
}
|
|
|
|
constantIndices.push_back(LLVM::GEPOp::kDynamicIndex);
|
|
return parser.parseOperand(indices.emplace_back());
|
|
};
|
|
if (parser.parseCommaSeparatedList(idxParser))
|
|
return failure();
|
|
|
|
rawConstantIndices =
|
|
DenseI32ArrayAttr::get(parser.getContext(), constantIndices);
|
|
return success();
|
|
}
|
|
|
|
static void printGEPIndices(OpAsmPrinter &printer, LLVM::GEPOp gepOp,
|
|
OperandRange indices,
|
|
DenseI32ArrayAttr rawConstantIndices) {
|
|
llvm::interleaveComma(
|
|
GEPIndicesAdaptor<OperandRange>(rawConstantIndices, indices), printer,
|
|
[&](PointerUnion<IntegerAttr, Value> cst) {
|
|
if (Value val = llvm::dyn_cast_if_present<Value>(cst))
|
|
printer.printOperand(val);
|
|
else
|
|
printer << cst.get<IntegerAttr>().getInt();
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
/// Base class for llvm::Error related to GEP index.
|
|
class GEPIndexError : public llvm::ErrorInfo<GEPIndexError> {
|
|
protected:
|
|
unsigned indexPos;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
std::error_code convertToErrorCode() const override {
|
|
return llvm::inconvertibleErrorCode();
|
|
}
|
|
|
|
explicit GEPIndexError(unsigned pos) : indexPos(pos) {}
|
|
};
|
|
|
|
/// llvm::Error for out-of-bound GEP index.
|
|
struct GEPIndexOutOfBoundError
|
|
: public llvm::ErrorInfo<GEPIndexOutOfBoundError, GEPIndexError> {
|
|
static char ID;
|
|
|
|
using ErrorInfo::ErrorInfo;
|
|
|
|
void log(llvm::raw_ostream &os) const override {
|
|
os << "index " << indexPos << " indexing a struct is out of bounds";
|
|
}
|
|
};
|
|
|
|
/// llvm::Error for non-static GEP index indexing a struct.
|
|
struct GEPStaticIndexError
|
|
: public llvm::ErrorInfo<GEPStaticIndexError, GEPIndexError> {
|
|
static char ID;
|
|
|
|
using ErrorInfo::ErrorInfo;
|
|
|
|
void log(llvm::raw_ostream &os) const override {
|
|
os << "expected index " << indexPos << " indexing a struct "
|
|
<< "to be constant";
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char GEPIndexError::ID = 0;
|
|
char GEPIndexOutOfBoundError::ID = 0;
|
|
char GEPStaticIndexError::ID = 0;
|
|
|
|
/// For the given `structIndices` and `indices`, check if they're complied
|
|
/// with `baseGEPType`, especially check against LLVMStructTypes nested within.
|
|
static llvm::Error verifyStructIndices(Type baseGEPType, unsigned indexPos,
|
|
GEPIndicesAdaptor<ValueRange> indices) {
|
|
if (indexPos >= indices.size())
|
|
// Stop searching
|
|
return llvm::Error::success();
|
|
|
|
return llvm::TypeSwitch<Type, llvm::Error>(baseGEPType)
|
|
.Case<LLVMStructType>([&](LLVMStructType structType) -> llvm::Error {
|
|
if (!indices[indexPos].is<IntegerAttr>())
|
|
return llvm::make_error<GEPStaticIndexError>(indexPos);
|
|
|
|
int32_t gepIndex = indices[indexPos].get<IntegerAttr>().getInt();
|
|
ArrayRef<Type> elementTypes = structType.getBody();
|
|
if (gepIndex < 0 ||
|
|
static_cast<size_t>(gepIndex) >= elementTypes.size())
|
|
return llvm::make_error<GEPIndexOutOfBoundError>(indexPos);
|
|
|
|
// Instead of recursively going into every children types, we only
|
|
// dive into the one indexed by gepIndex.
|
|
return verifyStructIndices(elementTypes[gepIndex], indexPos + 1,
|
|
indices);
|
|
})
|
|
.Case<VectorType, LLVMScalableVectorType, LLVMFixedVectorType,
|
|
LLVMArrayType>([&](auto containerType) -> llvm::Error {
|
|
return verifyStructIndices(containerType.getElementType(), indexPos + 1,
|
|
indices);
|
|
})
|
|
.Default(
|
|
[](auto otherType) -> llvm::Error { return llvm::Error::success(); });
|
|
}
|
|
|
|
/// Driver function around `recordStructIndices`. Note that we always check
|
|
/// from the second GEP index since the first one is always dynamic.
|
|
static llvm::Error verifyStructIndices(Type baseGEPType,
|
|
GEPIndicesAdaptor<ValueRange> indices) {
|
|
return verifyStructIndices(baseGEPType, /*indexPos=*/1, indices);
|
|
}
|
|
|
|
LogicalResult LLVM::GEPOp::verify() {
|
|
if (failed(verifyOpaquePtr(
|
|
getOperation(),
|
|
llvm::cast<LLVMPointerType>(extractVectorElementType(getType())),
|
|
getElemType())))
|
|
return failure();
|
|
|
|
if (static_cast<size_t>(
|
|
llvm::count(getRawConstantIndices(), kDynamicIndex)) !=
|
|
getDynamicIndices().size())
|
|
return emitOpError("expected as many dynamic indices as specified in '")
|
|
<< getRawConstantIndicesAttrName().getValue() << "'";
|
|
|
|
if (llvm::Error err =
|
|
verifyStructIndices(getSourceElementType(), getIndices()))
|
|
return emitOpError() << llvm::toString(std::move(err));
|
|
|
|
return success();
|
|
}
|
|
|
|
Type LLVM::GEPOp::getSourceElementType() {
|
|
if (std::optional<Type> elemType = getElemType())
|
|
return *elemType;
|
|
|
|
return llvm::cast<LLVMPointerType>(
|
|
extractVectorElementType(getBase().getType()))
|
|
.getElementType();
|
|
}
|
|
|
|
Type GEPOp::getResultPtrElementType() {
|
|
// Set the initial type currently being used for indexing. This will be
|
|
// updated as the indices get walked over.
|
|
Type selectedType = getSourceElementType();
|
|
|
|
// Follow the indexed elements in the gep.
|
|
auto indices = getIndices();
|
|
for (GEPIndicesAdaptor<ValueRange>::value_type index :
|
|
llvm::drop_begin(indices)) {
|
|
// GEPs can only index into aggregates which can be structs or arrays.
|
|
|
|
// The resulting type if indexing into an array type is always the element
|
|
// type, regardless of index.
|
|
if (auto arrayType = dyn_cast<LLVMArrayType>(selectedType)) {
|
|
selectedType = arrayType.getElementType();
|
|
continue;
|
|
}
|
|
|
|
// The GEP verifier ensures that any index into structs are static and
|
|
// that they refer to a field within the struct.
|
|
selectedType = cast<DestructurableTypeInterface>(selectedType)
|
|
.getTypeAtIndex(cast<IntegerAttr>(index));
|
|
}
|
|
|
|
// When there are no more indices, the type currently being used for indexing
|
|
// is the type of the value pointed at by the returned indexed pointer.
|
|
return selectedType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoadOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if the given type is supported by atomic operations. All
|
|
/// integer and float types with limited bit width are supported. Additionally,
|
|
/// depending on the operation pointers may be supported as well.
|
|
static bool isTypeCompatibleWithAtomicOp(Type type, bool isPointerTypeAllowed) {
|
|
if (llvm::isa<LLVMPointerType>(type))
|
|
return isPointerTypeAllowed;
|
|
|
|
std::optional<unsigned> bitWidth;
|
|
if (auto floatType = llvm::dyn_cast<FloatType>(type)) {
|
|
if (!isCompatibleFloatingPointType(type))
|
|
return false;
|
|
bitWidth = floatType.getWidth();
|
|
}
|
|
if (auto integerType = llvm::dyn_cast<IntegerType>(type))
|
|
bitWidth = integerType.getWidth();
|
|
// The type is neither an integer, float, or pointer type.
|
|
if (!bitWidth)
|
|
return false;
|
|
return *bitWidth == 8 || *bitWidth == 16 || *bitWidth == 32 ||
|
|
*bitWidth == 64;
|
|
}
|
|
|
|
/// Verifies the attributes and the type of atomic memory access operations.
|
|
template <typename OpTy>
|
|
LogicalResult verifyAtomicMemOp(OpTy memOp, Type valueType,
|
|
ArrayRef<AtomicOrdering> unsupportedOrderings) {
|
|
if (memOp.getOrdering() != AtomicOrdering::not_atomic) {
|
|
if (!isTypeCompatibleWithAtomicOp(valueType,
|
|
/*isPointerTypeAllowed=*/true))
|
|
return memOp.emitOpError("unsupported type ")
|
|
<< valueType << " for atomic access";
|
|
if (llvm::is_contained(unsupportedOrderings, memOp.getOrdering()))
|
|
return memOp.emitOpError("unsupported ordering '")
|
|
<< stringifyAtomicOrdering(memOp.getOrdering()) << "'";
|
|
if (!memOp.getAlignment())
|
|
return memOp.emitOpError("expected alignment for atomic access");
|
|
return success();
|
|
}
|
|
if (memOp.getSyncscope())
|
|
return memOp.emitOpError(
|
|
"expected syncscope to be null for non-atomic access");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult LoadOp::verify() {
|
|
Type valueType = getResult().getType();
|
|
return verifyAtomicMemOp(*this, valueType,
|
|
{AtomicOrdering::release, AtomicOrdering::acq_rel});
|
|
}
|
|
|
|
void LoadOp::build(OpBuilder &builder, OperationState &state, Value addr,
|
|
unsigned alignment, bool isVolatile, bool isNonTemporal) {
|
|
auto type = llvm::cast<LLVMPointerType>(addr.getType()).getElementType();
|
|
assert(type && "must provide explicit element type to the constructor "
|
|
"when the pointer type is opaque");
|
|
build(builder, state, type, addr, alignment, isVolatile, isNonTemporal);
|
|
}
|
|
|
|
void LoadOp::build(OpBuilder &builder, OperationState &state, Type type,
|
|
Value addr, unsigned alignment, bool isVolatile,
|
|
bool isNonTemporal, AtomicOrdering ordering,
|
|
StringRef syncscope) {
|
|
build(builder, state, type, addr,
|
|
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile,
|
|
isNonTemporal, ordering,
|
|
syncscope.empty() ? nullptr : builder.getStringAttr(syncscope),
|
|
/*access_groups=*/nullptr,
|
|
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr,
|
|
/*tbaa=*/nullptr);
|
|
}
|
|
|
|
// Extract the pointee type from the LLVM pointer type wrapped in MLIR. Return
|
|
// the resulting type if any, null type if opaque pointers are used, and
|
|
// std::nullopt if the given type is not the pointer type.
|
|
static std::optional<Type>
|
|
getLoadStoreElementType(OpAsmParser &parser, Type type, SMLoc trailingTypeLoc) {
|
|
auto llvmTy = llvm::dyn_cast<LLVM::LLVMPointerType>(type);
|
|
if (!llvmTy) {
|
|
parser.emitError(trailingTypeLoc, "expected LLVM pointer type");
|
|
return std::nullopt;
|
|
}
|
|
return llvmTy.getElementType();
|
|
}
|
|
|
|
/// Parses the LoadOp type either using the typed or opaque pointer format.
|
|
// TODO: Drop once the typed pointer assembly format is not needed anymore.
|
|
static ParseResult parseLoadType(OpAsmParser &parser, Type &type,
|
|
Type &elementType) {
|
|
SMLoc trailingTypeLoc;
|
|
if (parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
|
|
return failure();
|
|
|
|
std::optional<Type> pointerElementType =
|
|
getLoadStoreElementType(parser, type, trailingTypeLoc);
|
|
if (!pointerElementType)
|
|
return failure();
|
|
if (*pointerElementType) {
|
|
elementType = *pointerElementType;
|
|
return success();
|
|
}
|
|
|
|
if (parser.parseArrow() || parser.parseType(elementType))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Prints the LoadOp type either using the typed or opaque pointer format.
|
|
// TODO: Drop once the typed pointer assembly format is not needed anymore.
|
|
static void printLoadType(OpAsmPrinter &printer, Operation *op, Type type,
|
|
Type elementType) {
|
|
printer << type;
|
|
auto pointerType = cast<LLVMPointerType>(type);
|
|
if (pointerType.isOpaque())
|
|
printer << " -> " << elementType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// StoreOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult StoreOp::verify() {
|
|
Type valueType = getValue().getType();
|
|
return verifyAtomicMemOp(*this, valueType,
|
|
{AtomicOrdering::acquire, AtomicOrdering::acq_rel});
|
|
}
|
|
|
|
void StoreOp::build(OpBuilder &builder, OperationState &state, Value value,
|
|
Value addr, unsigned alignment, bool isVolatile,
|
|
bool isNonTemporal, AtomicOrdering ordering,
|
|
StringRef syncscope) {
|
|
build(builder, state, value, addr,
|
|
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile,
|
|
isNonTemporal, ordering,
|
|
syncscope.empty() ? nullptr : builder.getStringAttr(syncscope),
|
|
/*access_groups=*/nullptr,
|
|
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
|
|
}
|
|
|
|
/// Parses the StoreOp type either using the typed or opaque pointer format.
|
|
// TODO: Drop once the typed pointer assembly format is not needed anymore.
|
|
static ParseResult parseStoreType(OpAsmParser &parser, Type &elementType,
|
|
Type &type) {
|
|
SMLoc trailingTypeLoc;
|
|
if (parser.getCurrentLocation(&trailingTypeLoc) ||
|
|
parser.parseType(elementType))
|
|
return failure();
|
|
|
|
if (succeeded(parser.parseOptionalComma()))
|
|
return parser.parseType(type);
|
|
|
|
// Extract the element type from the pointer type.
|
|
type = elementType;
|
|
std::optional<Type> pointerElementType =
|
|
getLoadStoreElementType(parser, type, trailingTypeLoc);
|
|
if (!pointerElementType)
|
|
return failure();
|
|
elementType = *pointerElementType;
|
|
return success();
|
|
}
|
|
|
|
/// Prints the StoreOp type either using the typed or opaque pointer format.
|
|
// TODO: Drop once the typed pointer assembly format is not needed anymore.
