Files
clang-p2996/mlir/lib/Dialect/LLVMIR/IR/LLVMMemorySlot.cpp
Markus Böck c10f8bd6c3 [mlir][LLVM] Add SplitGEP type-consistency pattern
The goal of this pattern is to eliminate all GEPs that have more than two indices by splitting it into multiple GEPs.
The advantage of this change is that the resulting GEPs only ever index into one aggregate at the time. This enables handling sub-aggregates in other patterns and also creates IR with easier to deduce pointer element types.

As a minor note, `getResultPtrElementType` for `GEPOp` was rewritten since it did not properly handle dynamic indices. The way GEPOp is specified, the resulting pointer element type can *always* be deduced from its base type and indices.

Differential Revision: https://reviews.llvm.org/D154692
2023-07-10 10:45:42 +02:00

948 lines
35 KiB
C++

//===- LLVMMemorySlot.cpp - MemorySlot interfaces ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements MemorySlot-related interfaces for LLVM dialect
// operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/ValueRange.h"
#include "mlir/Interfaces/DataLayoutInterfaces.h"
#include "mlir/Interfaces/MemorySlotInterfaces.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// Interfaces for AllocaOp
//===----------------------------------------------------------------------===//
llvm::SmallVector<MemorySlot> LLVM::AllocaOp::getPromotableSlots() {
if (!getOperation()->getBlock()->isEntryBlock())
return {};
return {MemorySlot{getResult(), getResultPtrElementType()}};
}
Value LLVM::AllocaOp::getDefaultValue(const MemorySlot &slot,
RewriterBase &rewriter) {
return rewriter.create<LLVM::UndefOp>(getLoc(), slot.elemType);
}
void LLVM::AllocaOp::handleBlockArgument(const MemorySlot &slot,
BlockArgument argument,
RewriterBase &rewriter) {
for (Operation *user : getOperation()->getUsers())
if (auto declareOp = llvm::dyn_cast<LLVM::DbgDeclareOp>(user))
rewriter.create<LLVM::DbgValueOp>(declareOp.getLoc(), argument,
declareOp.getVarInfo());
}
void LLVM::AllocaOp::handlePromotionComplete(const MemorySlot &slot,
Value defaultValue,
RewriterBase &rewriter) {
if (defaultValue && defaultValue.use_empty())
rewriter.eraseOp(defaultValue.getDefiningOp());
rewriter.eraseOp(*this);
}
SmallVector<DestructurableMemorySlot> LLVM::AllocaOp::getDestructurableSlots() {
if (!mlir::matchPattern(getArraySize(), m_One()))
return {};
Type elemType = getResultPtrElementType();
auto destructurable = dyn_cast<DestructurableTypeInterface>(elemType);
if (!destructurable)
return {};
std::optional<DenseMap<Attribute, Type>> destructuredType =
destructurable.getSubelementIndexMap();
if (!destructuredType)
return {};
DenseMap<Attribute, Type> allocaTypeMap;
for (Attribute index : llvm::make_first_range(destructuredType.value()))
allocaTypeMap.insert({index, LLVM::LLVMPointerType::get(getContext())});
return {DestructurableMemorySlot{{getResult(), elemType}, {allocaTypeMap}}};
}
DenseMap<Attribute, MemorySlot>
LLVM::AllocaOp::destructure(const DestructurableMemorySlot &slot,
const SmallPtrSetImpl<Attribute> &usedIndices,
RewriterBase &rewriter) {
assert(slot.ptr == getResult());
Type elemType =
getElemType() ? *getElemType() : getResult().getType().getElementType();
rewriter.setInsertionPointAfter(*this);
auto destructurableType = cast<DestructurableTypeInterface>(elemType);
DenseMap<Attribute, MemorySlot> slotMap;
for (Attribute index : usedIndices) {
Type elemType = destructurableType.getTypeAtIndex(index);
assert(elemType && "used index must exist");
auto subAlloca = rewriter.create<LLVM::AllocaOp>(
getLoc(), LLVM::LLVMPointerType::get(getContext()), elemType,
getArraySize());
slotMap.try_emplace<MemorySlot>(index, {subAlloca.getResult(), elemType});
}
return slotMap;
}
void LLVM::AllocaOp::handleDestructuringComplete(
const DestructurableMemorySlot &slot, RewriterBase &rewriter) {
assert(slot.ptr == getResult());
rewriter.eraseOp(*this);
}
//===----------------------------------------------------------------------===//
// Interfaces for LoadOp/StoreOp
//===----------------------------------------------------------------------===//
bool LLVM::LoadOp::loadsFrom(const MemorySlot &slot) {
return getAddr() == slot.ptr;
}