|
|
static void printStoreType(OpAsmPrinter &printer, Operation *op,
|
|
Type elementType, Type type) {
|
|
auto pointerType = cast<LLVMPointerType>(type);
|
|
if (pointerType.isOpaque())
|
|
printer << elementType << ", ";
|
|
printer << type;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CallOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results,
|
|
StringRef callee, ValueRange args) {
|
|
build(builder, state, results, builder.getStringAttr(callee), args);
|
|
}
|
|
|
|
void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results,
|
|
StringAttr callee, ValueRange args) {
|
|
build(builder, state, results, SymbolRefAttr::get(callee), args);
|
|
}
|
|
|
|
void CallOp::build(OpBuilder &builder, OperationState &state, TypeRange results,
|
|
FlatSymbolRefAttr callee, ValueRange args) {
|
|
build(builder, state, results, callee, args, /*fastmathFlags=*/nullptr,
|
|
/*branch_weights=*/nullptr,
|
|
/*access_groups=*/nullptr, /*alias_scopes=*/nullptr,
|
|
/*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
|
|
}
|
|
|
|
void CallOp::build(OpBuilder &builder, OperationState &state, LLVMFuncOp func,
|
|
ValueRange args) {
|
|
SmallVector<Type> results;
|
|
Type resultType = func.getFunctionType().getReturnType();
|
|
if (!llvm::isa<LLVM::LLVMVoidType>(resultType))
|
|
results.push_back(resultType);
|
|
build(builder, state, results, SymbolRefAttr::get(func), args,
|
|
/*fastmathFlags=*/nullptr,
|
|
/*branch_weights=*/nullptr,
|
|
/*access_groups=*/nullptr, /*alias_scopes=*/nullptr,
|
|
/*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
|
|
}
|
|
|
|
CallInterfaceCallable CallOp::getCallableForCallee() {
|
|
// Direct call.
|
|
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr())
|
|
return calleeAttr;
|
|
// Indirect call, callee Value is the first operand.
|
|
return getOperand(0);
|
|
}
|
|
|
|
void CallOp::setCalleeFromCallable(CallInterfaceCallable callee) {
|
|
// Direct call.
|
|
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) {
|
|
auto symRef = callee.get<SymbolRefAttr>();
|
|
return setCalleeAttr(cast<FlatSymbolRefAttr>(symRef));
|
|
}
|
|
// Indirect call, callee Value is the first operand.
|
|
return setOperand(0, callee.get<Value>());
|
|
}
|
|
|
|
Operation::operand_range CallOp::getArgOperands() {
|
|
return getOperands().drop_front(getCallee().has_value() ? 0 : 1);
|
|
}
|
|
|
|
LogicalResult CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
if (getNumResults() > 1)
|
|
return emitOpError("must have 0 or 1 result");
|
|
|
|
// Type for the callee, we'll get it differently depending if it is a direct
|
|
// or indirect call.
|
|
Type fnType;
|
|
|
|
bool isIndirect = false;
|
|
|
|
// If this is an indirect call, the callee attribute is missing.
|
|
FlatSymbolRefAttr calleeName = getCalleeAttr();
|
|
if (!calleeName) {
|
|
isIndirect = true;
|
|
if (!getNumOperands())
|
|
return emitOpError(
|
|
"must have either a `callee` attribute or at least an operand");
|
|
auto ptrType = llvm::dyn_cast<LLVMPointerType>(getOperand(0).getType());
|
|
if (!ptrType)
|
|
return emitOpError("indirect call expects a pointer as callee: ")
|
|
<< getOperand(0).getType();
|
|
|
|
if (ptrType.isOpaque())
|
|
return success();
|
|
|
|
fnType = ptrType.getElementType();
|
|
} else {
|
|
Operation *callee =
|
|
symbolTable.lookupNearestSymbolFrom(*this, calleeName.getAttr());
|
|
if (!callee)
|
|
return emitOpError()
|
|
<< "'" << calleeName.getValue()
|
|
<< "' does not reference a symbol in the current scope";
|
|
auto fn = dyn_cast<LLVMFuncOp>(callee);
|
|
if (!fn)
|
|
return emitOpError() << "'" << calleeName.getValue()
|
|
<< "' does not reference a valid LLVM function";
|
|
|
|
fnType = fn.getFunctionType();
|
|
}
|
|
|
|
LLVMFunctionType funcType = llvm::dyn_cast<LLVMFunctionType>(fnType);
|
|
if (!funcType)
|
|
return emitOpError("callee does not have a functional type: ") << fnType;
|
|
|
|
// Indirect variadic function calls are not supported since the translation to
|
|
// LLVM IR reconstructs the LLVM function type from the argument and result
|
|
// types. An additional type attribute that stores the LLVM function type
|
|
// would be needed to distinguish normal and variadic function arguments.
|
|
// TODO: Support indirect calls to variadic function pointers.
|
|
if (isIndirect && funcType.isVarArg())
|
|
return emitOpError()
|
|
<< "indirect calls to variadic functions are not supported";
|
|
|
|
// Verify that the operand and result types match the callee.
|
|
|
|
if (!funcType.isVarArg() &&
|
|
funcType.getNumParams() != (getNumOperands() - isIndirect))
|
|
return emitOpError() << "incorrect number of operands ("
|
|
<< (getNumOperands() - isIndirect)
|
|
<< ") for callee (expecting: "
|
|
<< funcType.getNumParams() << ")";
|
|
|
|
if (funcType.getNumParams() > (getNumOperands() - isIndirect))
|
|
return emitOpError() << "incorrect number of operands ("
|
|
<< (getNumOperands() - isIndirect)
|
|
<< ") for varargs callee (expecting at least: "
|
|
<< funcType.getNumParams() << ")";
|
|
|
|
for (unsigned i = 0, e = funcType.getNumParams(); i != e; ++i)
|
|
if (getOperand(i + isIndirect).getType() != funcType.getParamType(i))
|
|
return emitOpError() << "operand type mismatch for operand " << i << ": "
|
|
<< getOperand(i + isIndirect).getType()
|
|
<< " != " << funcType.getParamType(i);
|
|
|
|
if (getNumResults() == 0 &&
|
|
!llvm::isa<LLVM::LLVMVoidType>(funcType.getReturnType()))
|
|
return emitOpError() << "expected function call to produce a value";
|
|
|
|
if (getNumResults() != 0 &&
|
|
llvm::isa<LLVM::LLVMVoidType>(funcType.getReturnType()))
|
|
return emitOpError()
|
|
<< "calling function with void result must not produce values";
|
|
|
|
if (getNumResults() > 1)
|
|
return emitOpError()
|
|
<< "expected LLVM function call to produce 0 or 1 result";
|
|
|
|
if (getNumResults() && getResult().getType() != funcType.getReturnType())
|
|
return emitOpError() << "result type mismatch: " << getResult().getType()
|
|
<< " != " << funcType.getReturnType();
|
|
|
|
return success();
|
|
}
|
|
|
|
void CallOp::print(OpAsmPrinter &p) {
|
|
auto callee = getCallee();
|
|
bool isDirect = callee.has_value();
|
|
|
|
// Print the direct callee if present as a function attribute, or an indirect
|
|
// callee (first operand) otherwise.
|
|
p << ' ';
|
|
if (isDirect)
|
|
p.printSymbolName(callee.value());
|
|
else
|
|
p << getOperand(0);
|
|
|
|
auto args = getOperands().drop_front(isDirect ? 0 : 1);
|
|
p << '(' << args << ')';
|
|
p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"callee"});
|
|
|
|
p << " : ";
|
|
if (!isDirect)
|
|
p << getOperand(0).getType() << ", ";
|
|
|
|
// Reconstruct the function MLIR function type from operand and result types.
|
|
p.printFunctionalType(args.getTypes(), getResultTypes());
|
|
}
|
|
|
|
/// Parses the type of a call operation and resolves the operands if the parsing
|
|
/// succeeds. Returns failure otherwise.
|
|
static ParseResult parseCallTypeAndResolveOperands(
|
|
OpAsmParser &parser, OperationState &result, bool isDirect,
|
|
ArrayRef<OpAsmParser::UnresolvedOperand> operands) {
|
|
SMLoc trailingTypesLoc = parser.getCurrentLocation();
|
|
SmallVector<Type> types;
|
|
if (parser.parseColonTypeList(types))
|
|
return failure();
|
|
|
|
if (isDirect && types.size() != 1)
|
|
return parser.emitError(trailingTypesLoc,
|
|
"expected direct call to have 1 trailing type");
|
|
if (!isDirect && types.size() != 2)
|
|
return parser.emitError(trailingTypesLoc,
|
|
"expected indirect call to have 2 trailing types");
|
|
|
|
auto funcType = llvm::dyn_cast<FunctionType>(types.pop_back_val());
|
|
if (!funcType)
|
|
return parser.emitError(trailingTypesLoc,
|
|
"expected trailing function type");
|
|
if (funcType.getNumResults() > 1)
|
|
return parser.emitError(trailingTypesLoc,
|
|
"expected function with 0 or 1 result");
|
|
if (funcType.getNumResults() == 1 &&
|
|
llvm::isa<LLVM::LLVMVoidType>(funcType.getResult(0)))
|
|
return parser.emitError(trailingTypesLoc,
|
|
"expected a non-void result type");
|
|
|
|
// The head element of the types list matches the callee type for
|
|
// indirect calls, while the types list is emtpy for direct calls.
|
|
// Append the function input types to resolve the call operation
|
|
// operands.
|
|
llvm::append_range(types, funcType.getInputs());
|
|
if (parser.resolveOperands(operands, types, parser.getNameLoc(),
|
|
result.operands))
|
|
return failure();
|
|
if (funcType.getNumResults() != 0)
|
|
result.addTypes(funcType.getResults());
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Parses an optional function pointer operand before the call argument list
|
|
/// for indirect calls, or stops parsing at the function identifier otherwise.
|
|
static ParseResult parseOptionalCallFuncPtr(
|
|
OpAsmParser &parser,
|
|
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &operands) {
|
|
OpAsmParser::UnresolvedOperand funcPtrOperand;
|
|
OptionalParseResult parseResult = parser.parseOptionalOperand(funcPtrOperand);
|
|
if (parseResult.has_value()) {
|
|
if (failed(*parseResult))
|
|
return *parseResult;
|
|
operands.push_back(funcPtrOperand);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
// <operation> ::= `llvm.call` (function-id | ssa-use)`(` ssa-use-list `)`
|
|
// attribute-dict? `:` (type `,`)? function-type
|
|
ParseResult CallOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
SymbolRefAttr funcAttr;
|
|
SmallVector<OpAsmParser::UnresolvedOperand> operands;
|
|
|
|
// Parse a function pointer for indirect calls.
|
|
if (parseOptionalCallFuncPtr(parser, operands))
|
|
return failure();
|
|
bool isDirect = operands.empty();
|
|
|
|
// Parse a function identifier for direct calls.
|
|
if (isDirect)
|
|
if (parser.parseAttribute(funcAttr, "callee", result.attributes))
|
|
return failure();
|
|
|
|
// Parse the function arguments.
|
|
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
|
|
parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
|
|
// Parse the trailing type list and resolve the operands.
|
|
return parseCallTypeAndResolveOperands(parser, result, isDirect, operands);
|
|
}
|
|
|
|
///===---------------------------------------------------------------------===//
|
|
/// LLVM::InvokeOp
|
|
///===---------------------------------------------------------------------===//
|
|
|
|
SuccessorOperands InvokeOp::getSuccessorOperands(unsigned index) {
|
|
assert(index < getNumSuccessors() && "invalid successor index");
|
|
return SuccessorOperands(index == 0 ? getNormalDestOperandsMutable()
|
|
: getUnwindDestOperandsMutable());
|
|
}
|
|
|
|
CallInterfaceCallable InvokeOp::getCallableForCallee() {
|
|
// Direct call.
|
|
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr())
|
|
return calleeAttr;
|
|
// Indirect call, callee Value is the first operand.
|
|
return getOperand(0);
|
|
}
|
|
|
|
void InvokeOp::setCalleeFromCallable(CallInterfaceCallable callee) {
|
|
// Direct call.
|
|
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr()) {
|
|
auto symRef = callee.get<SymbolRefAttr>();
|
|
return setCalleeAttr(cast<FlatSymbolRefAttr>(symRef));
|
|
}
|
|
// Indirect call, callee Value is the first operand.
|
|
return setOperand(0, callee.get<Value>());
|
|
}
|
|
|
|
Operation::operand_range InvokeOp::getArgOperands() {
|
|
return getOperands().drop_front(getCallee().has_value() ? 0 : 1);
|
|
}
|
|
|
|
LogicalResult InvokeOp::verify() {
|
|
if (getNumResults() > 1)
|
|
return emitOpError("must have 0 or 1 result");
|
|
|
|
Block *unwindDest = getUnwindDest();
|
|
if (unwindDest->empty())
|
|
return emitError("must have at least one operation in unwind destination");
|
|
|
|
// In unwind destination, first operation must be LandingpadOp
|
|
if (!isa<LandingpadOp>(unwindDest->front()))
|
|
return emitError("first operation in unwind destination should be a "
|
|
"llvm.landingpad operation");
|
|
|
|
return success();
|
|
}
|
|
|
|
void InvokeOp::print(OpAsmPrinter &p) {
|
|
auto callee = getCallee();
|
|
bool isDirect = callee.has_value();
|
|
|
|
p << ' ';
|
|
|
|
// Either function name or pointer
|
|
if (isDirect)
|
|
p.printSymbolName(callee.value());
|
|
else
|
|
p << getOperand(0);
|
|
|
|
p << '(' << getOperands().drop_front(isDirect ? 0 : 1) << ')';
|
|
p << " to ";
|
|
p.printSuccessorAndUseList(getNormalDest(), getNormalDestOperands());
|
|
p << " unwind ";
|
|
p.printSuccessorAndUseList(getUnwindDest(), getUnwindDestOperands());
|
|
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
{InvokeOp::getOperandSegmentSizeAttr(), "callee"});
|
|
|
|
p << " : ";
|
|
if (!isDirect)
|
|
p << getOperand(0).getType() << ", ";
|
|
p.printFunctionalType(llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1),
|
|
getResultTypes());
|
|
}
|
|
|
|
// <operation> ::= `llvm.invoke` (function-id | ssa-use)
|
|
// `(` ssa-use-list `)`
|
|
// `to` bb-id (`[` ssa-use-and-type-list `]`)?
|
|
// `unwind` bb-id (`[` ssa-use-and-type-list `]`)?
|
|
// attribute-dict? `:` (type `,`)? function-type
|
|
ParseResult InvokeOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
SmallVector<OpAsmParser::UnresolvedOperand, 8> operands;
|
|
SymbolRefAttr funcAttr;
|
|
Block *normalDest, *unwindDest;
|
|
SmallVector<Value, 4> normalOperands, unwindOperands;
|
|
Builder &builder = parser.getBuilder();
|
|
|
|
// Parse a function pointer for indirect calls.
|
|
if (parseOptionalCallFuncPtr(parser, operands))
|
|
return failure();
|
|
bool isDirect = operands.empty();
|
|
|
|
// Parse a function identifier for direct calls.
|
|
if (isDirect && parser.parseAttribute(funcAttr, "callee", result.attributes))
|
|
return failure();
|
|
|
|
// Parse the function arguments.
|
|
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
|
|
parser.parseKeyword("to") ||
|
|
parser.parseSuccessorAndUseList(normalDest, normalOperands) ||
|
|
parser.parseKeyword("unwind") ||
|
|
parser.parseSuccessorAndUseList(unwindDest, unwindOperands) ||
|
|
parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
|
|
// Parse the trailing type list and resolve the function operands.
|
|
if (parseCallTypeAndResolveOperands(parser, result, isDirect, operands))
|
|
return failure();
|
|
|
|
result.addSuccessors({normalDest, unwindDest});
|
|
result.addOperands(normalOperands);
|
|
result.addOperands(unwindOperands);
|
|
|
|
result.addAttribute(InvokeOp::getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(
|
|
{static_cast<int32_t>(operands.size()),
|
|
static_cast<int32_t>(normalOperands.size()),
|
|
static_cast<int32_t>(unwindOperands.size())}));
|
|
return success();
|
|
}
|
|
|
|
///===----------------------------------------------------------------------===//
|
|
/// Verifying/Printing/Parsing for LLVM::LandingpadOp.
|
|
///===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult LandingpadOp::verify() {
|
|
Value value;
|
|
if (LLVMFuncOp func = (*this)->getParentOfType<LLVMFuncOp>()) {
|
|
if (!func.getPersonality())
|
|
return emitError(
|
|
"llvm.landingpad needs to be in a function with a personality");
|
|
}
|
|
|
|
// Consistency of llvm.landingpad result types is checked in
|
|
// LLVMFuncOp::verify().
|
|
|
|
if (!getCleanup() && getOperands().empty())
|
|
return emitError("landingpad instruction expects at least one clause or "
|
|
"cleanup attribute");
|
|
|
|
for (unsigned idx = 0, ie = getNumOperands(); idx < ie; idx++) {
|
|
value = getOperand(idx);
|
|
bool isFilter = llvm::isa<LLVMArrayType>(value.getType());
|
|
if (isFilter) {
|
|
// FIXME: Verify filter clauses when arrays are appropriately handled
|
|
} else {
|
|
// catch - global addresses only.
|
|
// Bitcast ops should have global addresses as their args.
|
|
if (auto bcOp = value.getDefiningOp<BitcastOp>()) {
|
|
if (auto addrOp = bcOp.getArg().getDefiningOp<AddressOfOp>())
|
|
continue;
|
|
return emitError("constant clauses expected").attachNote(bcOp.getLoc())
|
|
<< "global addresses expected as operand to "
|
|
"bitcast used in clauses for landingpad";
|
|
}
|
|
// NullOp and AddressOfOp allowed
|
|
if (value.getDefiningOp<NullOp>())
|
|
continue;
|
|
if (value.getDefiningOp<AddressOfOp>())
|
|
continue;
|
|
return emitError("clause #")
|
|
<< idx << " is not a known constant - null, addressof, bitcast";
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void LandingpadOp::print(OpAsmPrinter &p) {
|
|
p << (getCleanup() ? " cleanup " : " ");
|
|
|
|
// Clauses
|
|
for (auto value : getOperands()) {
|
|
// Similar to llvm - if clause is an array type then it is filter
|
|
// clause else catch clause
|
|
bool isArrayTy = llvm::isa<LLVMArrayType>(value.getType());
|
|
p << '(' << (isArrayTy ? "filter " : "catch ") << value << " : "
|
|
<< value.getType() << ") ";
|
|
}
|
|
|
|
p.printOptionalAttrDict((*this)->getAttrs(), {"cleanup"});
|
|
|
|
p << ": " << getType();
|
|
}
|
|
|
|
// <operation> ::= `llvm.landingpad` `cleanup`?
|
|
// ((`catch` | `filter`) operand-type ssa-use)* attribute-dict?
|
|
ParseResult LandingpadOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Check for cleanup
|
|
if (succeeded(parser.parseOptionalKeyword("cleanup")))
|
|
result.addAttribute("cleanup", parser.getBuilder().getUnitAttr());
|
|
|
|
// Parse clauses with types
|
|
while (succeeded(parser.parseOptionalLParen()) &&
|
|
(succeeded(parser.parseOptionalKeyword("filter")) ||
|
|
succeeded(parser.parseOptionalKeyword("catch")))) {
|
|
OpAsmParser::UnresolvedOperand operand;
|
|
Type ty;
|
|
if (parser.parseOperand(operand) || parser.parseColon() ||
|
|
parser.parseType(ty) ||
|
|
parser.resolveOperand(operand, ty, result.operands) ||
|
|
parser.parseRParen())
|
|
return failure();
|
|
}
|
|
|
|
Type type;
|
|
if (parser.parseColon() || parser.parseType(type))
|
|
return failure();
|
|
|
|
result.addTypes(type);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ExtractValueOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Extract the type at `position` in the LLVM IR aggregate type
|
|
/// `containerType`. Each element of `position` is an index into a nested
|
|
/// aggregate type. Return the resulting type or emit an error.
|
|
static Type getInsertExtractValueElementType(
|
|
function_ref<InFlightDiagnostic(StringRef)> emitError, Type containerType,
|
|
ArrayRef<int64_t> position) {
|
|
Type llvmType = containerType;
|
|
if (!isCompatibleType(containerType)) {
|
|
emitError("expected LLVM IR Dialect type, got ") << containerType;
|
|
return {};
|
|
}
|
|
|
|
// Infer the element type from the structure type: iteratively step inside the
|
|
// type by taking the element type, indexed by the position attribute for
|
|
// structures. Check the position index before accessing, it is supposed to
|
|
// be in bounds.
|
|
for (int64_t idx : position) {
|
|
if (auto arrayType = llvm::dyn_cast<LLVMArrayType>(llvmType)) {
|
|
if (idx < 0 || static_cast<unsigned>(idx) >= arrayType.getNumElements()) {
|
|
emitError("position out of bounds: ") << idx;
|
|
return {};
|
|
}
|
|
llvmType = arrayType.getElementType();
|
|
} else if (auto structType = llvm::dyn_cast<LLVMStructType>(llvmType)) {
|
|
if (idx < 0 ||
|
|
static_cast<unsigned>(idx) >= structType.getBody().size()) {
|
|
emitError("position out of bounds: ") << idx;
|
|
return {};
|
|
}
|
|
llvmType = structType.getBody()[idx];
|
|
} else {
|
|
emitError("expected LLVM IR structure/array type, got: ") << llvmType;
|
|
return {};
|
|
}
|
|
}
|
|
return llvmType;
|
|
}
|
|
|
|
/// Extract the type at `position` in the wrapped LLVM IR aggregate type
|
|
/// `containerType`.
|
|
static Type getInsertExtractValueElementType(Type llvmType,
|
|
ArrayRef<int64_t> position) {
|
|
for (int64_t idx : position) {
|
|
if (auto structType = llvm::dyn_cast<LLVMStructType>(llvmType))
|
|
llvmType = structType.getBody()[idx];
|
|
else
|
|
llvmType = llvm::cast<LLVMArrayType>(llvmType).getElementType();
|
|
}
|
|
return llvmType;
|
|
}
|
|
|
|
OpFoldResult LLVM::ExtractValueOp::fold(FoldAdaptor adaptor) {
|
|
auto insertValueOp = getContainer().getDefiningOp<InsertValueOp>();
|
|
OpFoldResult result = {};
|
|
while (insertValueOp) {
|
|
if (getPosition() == insertValueOp.getPosition())
|
|
return insertValueOp.getValue();
|
|
unsigned min =
|
|
std::min(getPosition().size(), insertValueOp.getPosition().size());
|
|
// If one is fully prefix of the other, stop propagating back as it will
|
|
// miss dependencies. For instance, %3 should not fold to %f0 in the
|
|
// following example:
|
|
// ```
|
|
// %1 = llvm.insertvalue %f0, %0[0, 0] :
|
|
// !llvm.array<4 x !llvm.array<4 x f32>>
|
|
// %2 = llvm.insertvalue %arr, %1[0] :
|
|
// !llvm.array<4 x !llvm.array<4 x f32>>
|
|
// %3 = llvm.extractvalue %2[0, 0] : !llvm.array<4 x !llvm.array<4 x f32>>
|
|
// ```
|
|
if (getPosition().take_front(min) ==
|
|
insertValueOp.getPosition().take_front(min))
|
|
return result;
|
|
|
|
// If neither a prefix, nor the exact position, we can extract out of the
|
|
// value being inserted into. Moreover, we can try again if that operand
|
|
// is itself an insertvalue expression.
|
|
getContainerMutable().assign(insertValueOp.getContainer());
|
|
result = getResult();
|
|
insertValueOp = insertValueOp.getContainer().getDefiningOp<InsertValueOp>();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
LogicalResult ExtractValueOp::verify() {
|
|
auto emitError = [this](StringRef msg) { return emitOpError(msg); };
|
|
Type valueType = getInsertExtractValueElementType(
|
|
emitError, getContainer().getType(), getPosition());
|
|
if (!valueType)
|
|
return failure();
|
|
|
|
if (getRes().getType() != valueType)
|
|
return emitOpError() << "Type mismatch: extracting from "
|
|
<< getContainer().getType() << " should produce "
|
|
<< valueType << " but this op returns "
|
|
<< getRes().getType();
|
|
return success();
|
|
}
|
|
|
|
void ExtractValueOp::build(OpBuilder &builder, OperationState &state,
|
|
Value container, ArrayRef<int64_t> position) {
|
|
build(builder, state,
|
|
getInsertExtractValueElementType(container.getType(), position),
|
|
container, builder.getAttr<DenseI64ArrayAttr>(position));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InsertValueOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Infer the value type from the container type and position.
|
|
static ParseResult
|
|
parseInsertExtractValueElementType(AsmParser &parser, Type &valueType,
|
|
Type containerType,
|
|
DenseI64ArrayAttr position) {
|
|
valueType = getInsertExtractValueElementType(
|
|
[&](StringRef msg) {
|
|
return parser.emitError(parser.getCurrentLocation(), msg);
|
|
},
|
|
containerType, position.asArrayRef());
|
|
return success(!!valueType);
|
|
}
|
|
|
|
/// Nothing to print for an inferred type.
|
|
static void printInsertExtractValueElementType(AsmPrinter &printer,
|
|
Operation *op, Type valueType,
|
|
Type containerType,
|
|
DenseI64ArrayAttr position) {}
|
|
|
|
LogicalResult InsertValueOp::verify() {
|
|
auto emitError = [this](StringRef msg) { return emitOpError(msg); };
|
|
Type valueType = getInsertExtractValueElementType(
|
|
emitError, getContainer().getType(), getPosition());
|
|
if (!valueType)
|
|
return failure();
|
|
|
|
if (getValue().getType() != valueType)
|
|
return emitOpError() << "Type mismatch: cannot insert "
|
|
<< getValue().getType() << " into "
|
|
<< getContainer().getType();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ReturnOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ReturnOp::verify() {
|
|
auto parent = (*this)->getParentOfType<LLVMFuncOp>();
|
|
if (!parent)
|
|
return success();
|
|
|
|
Type expectedType = parent.getFunctionType().getReturnType();
|
|
if (llvm::isa<LLVMVoidType>(expectedType)) {
|
|
if (!getArg())
|
|
return success();
|
|
InFlightDiagnostic diag = emitOpError("expected no operands");
|
|
diag.attachNote(parent->getLoc()) << "when returning from function";
|
|
return diag;
|
|
}
|
|
if (!getArg()) {
|
|
if (llvm::isa<LLVMVoidType>(expectedType))
|
|
return success();
|
|
InFlightDiagnostic diag = emitOpError("expected 1 operand");
|
|
diag.attachNote(parent->getLoc()) << "when returning from function";
|
|
return diag;
|
|
}
|
|
if (expectedType != getArg().getType()) {
|
|
InFlightDiagnostic diag = emitOpError("mismatching result types");
|
|
diag.attachNote(parent->getLoc()) << "when returning from function";
|
|
return diag;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Verifier for LLVM::AddressOfOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static Operation *parentLLVMModule(Operation *op) {
|
|
Operation *module = op->getParentOp();
|
|
while (module && !satisfiesLLVMModule(module))
|
|
module = module->getParentOp();
|
|
assert(module && "unexpected operation outside of a module");
|
|
return module;
|
|
}
|
|
|
|
GlobalOp AddressOfOp::getGlobal(SymbolTableCollection &symbolTable) {
|
|
return dyn_cast_or_null<GlobalOp>(
|
|
symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr()));
|
|
}
|
|
|
|
LLVMFuncOp AddressOfOp::getFunction(SymbolTableCollection &symbolTable) {
|
|
return dyn_cast_or_null<LLVMFuncOp>(
|
|
symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr()));
|
|
}
|
|
|
|
LogicalResult
|
|
AddressOfOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
Operation *symbol =
|
|
symbolTable.lookupSymbolIn(parentLLVMModule(*this), getGlobalNameAttr());
|
|
|
|
auto global = dyn_cast_or_null<GlobalOp>(symbol);
|
|
auto function = dyn_cast_or_null<LLVMFuncOp>(symbol);
|
|
|
|
if (!global && !function)
|
|
return emitOpError(
|
|
"must reference a global defined by 'llvm.mlir.global' or 'llvm.func'");
|
|
|
|
LLVMPointerType type = getType();
|
|
if (global && global.getAddrSpace() != type.getAddressSpace())
|
|
return emitOpError("pointer address space must match address space of the "
|
|
"referenced global");
|
|
|
|
if (type.isOpaque())
|
|
return success();
|
|
|
|
if (global && type.getElementType() != global.getType())
|
|
return emitOpError(
|
|
"the type must be a pointer to the type of the referenced global");
|
|
|
|
if (function && type.getElementType() != function.getFunctionType())
|
|
return emitOpError(
|
|
"the type must be a pointer to the type of the referenced function");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Verifier for LLVM::ComdatOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ComdatOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef symName) {
|
|
result.addAttribute(getSymNameAttrName(result.name),
|
|
builder.getStringAttr(symName));
|
|
Region *body = result.addRegion();
|
|
body->emplaceBlock();
|
|
}
|
|
|
|
LogicalResult ComdatOp::verifyRegions() {
|
|
Region &body = getBody();
|
|
for (Operation &op : body.getOps())
|
|
if (!isa<ComdatSelectorOp>(op))
|
|
return op.emitError(
|
|
"only comdat selector symbols can appear in a comdat region");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Builder, printer and verifier for LLVM::GlobalOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GlobalOp::build(OpBuilder &builder, OperationState &result, Type type,
|
|
bool isConstant, Linkage linkage, StringRef name,
|
|
Attribute value, uint64_t alignment, unsigned addrSpace,
|
|
bool dsoLocal, bool threadLocal, SymbolRefAttr comdat,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
result.addAttribute(getSymNameAttrName(result.name),
|
|
builder.getStringAttr(name));
|
|
result.addAttribute(getGlobalTypeAttrName(result.name), TypeAttr::get(type));
|
|
if (isConstant)
|
|
result.addAttribute(getConstantAttrName(result.name),
|
|
builder.getUnitAttr());
|
|
if (value)
|
|
result.addAttribute(getValueAttrName(result.name), value);
|
|
if (dsoLocal)
|
|
result.addAttribute(getDsoLocalAttrName(result.name),
|
|
builder.getUnitAttr());
|
|
if (threadLocal)
|
|
result.addAttribute(getThreadLocal_AttrName(result.name),
|
|
builder.getUnitAttr());
|
|
if (comdat)
|
|
result.addAttribute(getComdatAttrName(result.name), comdat);
|
|
|
|
// Only add an alignment attribute if the "alignment" input
|
|
// is different from 0. The value must also be a power of two, but
|
|
// this is tested in GlobalOp::verify, not here.