bool LLVM::LoadOp::storesTo(const MemorySlot &slot) { return false; }
Value LLVM::LoadOp::getStored(const MemorySlot &slot, RewriterBase &rewriter) {
llvm_unreachable("getStored should not be called on LoadOp");
}
bool LLVM::StoreOp::loadsFrom(const MemorySlot &slot) { return false; }
bool LLVM::StoreOp::storesTo(const MemorySlot &slot) {
return getAddr() == slot.ptr;
}
Value LLVM::StoreOp::getStored(const MemorySlot &slot, RewriterBase &rewriter) {
return getValue();
}
bool LLVM::LoadOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
// If the blocking use is the slot ptr itself, there will be enough
// context to reconstruct the result of the load at removal time, so it can
// be removed (provided it loads the exact stored value and is not
// volatile).
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
getResult().getType() == slot.elemType && !getVolatile_();
}
DeletionKind LLVM::LoadOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
// `canUsesBeRemoved` checked this blocking use must be the loaded slot
// pointer.
rewriter.replaceAllUsesWith(getResult(), reachingDefinition);
return DeletionKind::Delete;
}
bool LLVM::StoreOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
if (blockingUses.size() != 1)
return false;
Value blockingUse = (*blockingUses.begin())->get();
// If the blocking use is the slot ptr itself, dropping the store is
// fine, provided we are currently promoting its target value. Don't allow a
// store OF the slot pointer, only INTO the slot pointer.
return blockingUse == slot.ptr && getAddr() == slot.ptr &&
getValue() != slot.ptr && getValue().getType() == slot.elemType &&
!getVolatile_();
}
DeletionKind LLVM::StoreOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
// `canUsesBeRemoved` checked this blocking use must be the stored slot
// pointer.
for (Operation *user : slot.ptr.getUsers())
if (auto declareOp = dyn_cast<LLVM::DbgDeclareOp>(user))
rewriter.create<LLVM::DbgValueOp>(declareOp->getLoc(), getValue(),
declareOp.getVarInfo());
return DeletionKind::Delete;
}
LogicalResult LLVM::LoadOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return success(getAddr() != slot.ptr || getType() == slot.elemType);
}
LogicalResult LLVM::StoreOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return success(getAddr() != slot.ptr ||
getValue().getType() == slot.elemType);
}
//===----------------------------------------------------------------------===//
// Interfaces for discardable OPs
//===----------------------------------------------------------------------===//
/// Conditions the deletion of the operation to the removal of all its uses.
static bool forwardToUsers(Operation *op,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
for (Value result : op->getResults())
for (OpOperand &use : result.getUses())
newBlockingUses.push_back(&use);
return true;
}
bool LLVM::BitcastOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::BitcastOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::AddrSpaceCastOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::AddrSpaceCastOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::LifetimeStartOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return true;
}
DeletionKind LLVM::LifetimeStartOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::LifetimeEndOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return true;
}
DeletionKind LLVM::LifetimeEndOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::DbgDeclareOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return true;
}
DeletionKind LLVM::DbgDeclareOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
bool LLVM::DbgValueOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// There is only one operand that we can remove the use of.
if (blockingUses.size() != 1)
return false;
return (*blockingUses.begin())->get() == getValue();
}
DeletionKind LLVM::DbgValueOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
// Rewriter by default is after '*this', but we need it before '*this'.
rewriter.setInsertionPoint(*this);
// Rather than dropping the debug value, replace it with undef to preserve the
// debug local variable info. This allows the debugger to inform the user that
// the variable has been optimized out.
auto undef =
rewriter.create<UndefOp>(getValue().getLoc(), getValue().getType());
rewriter.updateRootInPlace(*this, [&] { getValueMutable().assign(undef); });
return DeletionKind::Keep;
}
//===----------------------------------------------------------------------===//
// Interfaces for GEPOp
//===----------------------------------------------------------------------===//
static bool hasAllZeroIndices(LLVM::GEPOp gepOp) {
return llvm::all_of(gepOp.getIndices(), [](auto index) {
auto indexAttr = llvm::dyn_cast_if_present<IntegerAttr>(index);
return indexAttr && indexAttr.getValue() == 0;
});
}
bool LLVM::GEPOp::canUsesBeRemoved(
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// GEP can be removed as long as it is a no-op and its users can be removed.
if (!hasAllZeroIndices(*this))
return false;
return forwardToUsers(*this, newBlockingUses);
}
DeletionKind LLVM::GEPOp::removeBlockingUses(
const SmallPtrSetImpl<OpOperand *> &blockingUses, RewriterBase &rewriter) {
return DeletionKind::Delete;
}
static bool isFirstIndexZero(LLVM::GEPOp gep) {
IntegerAttr index =
llvm::dyn_cast_if_present<IntegerAttr>(gep.getIndices()[0]);
return index && index.getInt() == 0;
}
LogicalResult LLVM::GEPOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (getBase() != slot.ptr)
return success();
if (slot.elemType != getElemType())
return failure();
if (!isFirstIndexZero(*this))
return failure();
Type reachedType = getResultPtrElementType();
if (!reachedType)
return failure();
mustBeSafelyUsed.emplace_back<MemorySlot>({getResult(), reachedType});
return success();
}
bool LLVM::GEPOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
auto basePtrType = llvm::dyn_cast<LLVM::LLVMPointerType>(getBase().getType());
if (!basePtrType)
return false;
// Typed pointers are not supported. This should be removed once typed
// pointers are removed from the LLVM dialect.
if (!basePtrType.isOpaque())
return false;
if (getBase() != slot.ptr || slot.elemType != getElemType())
return false;
if (!isFirstIndexZero(*this))
return false;
Type reachedType = getResultPtrElementType();
if (!reachedType || getIndices().size() < 2)
return false;
auto firstLevelIndex = dyn_cast<IntegerAttr>(getIndices()[1]);
if (!firstLevelIndex)
return false;
assert(slot.elementPtrs.contains(firstLevelIndex));
if (!llvm::isa<LLVM::LLVMPointerType>(slot.elementPtrs.at(firstLevelIndex)))
return false;
mustBeSafelyUsed.emplace_back<MemorySlot>({getResult(), reachedType});
usedIndices.insert(firstLevelIndex);
return true;
}
DeletionKind LLVM::GEPOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
IntegerAttr firstLevelIndex =
llvm::dyn_cast_if_present<IntegerAttr>(getIndices()[1]);
const MemorySlot &newSlot = subslots.at(firstLevelIndex);
ArrayRef<int32_t> remainingIndices = getRawConstantIndices().slice(2);
// If the GEP would become trivial after this transformation, eliminate it.
// A GEP should only be eliminated if it has no indices (except the first
// pointer index), as simplifying GEPs with all-zero indices would eliminate
// structure information useful for further destruction.
if (remainingIndices.empty()) {
rewriter.replaceAllUsesWith(getResult(), newSlot.ptr);
return DeletionKind::Delete;
}
rewriter.updateRootInPlace(*this, [&]() {
// Rewire the indices by popping off the second index.
// Start with a single zero, then add the indices beyond the second.
SmallVector<int32_t> newIndices(1);
newIndices.append(remainingIndices.begin(), remainingIndices.end());
setRawConstantIndices(newIndices);
// Rewire the pointed type.
setElemType(newSlot.elemType);
// Rewire the pointer.
getBaseMutable().assign(newSlot.ptr);
});
return DeletionKind::Keep;
}
//===----------------------------------------------------------------------===//
// Utilities for memory intrinsics
//===----------------------------------------------------------------------===//
namespace {
/// Returns the length of the given memory intrinsic in bytes if it can be known
/// at compile-time on a best-effort basis, nothing otherwise.
template <class MemIntr>
std::optional<uint64_t> getStaticMemIntrLen(MemIntr op) {
APInt memIntrLen;
if (!matchPattern(op.getLen(), m_ConstantInt(&memIntrLen)))
return {};
if (memIntrLen.getBitWidth() > 64)
return {};
return memIntrLen.getZExtValue();
}
/// Returns the length of the given memory intrinsic in bytes if it can be known
/// at compile-time on a best-effort basis, nothing otherwise.