|
|
if (alignment != 0)
|
|
result.addAttribute(getAlignmentAttrName(result.name),
|
|
builder.getI64IntegerAttr(alignment));
|
|
|
|
result.addAttribute(getLinkageAttrName(result.name),
|
|
LinkageAttr::get(builder.getContext(), linkage));
|
|
if (addrSpace != 0)
|
|
result.addAttribute(getAddrSpaceAttrName(result.name),
|
|
builder.getI32IntegerAttr(addrSpace));
|
|
result.attributes.append(attrs.begin(), attrs.end());
|
|
result.addRegion();
|
|
}
|
|
|
|
void GlobalOp::print(OpAsmPrinter &p) {
|
|
p << ' ' << stringifyLinkage(getLinkage()) << ' ';
|
|
StringRef visibility = stringifyVisibility(getVisibility_());
|
|
if (!visibility.empty())
|
|
p << visibility << ' ';
|
|
if (getThreadLocal_())
|
|
p << "thread_local ";
|
|
if (auto unnamedAddr = getUnnamedAddr()) {
|
|
StringRef str = stringifyUnnamedAddr(*unnamedAddr);
|
|
if (!str.empty())
|
|
p << str << ' ';
|
|
}
|
|
if (getConstant())
|
|
p << "constant ";
|
|
p.printSymbolName(getSymName());
|
|
p << '(';
|
|
if (auto value = getValueOrNull())
|
|
p.printAttribute(value);
|
|
p << ')';
|
|
if (auto comdat = getComdat())
|
|
p << " comdat(" << *comdat << ')';
|
|
|
|
// Note that the alignment attribute is printed using the
|
|
// default syntax here, even though it is an inherent attribute
|
|
// (as defined in https://mlir.llvm.org/docs/LangRef/#attributes)
|
|
p.printOptionalAttrDict((*this)->getAttrs(),
|
|
{SymbolTable::getSymbolAttrName(),
|
|
getGlobalTypeAttrName(), getConstantAttrName(),
|
|
getValueAttrName(), getLinkageAttrName(),
|
|
getUnnamedAddrAttrName(), getThreadLocal_AttrName(),
|
|
getVisibility_AttrName(), getComdatAttrName(),
|
|
getUnnamedAddrAttrName()});
|
|
|
|
// Print the trailing type unless it's a string global.
|
|
if (llvm::dyn_cast_or_null<StringAttr>(getValueOrNull()))
|
|
return;
|
|
p << " : " << getType();
|
|
|
|
Region &initializer = getInitializerRegion();
|
|
if (!initializer.empty()) {
|
|
p << ' ';
|
|
p.printRegion(initializer, /*printEntryBlockArgs=*/false);
|
|
}
|
|
}
|
|
|
|
// Parses one of the keywords provided in the list `keywords` and returns the
|
|
// position of the parsed keyword in the list. If none of the keywords from the
|
|
// list is parsed, returns -1.
|
|
static int parseOptionalKeywordAlternative(OpAsmParser &parser,
|
|
ArrayRef<StringRef> keywords) {
|
|
for (const auto &en : llvm::enumerate(keywords)) {
|
|
if (succeeded(parser.parseOptionalKeyword(en.value())))
|
|
return en.index();
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
namespace {
|
|
template <typename Ty>
|
|
struct EnumTraits {};
|
|
|
|
#define REGISTER_ENUM_TYPE(Ty) \
|
|
template <> \
|
|
struct EnumTraits<Ty> { \
|
|
static StringRef stringify(Ty value) { return stringify##Ty(value); } \
|
|
static unsigned getMaxEnumVal() { return getMaxEnumValFor##Ty(); } \
|
|
}
|
|
|
|
REGISTER_ENUM_TYPE(Linkage);
|
|
REGISTER_ENUM_TYPE(UnnamedAddr);
|
|
REGISTER_ENUM_TYPE(CConv);
|
|
REGISTER_ENUM_TYPE(Visibility);
|
|
} // namespace
|
|
|
|
/// Parse an enum from the keyword, or default to the provided default value.
|
|
/// The return type is the enum type by default, unless overriden with the
|
|
/// second template argument.
|
|
template <typename EnumTy, typename RetTy = EnumTy>
|
|
static RetTy parseOptionalLLVMKeyword(OpAsmParser &parser,
|
|
OperationState &result,
|
|
EnumTy defaultValue) {
|
|
SmallVector<StringRef, 10> names;
|
|
for (unsigned i = 0, e = EnumTraits<EnumTy>::getMaxEnumVal(); i <= e; ++i)
|
|
names.push_back(EnumTraits<EnumTy>::stringify(static_cast<EnumTy>(i)));
|
|
|
|
int index = parseOptionalKeywordAlternative(parser, names);
|
|
if (index == -1)
|
|
return static_cast<RetTy>(defaultValue);
|
|
return static_cast<RetTy>(index);
|
|
}
|
|
|
|
static LogicalResult verifyComdat(Operation *op,
|
|
std::optional<SymbolRefAttr> attr) {
|
|
if (!attr)
|
|
return success();
|
|
|
|
auto *comdatSelector = SymbolTable::lookupNearestSymbolFrom(op, *attr);
|
|
if (!isa_and_nonnull<ComdatSelectorOp>(comdatSelector))
|
|
return op->emitError() << "expected comdat symbol";
|
|
|
|
return success();
|
|
}
|
|
|
|
// operation ::= `llvm.mlir.global` linkage? visibility?
|
|
// (`unnamed_addr` | `local_unnamed_addr`)?
|
|
// `thread_local`? `constant`? `@` identifier
|
|
// `(` attribute? `)` (`comdat(` symbol-ref-id `)`)?
|
|
// attribute-list? (`:` type)? region?
|
|
//
|
|
// The type can be omitted for string attributes, in which case it will be
|
|
// inferred from the value of the string as [strlen(value) x i8].
|
|
ParseResult GlobalOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
MLIRContext *ctx = parser.getContext();
|
|
// Parse optional linkage, default to External.
|
|
result.addAttribute(getLinkageAttrName(result.name),
|
|
LLVM::LinkageAttr::get(
|
|
ctx, parseOptionalLLVMKeyword<Linkage>(
|
|
parser, result, LLVM::Linkage::External)));
|
|
|
|
// Parse optional visibility, default to Default.
|
|
result.addAttribute(getVisibility_AttrName(result.name),
|
|
parser.getBuilder().getI64IntegerAttr(
|
|
parseOptionalLLVMKeyword<LLVM::Visibility, int64_t>(
|
|
parser, result, LLVM::Visibility::Default)));
|
|
|
|
// Parse optional UnnamedAddr, default to None.
|
|
result.addAttribute(getUnnamedAddrAttrName(result.name),
|
|
parser.getBuilder().getI64IntegerAttr(
|
|
parseOptionalLLVMKeyword<UnnamedAddr, int64_t>(
|
|
parser, result, LLVM::UnnamedAddr::None)));
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("thread_local")))
|
|
result.addAttribute(getThreadLocal_AttrName(result.name),
|
|
parser.getBuilder().getUnitAttr());
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("constant")))
|
|
result.addAttribute(getConstantAttrName(result.name),
|
|
parser.getBuilder().getUnitAttr());
|
|
|
|
StringAttr name;
|
|
if (parser.parseSymbolName(name, getSymNameAttrName(result.name),
|
|
result.attributes) ||
|
|
parser.parseLParen())
|
|
return failure();
|
|
|
|
Attribute value;
|
|
if (parser.parseOptionalRParen()) {
|
|
if (parser.parseAttribute(value, getValueAttrName(result.name),
|
|
result.attributes) ||
|
|
parser.parseRParen())
|
|
return failure();
|
|
}
|
|
|
|
if (succeeded(parser.parseOptionalKeyword("comdat"))) {
|
|
SymbolRefAttr comdat;
|
|
if (parser.parseLParen() || parser.parseAttribute(comdat) ||
|
|
parser.parseRParen())
|
|
return failure();
|
|
|
|
result.addAttribute(getComdatAttrName(result.name), comdat);
|
|
}
|
|
|
|
SmallVector<Type, 1> types;
|
|
if (parser.parseOptionalAttrDict(result.attributes) ||
|
|
parser.parseOptionalColonTypeList(types))
|
|
return failure();
|
|
|
|
if (types.size() > 1)
|
|
return parser.emitError(parser.getNameLoc(), "expected zero or one type");
|
|
|
|
Region &initRegion = *result.addRegion();
|
|
if (types.empty()) {
|
|
if (auto strAttr = llvm::dyn_cast_or_null<StringAttr>(value)) {
|
|
MLIRContext *context = parser.getContext();
|
|
auto arrayType = LLVM::LLVMArrayType::get(IntegerType::get(context, 8),
|
|
strAttr.getValue().size());
|
|
types.push_back(arrayType);
|
|
} else {
|
|
return parser.emitError(parser.getNameLoc(),
|
|
"type can only be omitted for string globals");
|
|
}
|
|
} else {
|
|
OptionalParseResult parseResult =
|
|
parser.parseOptionalRegion(initRegion, /*arguments=*/{},
|
|
/*argTypes=*/{});
|
|
if (parseResult.has_value() && failed(*parseResult))
|
|
return failure();
|
|
}
|
|
|
|
result.addAttribute(getGlobalTypeAttrName(result.name),
|
|
TypeAttr::get(types[0]));
|
|
return success();
|
|
}
|
|
|
|
static bool isZeroAttribute(Attribute value) {
|
|
if (auto intValue = llvm::dyn_cast<IntegerAttr>(value))
|
|
return intValue.getValue().isZero();
|
|
if (auto fpValue = llvm::dyn_cast<FloatAttr>(value))
|
|
return fpValue.getValue().isZero();
|
|
if (auto splatValue = llvm::dyn_cast<SplatElementsAttr>(value))
|
|
return isZeroAttribute(splatValue.getSplatValue<Attribute>());
|
|
if (auto elementsValue = llvm::dyn_cast<ElementsAttr>(value))
|
|
return llvm::all_of(elementsValue.getValues<Attribute>(), isZeroAttribute);
|
|
if (auto arrayValue = llvm::dyn_cast<ArrayAttr>(value))
|
|
return llvm::all_of(arrayValue.getValue(), isZeroAttribute);
|
|
return false;
|
|
}
|
|
|
|
LogicalResult GlobalOp::verify() {
|
|
if (!LLVMPointerType::isValidElementType(getType()))
|
|
return emitOpError(
|
|
"expects type to be a valid element type for an LLVM pointer");
|
|
if ((*this)->getParentOp() && !satisfiesLLVMModule((*this)->getParentOp()))
|
|
return emitOpError("must appear at the module level");
|
|
|
|
if (auto strAttr = llvm::dyn_cast_or_null<StringAttr>(getValueOrNull())) {
|
|
auto type = llvm::dyn_cast<LLVMArrayType>(getType());
|
|
IntegerType elementType =
|
|
type ? llvm::dyn_cast<IntegerType>(type.getElementType()) : nullptr;
|
|
if (!elementType || elementType.getWidth() != 8 ||
|
|
type.getNumElements() != strAttr.getValue().size())
|
|
return emitOpError(
|
|
"requires an i8 array type of the length equal to that of the string "
|
|
"attribute");
|
|
}
|
|
|
|
if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) {
|
|
if (!targetExtType.hasProperty(LLVMTargetExtType::CanBeGlobal))
|
|
return emitOpError()
|
|
<< "this target extension type cannot be used in a global";
|
|
|
|
if (Attribute value = getValueOrNull()) {
|
|
// Only a single, zero integer attribute (=zeroinitializer) is allowed for
|
|
// a global value with TargetExtType.
|
|
// TODO: Replace with 'zeroinitializer' once there is a dedicated
|
|
// zeroinitializer operation in the LLVM dialect.