/// Because MemcpyInlineOp has its length encoded as an attribute, this requires
/// specialized handling.
template <>
std::optional<uint64_t> getStaticMemIntrLen(LLVM::MemcpyInlineOp op) {
APInt memIntrLen = op.getLen();
if (memIntrLen.getBitWidth() > 64)
return {};
return memIntrLen.getZExtValue();
}
} // namespace
/// Returns whether one can be sure the memory intrinsic does not write outside
/// of the bounds of the given slot, on a best-effort basis.
template <class MemIntr>
static bool definitelyWritesOnlyWithinSlot(MemIntr op, const MemorySlot &slot,
DataLayout &dataLayout) {
if (!isa<LLVM::LLVMPointerType>(slot.ptr.getType()) ||
op.getDst() != slot.ptr)
return false;
std::optional<uint64_t> memIntrLen = getStaticMemIntrLen(op);
return memIntrLen && *memIntrLen <= dataLayout.getTypeSize(slot.elemType);
}
/// Checks whether all indices are i32. This is used to check GEPs can index
/// into them.
static bool areAllIndicesI32(const DestructurableMemorySlot &slot) {
Type i32 = IntegerType::get(slot.ptr.getContext(), 32);
return llvm::all_of(llvm::make_first_range(slot.elementPtrs),
[&](Attribute index) {
auto intIndex = dyn_cast<IntegerAttr>(index);
return intIndex && intIndex.getType() == i32;
});
}
//===----------------------------------------------------------------------===//
// Interfaces for memset
//===----------------------------------------------------------------------===//
bool LLVM::MemsetOp::loadsFrom(const MemorySlot &slot) { return false; }
bool LLVM::MemsetOp::storesTo(const MemorySlot &slot) {
return getDst() == slot.ptr;
}
Value LLVM::MemsetOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
// TODO: Support non-integer types.
return TypeSwitch<Type, Value>(slot.elemType)
.Case([&](IntegerType intType) -> Value {
if (intType.getWidth() == 8)
return getVal();
assert(intType.getWidth() % 8 == 0);
// Build the memset integer by repeatedly shifting the value and
// or-ing it with the previous value.
uint64_t coveredBits = 8;
Value currentValue =
rewriter.create<LLVM::ZExtOp>(getLoc(), intType, getVal());
while (coveredBits < intType.getWidth()) {
Value shiftBy =
rewriter.create<LLVM::ConstantOp>(getLoc(), intType, coveredBits);
Value shifted =
rewriter.create<LLVM::ShlOp>(getLoc(), currentValue, shiftBy);
currentValue =
rewriter.create<LLVM::OrOp>(getLoc(), currentValue, shifted);
coveredBits *= 2;
}
return currentValue;
})
.Default([](Type) -> Value {
llvm_unreachable(
"getStored should not be called on memset to unsupported type");
});
}
bool LLVM::MemsetOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// TODO: Support non-integer types.