|
|
if (!isa<IntegerAttr>(value) || !isZeroAttribute(value))
|
|
return emitOpError()
|
|
<< "expected zero value for global with target extension type";
|
|
}
|
|
}
|
|
|
|
if (getLinkage() == Linkage::Common) {
|
|
if (Attribute value = getValueOrNull()) {
|
|
if (!isZeroAttribute(value)) {
|
|
return emitOpError()
|
|
<< "expected zero value for '"
|
|
<< stringifyLinkage(Linkage::Common) << "' linkage";
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getLinkage() == Linkage::Appending) {
|
|
if (!llvm::isa<LLVMArrayType>(getType())) {
|
|
return emitOpError() << "expected array type for '"
|
|
<< stringifyLinkage(Linkage::Appending)
|
|
<< "' linkage";
|
|
}
|
|
}
|
|
|
|
if (failed(verifyComdat(*this, getComdat())))
|
|
return failure();
|
|
|
|
std::optional<uint64_t> alignAttr = getAlignment();
|
|
if (alignAttr.has_value()) {
|
|
uint64_t value = alignAttr.value();
|
|
if (!llvm::isPowerOf2_64(value))
|
|
return emitError() << "alignment attribute is not a power of 2";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GlobalOp::verifyRegions() {
|
|
if (Block *b = getInitializerBlock()) {
|
|
ReturnOp ret = cast<ReturnOp>(b->getTerminator());
|
|
if (ret.operand_type_begin() == ret.operand_type_end())
|
|
return emitOpError("initializer region cannot return void");
|
|
if (*ret.operand_type_begin() != getType())
|
|
return emitOpError("initializer region type ")
|
|
<< *ret.operand_type_begin() << " does not match global type "
|
|
<< getType();
|
|
|
|
for (Operation &op : *b) {
|
|
auto iface = dyn_cast<MemoryEffectOpInterface>(op);
|
|
if (!iface || !iface.hasNoEffect())
|
|
return op.emitError()
|
|
<< "ops with side effects not allowed in global initializers";
|
|
}
|
|
|
|
if (getValueOrNull())
|
|
return emitOpError("cannot have both initializer value and region");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVM::GlobalCtorsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult
|
|
GlobalCtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
for (Attribute ctor : getCtors()) {
|
|
if (failed(verifySymbolAttrUse(llvm::cast<FlatSymbolRefAttr>(ctor), *this,
|
|
symbolTable)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GlobalCtorsOp::verify() {
|
|
if (getCtors().size() != getPriorities().size())
|
|
return emitError(
|
|
"mismatch between the number of ctors and the number of priorities");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVM::GlobalDtorsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult
|
|
GlobalDtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
for (Attribute dtor : getDtors()) {
|
|
if (failed(verifySymbolAttrUse(llvm::cast<FlatSymbolRefAttr>(dtor), *this,
|
|
symbolTable)))
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GlobalDtorsOp::verify() {
|
|
if (getDtors().size() != getPriorities().size())
|
|
return emitError(
|
|
"mismatch between the number of dtors and the number of priorities");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShuffleVectorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ShuffleVectorOp::build(OpBuilder &builder, OperationState &state, Value v1,
|
|
Value v2, DenseI32ArrayAttr mask,
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
auto containerType = v1.getType();
|
|
auto vType = LLVM::getVectorType(LLVM::getVectorElementType(containerType),
|
|
mask.size(),
|
|
LLVM::isScalableVectorType(containerType));
|
|
build(builder, state, vType, v1, v2, mask);
|
|
state.addAttributes(attrs);
|
|
}
|
|
|
|
void ShuffleVectorOp::build(OpBuilder &builder, OperationState &state, Value v1,
|
|
Value v2, ArrayRef<int32_t> mask) {
|
|
build(builder, state, v1, v2, builder.getDenseI32ArrayAttr(mask));
|
|
}
|
|
|
|
/// Build the result type of a shuffle vector operation.
|
|
static ParseResult parseShuffleType(AsmParser &parser, Type v1Type,
|
|
Type &resType, DenseI32ArrayAttr mask) {
|
|
if (!LLVM::isCompatibleVectorType(v1Type))
|
|
return parser.emitError(parser.getCurrentLocation(),
|
|
"expected an LLVM compatible vector type");
|
|
resType = LLVM::getVectorType(LLVM::getVectorElementType(v1Type), mask.size(),
|
|
LLVM::isScalableVectorType(v1Type));
|
|
return success();
|
|
}
|
|
|
|
/// Nothing to do when the result type is inferred.
|
|
static void printShuffleType(AsmPrinter &printer, Operation *op, Type v1Type,
|
|
Type resType, DenseI32ArrayAttr mask) {}
|
|
|
|
LogicalResult ShuffleVectorOp::verify() {
|
|
if (LLVM::isScalableVectorType(getV1().getType()) &&
|
|
llvm::any_of(getMask(), [](int32_t v) { return v != 0; }))
|
|
return emitOpError("expected a splat operation for scalable vectors");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementations for LLVM::LLVMFuncOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Add the entry block to the function.
|
|
Block *LLVMFuncOp::addEntryBlock() {
|
|
assert(empty() && "function already has an entry block");
|
|
|
|
auto *entry = new Block;
|
|
push_back(entry);
|
|
|
|
// FIXME: Allow passing in proper locations for the entry arguments.
|
|
LLVMFunctionType type = getFunctionType();
|
|
for (unsigned i = 0, e = type.getNumParams(); i < e; ++i)
|
|
entry->addArgument(type.getParamType(i), getLoc());
|
|
return entry;
|
|
}
|
|
|
|
void LLVMFuncOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef name, Type type, LLVM::Linkage linkage,
|
|
bool dsoLocal, CConv cconv, SymbolRefAttr comdat,
|
|
ArrayRef<NamedAttribute> attrs,
|
|
ArrayRef<DictionaryAttr> argAttrs,
|
|
std::optional<uint64_t> functionEntryCount) {
|
|
result.addRegion();
|
|
result.addAttribute(SymbolTable::getSymbolAttrName(),
|
|
builder.getStringAttr(name));
|
|
result.addAttribute(getFunctionTypeAttrName(result.name),
|
|
TypeAttr::get(type));
|
|
result.addAttribute(getLinkageAttrName(result.name),
|
|
LinkageAttr::get(builder.getContext(), linkage));
|
|
result.addAttribute(getCConvAttrName(result.name),
|
|
CConvAttr::get(builder.getContext(), cconv));
|
|
result.attributes.append(attrs.begin(), attrs.end());
|
|
if (dsoLocal)
|
|
result.addAttribute(getDsoLocalAttrName(result.name),
|
|
builder.getUnitAttr());
|
|
if (comdat)
|
|
result.addAttribute(getComdatAttrName(result.name), comdat);
|
|
if (functionEntryCount)
|
|
result.addAttribute(getFunctionEntryCountAttrName(result.name),
|
|
builder.getI64IntegerAttr(functionEntryCount.value()));
|
|
if (argAttrs.empty())
|
|
return;
|
|
|
|
assert(llvm::cast<LLVMFunctionType>(type).getNumParams() == argAttrs.size() &&
|
|
"expected as many argument attribute lists as arguments");
|
|
function_interface_impl::addArgAndResultAttrs(
|
|
builder, result, argAttrs, /*resultAttrs=*/std::nullopt,
|
|
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
|
|
}
|
|
|
|
// Builds an LLVM function type from the given lists of input and output types.
|
|
// Returns a null type if any of the types provided are non-LLVM types, or if
|
|
// there is more than one output type.
|
|
static Type
|
|
buildLLVMFunctionType(OpAsmParser &parser, SMLoc loc, ArrayRef<Type> inputs,
|
|
ArrayRef<Type> outputs,
|
|
function_interface_impl::VariadicFlag variadicFlag) {
|
|
Builder &b = parser.getBuilder();
|
|
if (outputs.size() > 1) {
|
|
parser.emitError(loc, "failed to construct function type: expected zero or "
|
|
"one function result");
|
|
return {};
|
|
}
|
|
|
|
// Convert inputs to LLVM types, exit early on error.
|
|
SmallVector<Type, 4> llvmInputs;
|
|
for (auto t : inputs) {
|
|
if (!isCompatibleType(t)) {
|
|
parser.emitError(loc, "failed to construct function type: expected LLVM "
|
|
"type for function arguments");
|
|
return {};
|
|
}
|
|
llvmInputs.push_back(t);
|
|
}
|
|
|
|
// No output is denoted as "void" in LLVM type system.
|
|
Type llvmOutput =
|
|
outputs.empty() ? LLVMVoidType::get(b.getContext()) : outputs.front();
|
|
if (!isCompatibleType(llvmOutput)) {
|
|
parser.emitError(loc, "failed to construct function type: expected LLVM "
|
|
"type for function results")
|
|
<< llvmOutput;
|
|
return {};
|
|
}
|
|
return LLVMFunctionType::get(llvmOutput, llvmInputs,
|
|
variadicFlag.isVariadic());
|
|
}
|
|
|
|
// Parses an LLVM function.
|
|
//
|
|
// operation ::= `llvm.func` linkage? cconv? function-signature
|
|
// (`comdat(` symbol-ref-id `)`)?
|
|
// function-attributes?
|
|
// function-body
|
|
//
|
|
ParseResult LLVMFuncOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Default to external linkage if no keyword is provided.
|
|
result.addAttribute(
|
|
getLinkageAttrName(result.name),
|
|
LinkageAttr::get(parser.getContext(),
|
|
parseOptionalLLVMKeyword<Linkage>(
|
|
parser, result, LLVM::Linkage::External)));
|
|
|
|
// Parse optional visibility, default to Default.
|
|
result.addAttribute(getVisibility_AttrName(result.name),
|
|
parser.getBuilder().getI64IntegerAttr(
|
|
parseOptionalLLVMKeyword<LLVM::Visibility, int64_t>(
|
|
parser, result, LLVM::Visibility::Default)));
|
|
|
|
// Parse optional UnnamedAddr, default to None.
|
|
result.addAttribute(getUnnamedAddrAttrName(result.name),
|
|
parser.getBuilder().getI64IntegerAttr(
|
|
parseOptionalLLVMKeyword<UnnamedAddr, int64_t>(
|
|
parser, result, LLVM::UnnamedAddr::None)));
|
|
|
|
// Default to C Calling Convention if no keyword is provided.
|
|
result.addAttribute(
|
|
getCConvAttrName(result.name),
|
|
CConvAttr::get(parser.getContext(), parseOptionalLLVMKeyword<CConv>(
|
|
parser, result, LLVM::CConv::C)));
|
|
|
|
StringAttr nameAttr;
|
|
SmallVector<OpAsmParser::Argument> entryArgs;
|
|
SmallVector<DictionaryAttr> resultAttrs;
|
|
SmallVector<Type> resultTypes;
|
|
bool isVariadic;
|
|
|
|
auto signatureLocation = parser.getCurrentLocation();
|
|
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
|
|
result.attributes) ||
|
|
function_interface_impl::parseFunctionSignature(
|
|
parser, /*allowVariadic=*/true, entryArgs, isVariadic, resultTypes,
|
|
resultAttrs))
|
|
return failure();
|
|
|
|
SmallVector<Type> argTypes;
|
|
for (auto &arg : entryArgs)
|
|
argTypes.push_back(arg.type);
|
|
auto type =
|
|
buildLLVMFunctionType(parser, signatureLocation, argTypes, resultTypes,
|
|
function_interface_impl::VariadicFlag(isVariadic));
|
|
if (!type)
|
|
return failure();
|
|
result.addAttribute(getFunctionTypeAttrName(result.name),
|
|
TypeAttr::get(type));
|
|
|
|
// Parse the optional comdat selector.
|
|
if (succeeded(parser.parseOptionalKeyword("comdat"))) {
|
|
SymbolRefAttr comdat;
|
|
if (parser.parseLParen() || parser.parseAttribute(comdat) ||
|
|
parser.parseRParen())
|
|
return failure();
|
|
|
|
result.addAttribute(getComdatAttrName(result.name), comdat);
|
|
}
|
|
|
|
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
|
|
return failure();
|
|
function_interface_impl::addArgAndResultAttrs(
|
|
parser.getBuilder(), result, entryArgs, resultAttrs,
|
|
getArgAttrsAttrName(result.name), getResAttrsAttrName(result.name));
|
|
|
|
auto *body = result.addRegion();
|
|
OptionalParseResult parseResult =
|
|
parser.parseOptionalRegion(*body, entryArgs);
|
|
return failure(parseResult.has_value() && failed(*parseResult));
|
|
}
|
|
|
|
// Print the LLVMFuncOp. Collects argument and result types and passes them to
|
|
// helper functions. Drops "void" result since it cannot be parsed back. Skips
|
|
// the external linkage since it is the default value.
|
|
void LLVMFuncOp::print(OpAsmPrinter &p) {
|
|
p << ' ';
|
|
if (getLinkage() != LLVM::Linkage::External)
|
|
p << stringifyLinkage(getLinkage()) << ' ';
|
|
StringRef visibility = stringifyVisibility(getVisibility_());
|
|
if (!visibility.empty())
|
|
p << visibility << ' ';
|
|
if (auto unnamedAddr = getUnnamedAddr()) {
|
|
StringRef str = stringifyUnnamedAddr(*unnamedAddr);
|
|
if (!str.empty())
|
|
p << str << ' ';
|
|
}
|
|
if (getCConv() != LLVM::CConv::C)
|
|
p << stringifyCConv(getCConv()) << ' ';
|
|
|
|
p.printSymbolName(getName());
|
|
|
|
LLVMFunctionType fnType = getFunctionType();
|
|
SmallVector<Type, 8> argTypes;
|
|
SmallVector<Type, 1> resTypes;
|
|
argTypes.reserve(fnType.getNumParams());
|
|
for (unsigned i = 0, e = fnType.getNumParams(); i < e; ++i)
|
|
argTypes.push_back(fnType.getParamType(i));
|
|
|
|
Type returnType = fnType.getReturnType();
|
|
if (!llvm::isa<LLVMVoidType>(returnType))
|
|
resTypes.push_back(returnType);
|
|
|
|
function_interface_impl::printFunctionSignature(p, *this, argTypes,
|
|
isVarArg(), resTypes);
|
|
|
|
// Print the optional comdat selector.
|
|
if (auto comdat = getComdat())
|
|
p << " comdat(" << *comdat << ')';
|
|
|
|
function_interface_impl::printFunctionAttributes(
|
|
p, *this,
|
|
{getFunctionTypeAttrName(), getArgAttrsAttrName(), getResAttrsAttrName(),
|
|
getLinkageAttrName(), getCConvAttrName(), getVisibility_AttrName(),
|
|
getComdatAttrName(), getUnnamedAddrAttrName()});
|
|
|
|
// Print the body if this is not an external function.
|
|
Region &body = getBody();
|
|
if (!body.empty()) {
|
|
p << ' ';
|
|
p.printRegion(body, /*printEntryBlockArgs=*/false,
|
|
/*printBlockTerminators=*/true);
|
|
}
|
|
}
|
|
|
|
// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
|
|
// - functions don't have 'common' linkage
|
|
// - external functions have 'external' or 'extern_weak' linkage;
|
|
// - vararg is (currently) only supported for external functions;
|
|
LogicalResult LLVMFuncOp::verify() {
|
|
if (getLinkage() == LLVM::Linkage::Common)
|
|
return emitOpError() << "functions cannot have '"
|
|
<< stringifyLinkage(LLVM::Linkage::Common)
|
|
<< "' linkage";
|
|
|
|
if (failed(verifyComdat(*this, getComdat())))
|
|
return failure();
|
|
|
|
if (isExternal()) {
|
|
if (getLinkage() != LLVM::Linkage::External &&
|
|
getLinkage() != LLVM::Linkage::ExternWeak)
|
|
return emitOpError() << "external functions must have '"
|
|
<< stringifyLinkage(LLVM::Linkage::External)
|
|
<< "' or '"
|
|
<< stringifyLinkage(LLVM::Linkage::ExternWeak)
|
|
<< "' linkage";
|
|
return success();
|
|
}
|
|
|
|
Type landingpadResultTy;
|
|
StringRef diagnosticMessage;
|
|
bool isLandingpadTypeConsistent =
|
|
!walk([&](Operation *op) {
|
|
const auto checkType = [&](Type type, StringRef errorMessage) {
|
|
if (!landingpadResultTy) {
|
|
landingpadResultTy = type;
|
|
return WalkResult::advance();
|
|
}
|
|
if (landingpadResultTy != type) {
|
|
diagnosticMessage = errorMessage;
|
|
return WalkResult::interrupt();
|
|
}
|
|
return WalkResult::advance();
|
|
};
|
|
return TypeSwitch<Operation *, WalkResult>(op)
|
|
.Case<LandingpadOp>([&](auto landingpad) {
|
|
constexpr StringLiteral errorMessage =
|
|
"'llvm.landingpad' should have a consistent result type "
|
|
"inside a function";
|
|
return checkType(landingpad.getType(), errorMessage);
|
|
})
|
|
.Case<ResumeOp>([&](auto resume) {
|
|
constexpr StringLiteral errorMessage =
|
|
"'llvm.resume' should have a consistent input type inside a "
|
|
"function";
|
|
return checkType(resume.getValue().getType(), errorMessage);
|
|
})
|
|
.Default([](auto) { return WalkResult::skip(); });
|
|
}).wasInterrupted();
|
|
if (!isLandingpadTypeConsistent) {
|
|
assert(!diagnosticMessage.empty() &&
|
|
"Expecting a non-empty diagnostic message");
|
|
return emitError(diagnosticMessage);
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
|
|
/// - entry block arguments are of LLVM types.
|
|
LogicalResult LLVMFuncOp::verifyRegions() {
|
|
if (isExternal())
|
|
return success();
|
|
|
|
unsigned numArguments = getFunctionType().getNumParams();
|
|
Block &entryBlock = front();
|
|
for (unsigned i = 0; i < numArguments; ++i) {
|
|
Type argType = entryBlock.getArgument(i).getType();
|
|
if (!isCompatibleType(argType))
|
|
return emitOpError("entry block argument #")
|
|
<< i << " is not of LLVM type";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
Region *LLVMFuncOp::getCallableRegion() {
|
|
if (isExternal())
|
|
return nullptr;
|
|
return &getBody();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Verification for LLVM::ConstantOp.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult LLVM::ConstantOp::verify() {
|
|
if (StringAttr sAttr = llvm::dyn_cast<StringAttr>(getValue())) {
|
|
auto arrayType = llvm::dyn_cast<LLVMArrayType>(getType());
|
|
if (!arrayType || arrayType.getNumElements() != sAttr.getValue().size() ||
|
|
!arrayType.getElementType().isInteger(8)) {
|
|
return emitOpError() << "expected array type of "
|
|
<< sAttr.getValue().size()
|
|
<< " i8 elements for the string constant";
|
|
}
|
|
return success();
|
|
}
|
|
if (auto structType = llvm::dyn_cast<LLVMStructType>(getType())) {
|
|
if (structType.getBody().size() != 2 ||
|
|
structType.getBody()[0] != structType.getBody()[1]) {
|
|
return emitError() << "expected struct type with two elements of the "
|
|
"same type, the type of a complex constant";
|
|
}
|
|
|
|
auto arrayAttr = llvm::dyn_cast<ArrayAttr>(getValue());
|
|
if (!arrayAttr || arrayAttr.size() != 2) {
|
|
return emitOpError() << "expected array attribute with two elements, "
|
|
"representing a complex constant";
|
|
}
|
|
auto re = llvm::dyn_cast<TypedAttr>(arrayAttr[0]);
|
|
auto im = llvm::dyn_cast<TypedAttr>(arrayAttr[1]);
|
|
if (!re || !im || re.getType() != im.getType()) {
|
|
return emitOpError()
|
|
<< "expected array attribute with two elements of the same type";
|
|
}
|
|
|
|
Type elementType = structType.getBody()[0];
|
|
if (!llvm::isa<IntegerType, Float16Type, Float32Type, Float64Type>(
|
|
elementType)) {
|
|
return emitError()
|
|
<< "expected struct element types to be floating point type or "
|
|
"integer type";
|
|
}
|
|
return success();
|
|
}
|
|
if (auto targetExtType = dyn_cast<LLVMTargetExtType>(getType())) {
|
|
if (!targetExtType.hasProperty(LLVM::LLVMTargetExtType::HasZeroInit))
|
|
return emitOpError()
|
|
<< "target extension type does not support zero-initializer";
|
|
// Only a single, zero integer attribute (=zeroinitializer) is allowed for a
|
|
// global value with TargetExtType.
|
|
if (!isa<IntegerAttr>(getValue()) || !isZeroAttribute(getValue()))
|
|
return emitOpError()
|
|
<< "only zero-initializer allowed for target extension types";
|
|
|
|
return success();
|
|
}
|
|
if (!llvm::isa<IntegerAttr, ArrayAttr, FloatAttr, ElementsAttr>(getValue()))
|
|
return emitOpError()
|
|
<< "only supports integer, float, string or elements attributes";
|
|
return success();
|
|
}
|
|
|
|
// Constant op constant-folds to its value.
|
|
OpFoldResult LLVM::ConstantOp::fold(FoldAdaptor) { return getValue(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicRMWOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtomicRMWOp::build(OpBuilder &builder, OperationState &state,
|
|
AtomicBinOp binOp, Value ptr, Value val,
|
|
AtomicOrdering ordering, StringRef syncscope,
|
|
unsigned alignment, bool isVolatile) {
|
|
build(builder, state, val.getType(), binOp, ptr, val, ordering,
|
|
!syncscope.empty() ? builder.getStringAttr(syncscope) : nullptr,
|
|
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isVolatile,
|
|
/*access_groups=*/nullptr,
|
|
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
|
|
}
|
|
|
|
LogicalResult AtomicRMWOp::verify() {
|
|
auto ptrType = llvm::cast<LLVM::LLVMPointerType>(getPtr().getType());
|
|
auto valType = getVal().getType();
|
|
if (!ptrType.isOpaque() && valType != ptrType.getElementType())
|
|
return emitOpError("expected LLVM IR element type for operand #0 to "
|
|
"match type for operand #1");
|
|
if (getBinOp() == AtomicBinOp::fadd || getBinOp() == AtomicBinOp::fsub ||
|
|
getBinOp() == AtomicBinOp::fmin || getBinOp() == AtomicBinOp::fmax) {
|
|
if (!mlir::LLVM::isCompatibleFloatingPointType(valType))
|
|
return emitOpError("expected LLVM IR floating point type");
|
|
} else if (getBinOp() == AtomicBinOp::xchg) {
|
|
if (!isTypeCompatibleWithAtomicOp(valType, /*isPointerTypeAllowed=*/true))
|
|
return emitOpError("unexpected LLVM IR type for 'xchg' bin_op");
|
|
} else {
|
|
auto intType = llvm::dyn_cast<IntegerType>(valType);
|
|
unsigned intBitWidth = intType ? intType.getWidth() : 0;
|
|
if (intBitWidth != 8 && intBitWidth != 16 && intBitWidth != 32 &&
|
|
intBitWidth != 64)
|
|
return emitOpError("expected LLVM IR integer type");
|
|
}
|
|
|
|
if (static_cast<unsigned>(getOrdering()) <
|
|
static_cast<unsigned>(AtomicOrdering::monotonic))
|
|
return emitOpError() << "expected at least '"
|
|
<< stringifyAtomicOrdering(AtomicOrdering::monotonic)
|
|
<< "' ordering";
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtomicCmpXchgOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns an LLVM struct type that contains a value type and a boolean type.
|
|
static LLVMStructType getValAndBoolStructType(Type valType) {
|
|
auto boolType = IntegerType::get(valType.getContext(), 1);
|
|
return LLVMStructType::getLiteral(valType.getContext(), {valType, boolType});
|
|
}
|
|
|
|
void AtomicCmpXchgOp::build(OpBuilder &builder, OperationState &state,
|
|
Value ptr, Value cmp, Value val,
|
|
AtomicOrdering successOrdering,
|
|
AtomicOrdering failureOrdering, StringRef syncscope,
|
|
unsigned alignment, bool isWeak, bool isVolatile) {
|
|
build(builder, state, getValAndBoolStructType(val.getType()), ptr, cmp, val,
|
|
successOrdering, failureOrdering,
|
|
!syncscope.empty() ? builder.getStringAttr(syncscope) : nullptr,
|
|
alignment ? builder.getI64IntegerAttr(alignment) : nullptr, isWeak,
|
|
isVolatile, /*access_groups=*/nullptr,
|
|
/*alias_scopes=*/nullptr, /*noalias_scopes=*/nullptr, /*tbaa=*/nullptr);
|
|
}
|
|
|
|
LogicalResult AtomicCmpXchgOp::verify() {
|
|
auto ptrType = llvm::cast<LLVM::LLVMPointerType>(getPtr().getType());
|
|
if (!ptrType)
|
|
return emitOpError("expected LLVM IR pointer type for operand #0");
|
|
auto valType = getVal().getType();
|
|
if (!ptrType.isOpaque() && valType != ptrType.getElementType())
|
|
return emitOpError("expected LLVM IR element type for operand #0 to "
|
|
"match type for all other operands");
|
|
if (!isTypeCompatibleWithAtomicOp(valType,
|
|
/*isPointerTypeAllowed=*/true))
|
|
return emitOpError("unexpected LLVM IR type");
|
|
if (getSuccessOrdering() < AtomicOrdering::monotonic ||
|
|
getFailureOrdering() < AtomicOrdering::monotonic)
|
|
return emitOpError("ordering must be at least 'monotonic'");
|
|
if (getFailureOrdering() == AtomicOrdering::release ||
|
|
getFailureOrdering() == AtomicOrdering::acq_rel)
|
|
return emitOpError("failure ordering cannot be 'release' or 'acq_rel'");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FenceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void FenceOp::build(OpBuilder &builder, OperationState &state,
|
|
AtomicOrdering ordering, StringRef syncscope) {
|
|
build(builder, state, ordering,
|
|
syncscope.empty() ? nullptr : builder.getStringAttr(syncscope));
|
|
}
|
|
|
|
LogicalResult FenceOp::verify() {
|
|
if (getOrdering() == AtomicOrdering::not_atomic ||
|
|
getOrdering() == AtomicOrdering::unordered ||
|
|
getOrdering() == AtomicOrdering::monotonic)
|
|
return emitOpError("can be given only acquire, release, acq_rel, "
|
|
"and seq_cst orderings");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Verifier for extension ops
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Verifies that the given extension operation operates on consistent scalars
|
|
/// or vectors, and that the target width is larger than the input width.
|
|
template <class ExtOp>
|
|
static LogicalResult verifyExtOp(ExtOp op) {
|
|
IntegerType inputType, outputType;
|
|
if (isCompatibleVectorType(op.getArg().getType())) {
|
|
if (!isCompatibleVectorType(op.getResult().getType()))
|
|
return op.emitError(
|
|
"input type is a vector but output type is an integer");
|
|
if (getVectorNumElements(op.getArg().getType()) !=
|
|
getVectorNumElements(op.getResult().getType()))
|
|
return op.emitError("input and output vectors are of incompatible shape");
|
|
// Because this is a CastOp, the element of vectors is guaranteed to be an
|
|
// integer.
|
|
inputType = cast<IntegerType>(getVectorElementType(op.getArg().getType()));
|
|
outputType =
|
|
cast<IntegerType>(getVectorElementType(op.getResult().getType()));
|
|
} else {
|
|
// Because this is a CastOp and arg is not a vector, arg is guaranteed to be
|
|
// an integer.
|
|
inputType = cast<IntegerType>(op.getArg().getType());
|
|
outputType = dyn_cast<IntegerType>(op.getResult().getType());
|
|
if (!outputType)
|
|
return op.emitError(
|
|
"input type is an integer but output type is a vector");
|
|
}
|
|
|
|
if (outputType.getWidth() <= inputType.getWidth())
|
|
return op.emitError("integer width of the output type is smaller or "
|
|
"equal to the integer width of the input type");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ZExtOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ZExtOp::verify() { return verifyExtOp<ZExtOp>(*this); }
|
|
|
|
OpFoldResult LLVM::ZExtOp::fold(FoldAdaptor adaptor) {
|
|
auto arg = dyn_cast_or_null<IntegerAttr>(adaptor.getArg());
|
|
if (!arg)
|
|
return {};
|
|
|
|
size_t targetSize = cast<IntegerType>(getType()).getWidth();
|
|
return IntegerAttr::get(getType(), arg.getValue().zext(targetSize));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SExtOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult SExtOp::verify() { return verifyExtOp<SExtOp>(*this); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Folder and verifier for LLVM::BitcastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult LLVM::BitcastOp::fold(FoldAdaptor adaptor) {
|
|
// bitcast(x : T0, T0) -> x
|
|
if (getArg().getType() == getType())
|
|
return getArg();
|
|
// bitcast(bitcast(x : T0, T1), T0) -> x
|
|
if (auto prev = getArg().getDefiningOp<BitcastOp>())
|
|
if (prev.getArg().getType() == getType())
|
|
return prev.getArg();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult LLVM::BitcastOp::verify() {
|
|
auto resultType = llvm::dyn_cast<LLVMPointerType>(
|
|
extractVectorElementType(getResult().getType()));
|
|
auto sourceType = llvm::dyn_cast<LLVMPointerType>(
|
|
extractVectorElementType(getArg().getType()));
|
|
|
|
// If one of the types is a pointer (or vector of pointers), then
|
|
// both source and result type have to be pointers.
|
|
if (static_cast<bool>(resultType) != static_cast<bool>(sourceType))
|
|
return emitOpError("can only cast pointers from and to pointers");
|
|
|
|
if (!resultType)
|
|
return success();
|
|
|
|
auto isVector = [](Type type) {
|
|
return llvm::isa<VectorType, LLVMScalableVectorType, LLVMFixedVectorType>(
|
|
type);
|
|
};
|
|
|
|
// Due to bitcast requiring both operands to be of the same size, it is not
|
|
// possible for only one of the two to be a pointer of vectors.
|
|
if (isVector(getResult().getType()) && !isVector(getArg().getType()))
|
|
return emitOpError("cannot cast pointer to vector of pointers");
|
|
|
|
if (!isVector(getResult().getType()) && isVector(getArg().getType()))
|
|
return emitOpError("cannot cast vector of pointers to pointer");
|
|
|
|
// Bitcast cannot cast between pointers of different address spaces.
|
|
// 'llvm.addrspacecast' must be used for this purpose instead.