bool canConvertType =
TypeSwitch<Type, bool>(slot.elemType)
.Case([](IntegerType intType) {
return intType.getWidth() % 8 == 0 && intType.getWidth() > 0;
})
.Default([](Type) { return false; });
if (!canConvertType)
return false;
if (getIsVolatile())
return false;
DataLayout layout = DataLayout::closest(*this);
return getStaticMemIntrLen(*this) == layout.getTypeSize(slot.elemType);
}
DeletionKind LLVM::MemsetOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return DeletionKind::Delete;
}
LogicalResult LLVM::MemsetOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
DataLayout dataLayout = DataLayout::closest(*this);
return success(definitelyWritesOnlyWithinSlot(*this, slot, dataLayout));
}
bool LLVM::MemsetOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (&slot.elemType.getDialect() != getOperation()->getDialect())
return false;
if (getIsVolatile())
return false;
if (!slot.elemType.cast<DestructurableTypeInterface>()
.getSubelementIndexMap())
return false;
if (!areAllIndicesI32(slot))
return false;
DataLayout dataLayout = DataLayout::closest(*this);
return definitelyWritesOnlyWithinSlot(*this, slot, dataLayout);
}
DeletionKind LLVM::MemsetOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
std::optional<DenseMap<Attribute, Type>> types =
slot.elemType.cast<DestructurableTypeInterface>().getSubelementIndexMap();
IntegerAttr memsetLenAttr;
bool successfulMatch =
matchPattern(getLen(), m_Constant<IntegerAttr>(&memsetLenAttr));
(void)successfulMatch;
assert(successfulMatch);
bool packed = false;
if (auto structType = dyn_cast<LLVM::LLVMStructType>(slot.elemType))
packed = structType.isPacked();
Type i32 = IntegerType::get(getContext(), 32);
DataLayout dataLayout = DataLayout::closest(*this);
uint64_t memsetLen = memsetLenAttr.getValue().getZExtValue();
uint64_t covered = 0;
for (size_t i = 0; i < types->size(); i++) {
// Create indices on the fly to get elements in the right order.
Attribute index = IntegerAttr::get(i32, i);
Type elemType = types->at(index);
uint64_t typeSize = dataLayout.getTypeSize(elemType);
if (!packed)
covered =
llvm::alignTo(covered, dataLayout.getTypeABIAlignment(elemType));
if (covered >= memsetLen)
break;
// If this subslot is used, apply a new memset to it.
// Otherwise, only compute its offset within the original memset.
if (subslots.contains(index)) {
uint64_t newMemsetSize = std::min(memsetLen - covered, typeSize);
Value newMemsetSizeValue =
rewriter
.create<LLVM::ConstantOp>(
getLen().getLoc(),
IntegerAttr::get(memsetLenAttr.getType(), newMemsetSize))
.getResult();
rewriter.create<LLVM::MemsetOp>(getLoc(), subslots.at(index).ptr,
getVal(), newMemsetSizeValue,
getIsVolatile());
}
covered += typeSize;
}
return DeletionKind::Delete;
}
//===----------------------------------------------------------------------===//
// Interfaces for memcpy/memmove
//===----------------------------------------------------------------------===//
template <class MemcpyLike>
static bool memcpyLoadsFrom(MemcpyLike op, const MemorySlot &slot) {
return op.getSrc() == slot.ptr;
}
template <class MemcpyLike>
static bool memcpyStoresTo(MemcpyLike op, const MemorySlot &slot) {
return op.getDst() == slot.ptr;
}
template <class MemcpyLike>
static Value memcpyGetStored(MemcpyLike op, const MemorySlot &slot,
RewriterBase &rewriter) {
return rewriter.create<LLVM::LoadOp>(op.getLoc(), slot.elemType, op.getSrc());
}
template <class MemcpyLike>
static bool
memcpyCanUsesBeRemoved(MemcpyLike op, const MemorySlot &slot,
const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
// If source and destination are the same, memcpy behavior is undefined and
// memmove is a no-op. Because there is no memory change happening here,
// simplifying such operations is left to canonicalization.
if (op.getDst() == op.getSrc())
return false;
if (op.getIsVolatile())
return false;
DataLayout layout = DataLayout::closest(op);
return getStaticMemIntrLen(op) == layout.getTypeSize(slot.elemType);
}
template <class MemcpyLike>
static DeletionKind
memcpyRemoveBlockingUses(MemcpyLike op, const MemorySlot &slot,
const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
if (op.loadsFrom(slot))
rewriter.create<LLVM::StoreOp>(op.getLoc(), reachingDefinition,
op.getDst());
return DeletionKind::Delete;
}
template <class MemcpyLike>
static LogicalResult
memcpyEnsureOnlySafeAccesses(MemcpyLike op, const MemorySlot &slot,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
DataLayout dataLayout = DataLayout::closest(op);
// While rewiring memcpy-like intrinsics only supports full copies, partial
// copies are still safe accesses so it is enough to only check for writes
// within bounds.
return success(definitelyWritesOnlyWithinSlot(op, slot, dataLayout));
}
template <class MemcpyLike>
static bool memcpyCanRewire(MemcpyLike op, const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
if (op.getIsVolatile())
return false;
if (!slot.elemType.cast<DestructurableTypeInterface>()
.getSubelementIndexMap())
return false;
if (!areAllIndicesI32(slot))
return false;
// Only full copies are supported.
DataLayout dataLayout = DataLayout::closest(op);
if (getStaticMemIntrLen(op) != dataLayout.getTypeSize(slot.elemType))
return false;
if (op.getSrc() == slot.ptr)
for (Attribute index : llvm::make_first_range(slot.elementPtrs))
usedIndices.insert(index);
return true;
}
namespace {
template <class MemcpyLike>
void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
MemcpyLike toReplace, Value dst, Value src,
Type toCpy, bool isVolatile) {
Value memcpySize = rewriter.create<LLVM::ConstantOp>(
toReplace.getLoc(), IntegerAttr::get(toReplace.getLen().getType(),
layout.getTypeSize(toCpy)));
rewriter.create<MemcpyLike>(toReplace.getLoc(), dst, src, memcpySize,
isVolatile);
}
template <>
void createMemcpyLikeToReplace(RewriterBase &rewriter, const DataLayout &layout,
LLVM::MemcpyInlineOp toReplace, Value dst,
Value src, Type toCpy, bool isVolatile) {
Type lenType = IntegerType::get(toReplace->getContext(),
toReplace.getLen().getBitWidth());
rewriter.create<LLVM::MemcpyInlineOp>(
toReplace.getLoc(), dst, src,
IntegerAttr::get(lenType, layout.getTypeSize(toCpy)), isVolatile);
}
} // namespace
/// Rewires a memcpy-like operation. Only copies to or from the full slot are
/// supported.
template <class MemcpyLike>
static DeletionKind memcpyRewire(MemcpyLike op,
const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
if (subslots.empty())
return DeletionKind::Delete;
DataLayout layout = DataLayout::closest(op);
assert((slot.ptr == op.getDst()) != (slot.ptr == op.getSrc()));
bool isDst = slot.ptr == op.getDst();
#ifndef NDEBUG
size_t slotsTreated = 0;
#endif
// It was previously checked that index types are consistent, so this type can
// be fetched now.
Type indexType = cast<IntegerAttr>(subslots.begin()->first).getType();
for (size_t i = 0, e = slot.elementPtrs.size(); i != e; i++) {
Attribute index = IntegerAttr::get(indexType, i);
if (!subslots.contains(index))
continue;
const MemorySlot &subslot = subslots.at(index);
#ifndef NDEBUG
slotsTreated++;
#endif
// First get a pointer to the equivalent of this subslot from the source
// pointer.
SmallVector<LLVM::GEPArg> gepIndices{
0, static_cast<int32_t>(
cast<IntegerAttr>(index).getValue().getZExtValue())};
Value subslotPtrInOther = rewriter.create<LLVM::GEPOp>(
op.getLoc(), LLVM::LLVMPointerType::get(op.getContext()), slot.elemType,
isDst ? op.getSrc() : op.getDst(), gepIndices);
// Then create a new memcpy out of this source pointer.