|
|
if (resultType.getAddressSpace() != sourceType.getAddressSpace())
|
|
return emitOpError("cannot cast pointers of different address spaces, "
|
|
"use 'llvm.addrspacecast' instead");
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Folder for LLVM::AddrSpaceCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult LLVM::AddrSpaceCastOp::fold(FoldAdaptor adaptor) {
|
|
// addrcast(x : T0, T0) -> x
|
|
if (getArg().getType() == getType())
|
|
return getArg();
|
|
// addrcast(addrcast(x : T0, T1), T0) -> x
|
|
if (auto prev = getArg().getDefiningOp<AddrSpaceCastOp>())
|
|
if (prev.getArg().getType() == getType())
|
|
return prev.getArg();
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Folder for LLVM::GEPOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult LLVM::GEPOp::fold(FoldAdaptor adaptor) {
|
|
GEPIndicesAdaptor<ArrayRef<Attribute>> indices(getRawConstantIndicesAttr(),
|
|
adaptor.getDynamicIndices());
|
|
|
|
// gep %x:T, 0 -> %x
|
|
if (getBase().getType() == getType() && indices.size() == 1)
|
|
if (auto integer = llvm::dyn_cast_or_null<IntegerAttr>(indices[0]))
|
|
if (integer.getValue().isZero())
|
|
return getBase();
|
|
|
|
// Canonicalize any dynamic indices of constant value to constant indices.
|
|
bool changed = false;
|
|
SmallVector<GEPArg> gepArgs;
|
|
for (auto iter : llvm::enumerate(indices)) {
|
|
auto integer = llvm::dyn_cast_or_null<IntegerAttr>(iter.value());
|
|
// Constant indices can only be int32_t, so if integer does not fit we
|
|
// are forced to keep it dynamic, despite being a constant.
|
|
if (!indices.isDynamicIndex(iter.index()) || !integer ||
|
|
!integer.getValue().isSignedIntN(kGEPConstantBitWidth)) {
|
|
|
|
PointerUnion<IntegerAttr, Value> existing = getIndices()[iter.index()];
|
|
if (Value val = llvm::dyn_cast_if_present<Value>(existing))
|
|
gepArgs.emplace_back(val);
|
|
else
|
|
gepArgs.emplace_back(existing.get<IntegerAttr>().getInt());
|
|
|
|
continue;
|
|
}
|
|
|
|
changed = true;
|
|
gepArgs.emplace_back(integer.getInt());
|
|
}
|
|
if (changed) {
|
|
SmallVector<int32_t> rawConstantIndices;
|
|
SmallVector<Value> dynamicIndices;
|
|
destructureIndices(getSourceElementType(), gepArgs, rawConstantIndices,
|
|
dynamicIndices);
|
|
|
|
getDynamicIndicesMutable().assign(dynamicIndices);
|
|
setRawConstantIndices(rawConstantIndices);
|
|
return Value{*this};
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShlOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult LLVM::ShlOp::fold(FoldAdaptor adaptor) {
|
|
auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs());
|
|
if (!rhs)
|
|
return {};
|
|
|
|
if (rhs.getValue().getZExtValue() >=
|
|
getLhs().getType().getIntOrFloatBitWidth())
|
|
return {}; // TODO: Fold into poison.
|
|
|
|
auto lhs = dyn_cast_or_null<IntegerAttr>(adaptor.getLhs());
|
|
if (!lhs)
|
|
return {};
|
|
|
|
return IntegerAttr::get(getType(), lhs.getValue().shl(rhs.getValue()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult LLVM::OrOp::fold(FoldAdaptor adaptor) {
|
|
auto lhs = dyn_cast_or_null<IntegerAttr>(adaptor.getLhs());
|
|
if (!lhs)
|
|
return {};
|
|
|
|
auto rhs = dyn_cast_or_null<IntegerAttr>(adaptor.getRhs());
|
|
if (!rhs)
|
|
return {};
|
|
|
|
return IntegerAttr::get(getType(), lhs.getValue() | rhs.getValue());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities for LLVM::MetadataOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void MetadataOp::build(OpBuilder &builder, OperationState &result,
|
|
StringRef symName, bool createBodyBlock,
|
|
ArrayRef<NamedAttribute> attributes) {
|
|
result.addAttribute(getSymNameAttrName(result.name),
|
|
builder.getStringAttr(symName));
|
|
result.attributes.append(attributes.begin(), attributes.end());
|
|
Region *body = result.addRegion();
|
|
if (createBodyBlock)
|
|
body->emplaceBlock();
|
|
}
|
|
|
|
ParseResult MetadataOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
StringAttr symName;
|
|
if (parser.parseSymbolName(symName, getSymNameAttrName(result.name),
|
|
result.attributes) ||
|
|
parser.parseOptionalAttrDictWithKeyword(result.attributes))
|
|
return failure();
|
|
|
|
Region *bodyRegion = result.addRegion();
|
|
if (parser.parseRegion(*bodyRegion))
|
|
return failure();
|
|
|
|
// If the region appeared to be empty to parseRegion(),
|
|
// add the body block explicitly.
|
|
if (bodyRegion->empty())
|
|
bodyRegion->emplaceBlock();
|
|
|
|
return success();
|
|
}
|
|
|
|
void MetadataOp::print(OpAsmPrinter &printer) {
|
|
printer << ' ';
|
|
printer.printSymbolName(getSymName());
|
|
printer.printOptionalAttrDictWithKeyword((*this)->getAttrs(),
|
|
{getSymNameAttrName().getValue()});
|
|
printer << ' ';
|
|
printer.printRegion(getBody());
|
|
}
|
|
|
|
namespace {
|
|
// A node of the TBAA graph.
|
|
struct TBAAGraphNode {
|
|
// Symbol name defined by a TBAA operation.
|
|
StringRef symbol;
|
|
// Operands (if any) of the TBAA operation.
|
|
SmallVector<TBAAGraphNode *> operands;
|
|
};
|
|
|
|
// TBAA graph.
|
|
class TBAAGraph {
|
|
public:
|
|
using iterator = SmallVectorImpl<TBAAGraphNode *>::iterator;
|
|
|
|
// Creates a new graph with nodes corresponding to `symbolNames` defined by a
|
|
// set of TBAA operations.
|
|
TBAAGraph(ArrayRef<StringAttr> symbolNames) {
|
|
for (auto symbol : symbolNames) {
|
|
TBAAGraphNode &node = nodeMap[symbol];
|
|
assert(node.symbol.empty() && "node is already in the graph");
|
|
node.symbol = symbol;
|
|
}
|
|
|
|
// Fill the graph operands once all nodes were added. Otherwise,
|
|
// reallocation can lead to pointer invalidation.
|
|
for (auto symbol : symbolNames)
|
|
root.operands.push_back(&nodeMap[symbol]);
|
|
}
|
|
|
|
iterator begin() { return root.operands.begin(); }
|
|
iterator end() { return root.operands.end(); }
|
|
TBAAGraphNode *getEntryNode() { return &root; }
|
|
|
|
// Get a pointer to TBAAGraphNode corresponding
|
|
// to `symbol`. The node must be already in the graph.
|
|
TBAAGraphNode *operator[](StringAttr symbol) {
|
|
auto it = nodeMap.find(symbol);
|
|
assert(it != nodeMap.end() && "node must be in the graph");
|
|
return &it->second;
|
|
}
|
|
|
|
private:
|
|
// Mapping between symbol names defined by TBAA
|
|
// operations and corresponding TBAAGraphNode's.
|
|
DenseMap<StringAttr, TBAAGraphNode> nodeMap;
|
|
// Synthetic root node that has all graph nodes
|
|
// in its operands list.
|
|
TBAAGraphNode root;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace llvm {
|
|
// GraphTraits definitions for using TBAAGraph with
|
|
// scc_iterator.
|
|
template <>
|
|
struct GraphTraits<TBAAGraphNode *> {
|
|
using NodeRef = TBAAGraphNode *;
|
|
using ChildIteratorType = SmallVectorImpl<TBAAGraphNode *>::iterator;
|
|
static ChildIteratorType child_begin(NodeRef ref) {
|
|
return ref->operands.begin();
|
|
}
|
|
static ChildIteratorType child_end(NodeRef ref) {
|
|
return ref->operands.end();
|
|
}
|
|
};
|
|
template <>
|
|
struct GraphTraits<TBAAGraph *> : public GraphTraits<TBAAGraphNode *> {
|
|
static NodeRef getEntryNode(TBAAGraph *graph) {
|
|
return graph->getEntryNode();
|
|
}
|
|
static ChildIteratorType nodes_begin(TBAAGraph *graph) {
|
|
return graph->begin();
|
|
}
|
|
static ChildIteratorType nodes_end(TBAAGraph *graph) { return graph->end(); }
|
|
};
|
|
} // end namespace llvm
|
|
|
|
LogicalResult MetadataOp::verifyRegions() {
|
|
// Verify correctness of TBAA-related symbol references.
|
|
Region &body = getBody();
|
|
// Symbol names defined by TBAARootMetadataOp and TBAATypeDescriptorOp.
|
|
llvm::SmallDenseSet<StringAttr> definedGraphSymbols;
|
|
|
|
// Collection of symbol names to ensure a stable ordering of the pointers.
|
|
// Otherwise, error messages might not be deterministic.
|
|
SmallVector<StringAttr> symbolNames;
|
|
|
|
for (Operation &op : body.getOps()) {
|
|
if (isa<LLVM::TBAARootMetadataOp>(op) ||
|
|
isa<LLVM::TBAATypeDescriptorOp>(op)) {
|
|
StringAttr symbolDef = cast<SymbolOpInterface>(op).getNameAttr();
|
|
definedGraphSymbols.insert(symbolDef);
|
|
symbolNames.push_back(symbolDef);
|
|
} else if (auto tagOp = dyn_cast<LLVM::TBAATagOp>(op)) {
|
|
symbolNames.push_back(tagOp.getSymNameAttr());
|
|
}
|
|
}
|
|
|
|
// Complete TBAA graph consisting of TBAARootMetadataOp,
|
|
// TBAATypeDescriptorOp, and TBAATagOp symbols. It is used
|
|
// for detecting cycles in the TBAA graph, which is illegal.
|
|
TBAAGraph tbaaGraph(symbolNames);
|
|
|
|
// Verify that TBAA metadata operations refer symbols
|
|
// from definedGraphSymbols only. Note that TBAATagOp
|
|
// cannot refer a symbol defined by TBAATagOp.
|
|
auto verifyReference = [&](Operation &op, StringAttr symbolName,
|
|
StringAttr referencingAttr) -> LogicalResult {
|
|
if (definedGraphSymbols.contains(symbolName))
|
|
return success();
|
|
return op.emitOpError()
|
|
<< "expected " << referencingAttr << " to reference a symbol from '"
|
|
<< (*this)->getName() << " @" << getSymName()
|
|
<< "' defined by either '"
|
|
<< LLVM::TBAARootMetadataOp::getOperationName() << "' or '"
|
|
<< LLVM::TBAATypeDescriptorOp::getOperationName()
|
|
<< "' while it references '@" << symbolName.getValue() << "'";
|
|
};
|
|
for (Operation &op : body.getOps()) {
|
|
if (auto tdOp = dyn_cast<LLVM::TBAATypeDescriptorOp>(op)) {
|
|
SmallVectorImpl<TBAAGraphNode *> &operands =
|
|
tbaaGraph[tdOp.getSymNameAttr()]->operands;
|
|
for (Attribute attr : tdOp.getMembers()) {
|
|
StringAttr symbolRef = llvm::cast<FlatSymbolRefAttr>(attr).getAttr();
|
|
if (failed(verifyReference(op, symbolRef, tdOp.getMembersAttrName())))
|
|
return failure();
|
|
|
|
// Since the reference is valid, we have to be able
|
|
// to find TBAAGraphNode corresponding to the operand.
|
|
operands.push_back(tbaaGraph[symbolRef]);
|
|
}
|
|
}
|
|
|
|
if (auto tagOp = dyn_cast<LLVM::TBAATagOp>(op)) {
|
|
SmallVectorImpl<TBAAGraphNode *> &operands =
|
|
tbaaGraph[tagOp.getSymNameAttr()]->operands;
|
|
if (failed(verifyReference(op, tagOp.getBaseTypeAttr().getAttr(),
|
|
tagOp.getBaseTypeAttrName())))
|
|
return failure();
|
|
if (failed(verifyReference(op, tagOp.getAccessTypeAttr().getAttr(),
|
|
tagOp.getAccessTypeAttrName())))
|
|
return failure();
|
|
|
|
operands.push_back(tbaaGraph[tagOp.getBaseTypeAttr().getAttr()]);
|
|
operands.push_back(tbaaGraph[tagOp.getAccessTypeAttr().getAttr()]);
|
|
}
|
|
}
|
|
|
|
// Detect cycles in the TBAA graph.
|
|
for (llvm::scc_iterator<TBAAGraph *> sccIt = llvm::scc_begin(&tbaaGraph);
|
|
!sccIt.isAtEnd(); ++sccIt) {
|
|
if (!sccIt.hasCycle())
|
|
continue;
|
|
auto diagOut = emitOpError() << "has cycle in TBAA graph (graph closure: <";
|
|
llvm::interleaveComma(
|
|
*sccIt, diagOut, [&](TBAAGraphNode *node) { diagOut << node->symbol; });
|
|
return diagOut << ">)";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities for TBAA related operations/attributes
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static ParseResult parseTBAAMembers(OpAsmParser &parser, ArrayAttr &members,
|
|
DenseI64ArrayAttr &offsets) {
|
|
SmallVector<Attribute> membersVec;
|
|
SmallVector<int64_t> offsetsVec;
|
|
auto parseMembers = [&]() {
|
|
// Parse a pair of `<@tbaa_type_desc_sym, integer-offset>`.
|
|
FlatSymbolRefAttr member;
|
|
int64_t offset;
|
|
if (parser.parseLess() || parser.parseAttribute(member, Type()) ||
|
|
parser.parseComma() || parser.parseInteger(offset) ||
|
|
parser.parseGreater())
|
|
return failure();
|
|
|
|
membersVec.push_back(member);
|
|
offsetsVec.push_back(offset);
|
|
return success();
|
|
};
|
|
|
|
if (parser.parseCommaSeparatedList(parseMembers))
|
|
return failure();
|
|
|
|
members = ArrayAttr::get(parser.getContext(), membersVec);
|
|
offsets = DenseI64ArrayAttr::get(parser.getContext(), offsetsVec);
|
|
return success();
|
|
}
|
|
|
|
static void printTBAAMembers(OpAsmPrinter &printer,
|
|
LLVM::TBAATypeDescriptorOp tdOp, ArrayAttr members,
|
|
DenseI64ArrayAttr offsets) {
|
|
llvm::interleaveComma(
|
|
llvm::zip(members, offsets.asArrayRef()), printer, [&](auto it) {
|
|
// Print `<@tbaa_type_desc_sym, integer-offset>`.
|
|
printer << '<' << std::get<0>(it) << ", " << std::get<1>(it) << '>';
|
|
});
|
|
}
|
|
|
|
LogicalResult TBAARootMetadataOp::verify() {
|
|
if (!getIdentity().empty())
|
|
return success();
|
|
return emitOpError() << "expected non-empty " << getIdentityAttrName();
|
|
}
|
|
|
|
LogicalResult TBAATypeDescriptorOp::verify() {
|
|
// Verify that the members and offsets arrays have the same
|
|
// number of elements.
|
|
ArrayAttr members = getMembers();
|
|
StringAttr membersName = getMembersAttrName();
|
|
if (members.size() != getOffsets().size())
|
|
return emitOpError() << "expected the same number of elements in "
|
|
<< membersName << " and " << getOffsetsAttrName()
|
|
<< ": " << members.size()
|
|
<< " != " << getOffsets().size();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpAsmDialectInterface
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct LLVMOpAsmDialectInterface : public OpAsmDialectInterface {
|
|
using OpAsmDialectInterface::OpAsmDialectInterface;
|
|
|
|
AliasResult getAlias(Attribute attr, raw_ostream &os) const override {
|
|
return TypeSwitch<Attribute, AliasResult>(attr)
|
|
.Case<AccessGroupAttr, AliasScopeAttr, AliasScopeDomainAttr,
|
|
DIBasicTypeAttr, DICompileUnitAttr, DICompositeTypeAttr,
|
|
DIDerivedTypeAttr, DIFileAttr, DILabelAttr, DILexicalBlockAttr,
|
|
DILexicalBlockFileAttr, DILocalVariableAttr, DINamespaceAttr,
|
|
DINullTypeAttr, DISubprogramAttr, DISubroutineTypeAttr,
|
|
LoopAnnotationAttr, LoopVectorizeAttr, LoopInterleaveAttr,
|
|
LoopUnrollAttr, LoopUnrollAndJamAttr, LoopLICMAttr,
|
|
LoopDistributeAttr, LoopPipelineAttr, LoopPeeledAttr,
|
|
LoopUnswitchAttr>([&](auto attr) {
|
|
os << decltype(attr)::getMnemonic();
|
|
return AliasResult::OverridableAlias;
|
|
})
|
|
.Default([](Attribute) { return AliasResult::NoAlias; });
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVMDialect initialization, type parsing, and registration.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void LLVMDialect::initialize() {
|
|
registerAttributes();
|
|
|
|
// clang-format off
|
|
addTypes<LLVMVoidType,
|
|
LLVMPPCFP128Type,
|
|
LLVMX86MMXType,
|
|
LLVMTokenType,
|
|
LLVMLabelType,
|
|
LLVMMetadataType,
|
|
LLVMStructType>();
|
|
// clang-format on
|
|
registerTypes();
|
|
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
|
|
,
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc"
|
|
>();
|
|
|
|
// Support unknown operations because not all LLVM operations are registered.
|
|
allowUnknownOperations();
|
|
// clang-format off
|
|
addInterfaces<LLVMOpAsmDialectInterface>();
|
|
// clang-format on
|
|
detail::addLLVMInlinerInterface(this);
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc"
|
|
|
|
LogicalResult LLVMDialect::verifyDataLayoutString(
|
|
StringRef descr, llvm::function_ref<void(const Twine &)> reportError) {
|
|
llvm::Expected<llvm::DataLayout> maybeDataLayout =
|
|
llvm::DataLayout::parse(descr);
|
|
if (maybeDataLayout)
|
|
return success();
|
|
|
|
std::string message;
|
|
llvm::raw_string_ostream messageStream(message);
|
|
llvm::logAllUnhandledErrors(maybeDataLayout.takeError(), messageStream);
|
|
reportError("invalid data layout descriptor: " + messageStream.str());
|
|
return failure();
|
|
}
|
|
|
|
/// Verify LLVM dialect attributes.
|
|
LogicalResult LLVMDialect::verifyOperationAttribute(Operation *op,
|
|
NamedAttribute attr) {
|
|
// If the data layout attribute is present, it must use the LLVM data layout
|
|
// syntax. Try parsing it and report errors in case of failure. Users of this
|
|
// attribute may assume it is well-formed and can pass it to the (asserting)
|
|
// llvm::DataLayout constructor.
|
|
if (attr.getName() != LLVM::LLVMDialect::getDataLayoutAttrName())
|
|
return success();
|
|
if (auto stringAttr = llvm::dyn_cast<StringAttr>(attr.getValue()))
|
|
return verifyDataLayoutString(
|
|
stringAttr.getValue(),
|
|
[op](const Twine &message) { op->emitOpError() << message.str(); });
|
|
|
|
return op->emitOpError() << "expected '"
|
|
<< LLVM::LLVMDialect::getDataLayoutAttrName()
|
|
<< "' to be a string attributes";
|
|
}
|
|
|
|
LogicalResult LLVMDialect::verifyParameterAttribute(Operation *op,
|
|
Type paramType,
|
|
NamedAttribute paramAttr) {
|
|
// LLVM attribute may be attached to a result of operation that has not been
|
|
// converted to LLVM dialect yet, so the result may have a type with unknown
|
|
// representation in LLVM dialect type space. In this case we cannot verify
|
|
// whether the attribute may be
|
|
bool verifyValueType = isCompatibleType(paramType);
|
|
StringAttr name = paramAttr.getName();
|
|
|
|
auto checkUnitAttrType = [&]() -> LogicalResult {
|
|
if (!llvm::isa<UnitAttr>(paramAttr.getValue()))
|
|
return op->emitError() << name << " should be a unit attribute";
|
|
return success();
|
|
};
|
|
auto checkTypeAttrType = [&]() -> LogicalResult {
|
|
if (!llvm::isa<TypeAttr>(paramAttr.getValue()))
|
|
return op->emitError() << name << " should be a type attribute";
|
|
return success();
|
|
};
|
|
auto checkIntegerAttrType = [&]() -> LogicalResult {
|
|
if (!llvm::isa<IntegerAttr>(paramAttr.getValue()))
|
|
return op->emitError() << name << " should be an integer attribute";
|
|
return success();
|
|
};
|
|
auto checkPointerType = [&]() -> LogicalResult {
|
|
if (!llvm::isa<LLVMPointerType>(paramType))
|
|
return op->emitError()
|
|
<< name << " attribute attached to non-pointer LLVM type";
|
|
return success();
|
|
};
|
|
auto checkIntegerType = [&]() -> LogicalResult {
|
|
if (!llvm::isa<IntegerType>(paramType))
|
|
return op->emitError()
|
|
<< name << " attribute attached to non-integer LLVM type";
|
|
return success();
|
|
};
|
|
auto checkPointerTypeMatches = [&]() -> LogicalResult {
|
|
if (failed(checkPointerType()))
|
|
return failure();
|
|
auto ptrType = llvm::cast<LLVMPointerType>(paramType);
|
|
auto typeAttr = llvm::cast<TypeAttr>(paramAttr.getValue());
|
|
|
|
if (!ptrType.isOpaque() && ptrType.getElementType() != typeAttr.getValue())
|
|
return op->emitError()
|
|
<< name
|
|
<< " attribute attached to LLVM pointer argument of "
|
|
"different type";
|
|
return success();
|
|
};
|
|
|
|
// Check a unit attribute that is attached to a pointer value.
|
|
if (name == LLVMDialect::getNoAliasAttrName() ||
|
|
name == LLVMDialect::getReadonlyAttrName() ||
|
|
name == LLVMDialect::getReadnoneAttrName() ||
|
|
name == LLVMDialect::getWriteOnlyAttrName() ||
|
|
name == LLVMDialect::getNestAttrName() ||
|
|
name == LLVMDialect::getNoCaptureAttrName() ||
|
|
name == LLVMDialect::getNoFreeAttrName() ||
|
|
name == LLVMDialect::getNonNullAttrName()) {
|
|
if (failed(checkUnitAttrType()))
|
|
return failure();
|
|
if (verifyValueType && failed(checkPointerType()))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
// Check a type attribute that is attached to a pointer value.
|
|
if (name == LLVMDialect::getStructRetAttrName() ||
|
|
name == LLVMDialect::getByValAttrName() ||
|
|
name == LLVMDialect::getByRefAttrName() ||
|
|
name == LLVMDialect::getInAllocaAttrName() ||
|
|
name == LLVMDialect::getPreallocatedAttrName()) {
|
|
if (failed(checkTypeAttrType()))
|
|
return failure();
|
|
if (verifyValueType && failed(checkPointerTypeMatches()))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
// Check a unit attribute that is attached to an integer value.
|
|
if (name == LLVMDialect::getSExtAttrName() ||
|
|
name == LLVMDialect::getZExtAttrName()) {
|
|
if (failed(checkUnitAttrType()))
|
|
return failure();
|
|
if (verifyValueType && failed(checkIntegerType()))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
// Check an integer attribute that is attached to a pointer value.
|
|
if (name == LLVMDialect::getAlignAttrName() ||
|
|
name == LLVMDialect::getDereferenceableAttrName() ||
|
|
name == LLVMDialect::getDereferenceableOrNullAttrName() ||
|
|
name == LLVMDialect::getStackAlignmentAttrName()) {
|
|
if (failed(checkIntegerAttrType()))
|
|
return failure();
|
|
if (verifyValueType && failed(checkPointerType()))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
// Check a unit attribute that can be attached to arbitrary types.
|
|
if (name == LLVMDialect::getNoUndefAttrName() ||
|
|
name == LLVMDialect::getInRegAttrName() ||
|
|
name == LLVMDialect::getReturnedAttrName())
|
|
return checkUnitAttrType();
|
|
|
|
return success();
|
|
}
|
|
|
|
/// Verify LLVMIR function argument attributes.
|
|
LogicalResult LLVMDialect::verifyRegionArgAttribute(Operation *op,
|
|
unsigned regionIdx,
|
|
unsigned argIdx,
|
|
NamedAttribute argAttr) {
|
|
auto funcOp = dyn_cast<FunctionOpInterface>(op);
|
|
if (!funcOp)
|
|
return success();
|
|
Type argType = funcOp.getArgumentTypes()[argIdx];
|
|
|
|
return verifyParameterAttribute(op, argType, argAttr);
|
|
}
|
|
|
|
LogicalResult LLVMDialect::verifyRegionResultAttribute(Operation *op,
|
|
unsigned regionIdx,
|
|
unsigned resIdx,
|
|
NamedAttribute resAttr) {
|
|
auto funcOp = dyn_cast<FunctionOpInterface>(op);
|
|
if (!funcOp)
|
|
return success();
|
|
Type resType = funcOp.getResultTypes()[resIdx];
|
|
|
|
// Check to see if this function has a void return with a result attribute
|
|
// to it. It isn't clear what semantics we would assign to that.
|
|
if (llvm::isa<LLVMVoidType>(resType))
|
|
return op->emitError() << "cannot attach result attributes to functions "
|
|
"with a void return";
|
|
|
|
// Check to see if this attribute is allowed as a result attribute. Only
|
|
// explicitly forbidden LLVM attributes will cause an error.
|
|
auto name = resAttr.getName();
|
|
if (name == LLVMDialect::getAllocAlignAttrName() ||
|
|
name == LLVMDialect::getAllocatedPointerAttrName() ||
|
|
name == LLVMDialect::getByValAttrName() ||
|
|
name == LLVMDialect::getByRefAttrName() ||
|
|
name == LLVMDialect::getInAllocaAttrName() ||
|
|
name == LLVMDialect::getNestAttrName() ||
|
|
name == LLVMDialect::getNoCaptureAttrName() ||
|
|
name == LLVMDialect::getNoFreeAttrName() ||
|
|
name == LLVMDialect::getPreallocatedAttrName() ||
|
|
name == LLVMDialect::getReadnoneAttrName() ||
|
|
name == LLVMDialect::getReadonlyAttrName() ||
|
|
name == LLVMDialect::getReturnedAttrName() ||
|
|
name == LLVMDialect::getStackAlignmentAttrName() ||
|
|
name == LLVMDialect::getStructRetAttrName() ||
|
|
name == LLVMDialect::getWriteOnlyAttrName())
|
|
return op->emitError() << name << " is not a valid result attribute";
|
|
return verifyParameterAttribute(op, resType, resAttr);
|
|
}
|
|
|
|
Operation *LLVMDialect::materializeConstant(OpBuilder &builder, Attribute value,
|
|
Type type, Location loc) {
|
|
// TODO: Accept more possible attributes. So far, only IntegerAttr may come
|
|
// up.
|
|
if (!isa<IntegerAttr>(value))
|
|
return nullptr;
|
|
return builder.create<LLVM::ConstantOp>(loc, type, value);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value mlir::LLVM::createGlobalString(Location loc, OpBuilder &builder,
|
|
StringRef name, StringRef value,
|
|
LLVM::Linkage linkage,
|
|
bool useOpaquePointers) {
|
|
assert(builder.getInsertionBlock() &&
|
|
builder.getInsertionBlock()->getParentOp() &&
|
|
"expected builder to point to a block constrained in an op");
|
|
auto module =
|
|
builder.getInsertionBlock()->getParentOp()->getParentOfType<ModuleOp>();
|
|
assert(module && "builder points to an op outside of a module");
|
|
|
|
// Create the global at the entry of the module.
|
|
OpBuilder moduleBuilder(module.getBodyRegion(), builder.getListener());
|
|
MLIRContext *ctx = builder.getContext();
|
|
auto type = LLVM::LLVMArrayType::get(IntegerType::get(ctx, 8), value.size());
|
|
auto global = moduleBuilder.create<LLVM::GlobalOp>(
|
|
loc, type, /*isConstant=*/true, linkage, name,
|
|
builder.getStringAttr(value), /*alignment=*/0);
|
|
|
|
LLVMPointerType resultType;
|
|
LLVMPointerType charPtr;
|
|
if (!useOpaquePointers) {
|
|
resultType = LLVMPointerType::get(type);
|
|
charPtr = LLVMPointerType::get(IntegerType::get(ctx, 8));
|
|
} else {
|
|
resultType = charPtr = LLVMPointerType::get(ctx);
|
|
}
|
|
|
|
// Get the pointer to the first character in the global string.
|
|
Value globalPtr = builder.create<LLVM::AddressOfOp>(loc, resultType,
|
|
global.getSymNameAttr());
|
|
return builder.create<LLVM::GEPOp>(loc, charPtr, type, globalPtr,
|
|
ArrayRef<GEPArg>{0, 0});
|
|
}
|
|
|
|
bool mlir::LLVM::satisfiesLLVMModule(Operation *op) {
|
|
return op->hasTrait<OpTrait::SymbolTable>() &&
|
|
op->hasTrait<OpTrait::IsIsolatedFromAbove>();
|
|
}
|