createMemcpyLikeToReplace(rewriter, layout, op,
isDst ? subslot.ptr : subslotPtrInOther,
isDst ? subslotPtrInOther : subslot.ptr,
subslot.elemType, op.getIsVolatile());
}
assert(subslots.size() == slotsTreated);
return DeletionKind::Delete;
}
bool LLVM::MemcpyOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemcpyOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemcpyOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return memcpyGetStored(*this, slot, rewriter);
}
bool LLVM::MemcpyOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
}
DeletionKind LLVM::MemcpyOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
reachingDefinition);
}
LogicalResult LLVM::MemcpyOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemcpyOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
}
DeletionKind LLVM::MemcpyOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
return memcpyRewire(*this, slot, subslots, rewriter);
}
bool LLVM::MemcpyInlineOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemcpyInlineOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemcpyInlineOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return memcpyGetStored(*this, slot, rewriter);
}
bool LLVM::MemcpyInlineOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
}
DeletionKind LLVM::MemcpyInlineOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
reachingDefinition);
}
LogicalResult LLVM::MemcpyInlineOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemcpyInlineOp::canRewire(
const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
}
DeletionKind
LLVM::MemcpyInlineOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
return memcpyRewire(*this, slot, subslots, rewriter);
}
bool LLVM::MemmoveOp::loadsFrom(const MemorySlot &slot) {
return memcpyLoadsFrom(*this, slot);
}
bool LLVM::MemmoveOp::storesTo(const MemorySlot &slot) {
return memcpyStoresTo(*this, slot);
}
Value LLVM::MemmoveOp::getStored(const MemorySlot &slot,
RewriterBase &rewriter) {
return memcpyGetStored(*this, slot, rewriter);
}
bool LLVM::MemmoveOp::canUsesBeRemoved(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
SmallVectorImpl<OpOperand *> &newBlockingUses) {
return memcpyCanUsesBeRemoved(*this, slot, blockingUses, newBlockingUses);
}
DeletionKind LLVM::MemmoveOp::removeBlockingUses(
const MemorySlot &slot, const SmallPtrSetImpl<OpOperand *> &blockingUses,
RewriterBase &rewriter, Value reachingDefinition) {
return memcpyRemoveBlockingUses(*this, slot, blockingUses, rewriter,
reachingDefinition);
}
LogicalResult LLVM::MemmoveOp::ensureOnlySafeAccesses(
const MemorySlot &slot, SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyEnsureOnlySafeAccesses(*this, slot, mustBeSafelyUsed);
}
bool LLVM::MemmoveOp::canRewire(const DestructurableMemorySlot &slot,
SmallPtrSetImpl<Attribute> &usedIndices,
SmallVectorImpl<MemorySlot> &mustBeSafelyUsed) {
return memcpyCanRewire(*this, slot, usedIndices, mustBeSafelyUsed);
}
DeletionKind LLVM::MemmoveOp::rewire(const DestructurableMemorySlot &slot,
DenseMap<Attribute, MemorySlot> &subslots,
RewriterBase &rewriter) {
return memcpyRewire(*this, slot, subslots, rewriter);
}
//===----------------------------------------------------------------------===//
// Interfaces for destructurable types
//===----------------------------------------------------------------------===//
std::optional<DenseMap<Attribute, Type>>
LLVM::LLVMStructType::getSubelementIndexMap() {
Type i32 = IntegerType::get(getContext(), 32);
DenseMap<Attribute, Type> destructured;
for (const auto &[index, elemType] : llvm::enumerate(getBody()))
destructured.insert({IntegerAttr::get(i32, index), elemType});
return destructured;
}
Type LLVM::LLVMStructType::getTypeAtIndex(Attribute index) {
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
if (!indexAttr || !indexAttr.getType().isInteger(32))
return {};
int32_t indexInt = indexAttr.getInt();
ArrayRef<Type> body = getBody();
if (indexInt < 0 || body.size() <= static_cast<uint32_t>(indexInt))
return {};
return body[indexInt];
}
std::optional<DenseMap<Attribute, Type>>
LLVM::LLVMArrayType::getSubelementIndexMap() const {
constexpr size_t maxArraySizeForDestructuring = 16;
if (getNumElements() > maxArraySizeForDestructuring)
return {};
int32_t numElements = getNumElements();
Type i32 = IntegerType::get(getContext(), 32);
DenseMap<Attribute, Type> destructured;
for (int32_t index = 0; index < numElements; ++index)
destructured.insert({IntegerAttr::get(i32, index), getElementType()});
return destructured;
}
Type LLVM::LLVMArrayType::getTypeAtIndex(Attribute index) const {
auto indexAttr = llvm::dyn_cast<IntegerAttr>(index);
if (!indexAttr || !indexAttr.getType().isInteger(32))
return {};
int32_t indexInt = indexAttr.getInt();
if (indexInt < 0 || getNumElements() <= static_cast<uint32_t>(indexInt))
return {};
return getElementType();
}