Files
clang-p2996/mlir/lib/Dialect/Linalg/Transforms/HoistPadding.cpp
Mahesh Ravishankar 641b12e94b [mlir][SliceAnalysis] Add an options object to forward and backward slice.
Add an options object to allow control of the slice computation (for
both forward and backward slice). This makes the ABI stable, and also
allows avoiding an assert that makes the slice analysis unusable for
operations with multiple blocks.

Reviewed By: hanchung, nicolasvasilache

Differential Revision: https://reviews.llvm.org/D151520
2023-06-08 18:40:20 +00:00

1012 lines
42 KiB
C++

//===- HoistPadding.cpp - Hoisting for tensor::PadOp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting padding operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/IntegerRelation.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
using llvm::dbgs;
#define DEBUG_TYPE "hoist-padding"
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::linalg::detail;
#ifndef NDEBUG
static bool debugPrintLoopInShortForm(Operation *op) {
AsmState state(op->getParentOfType<func::FuncOp>());
(void)state;
if (auto forOp = dyn_cast<scf::ForOp>(op)) {
forOp.getInductionVar().printAsOperand(dbgs(), state);
dbgs() << " @ " << forOp.getOperation();
return true;
}
return false;
}
#endif
static void debugPrintBackwardSlice(SetVector<Operation *> &backwardSlice) {
LLVM_DEBUG(llvm::interleaveComma(backwardSlice, DBGS() << "--backwardSlice:",
[](Operation *op) {
dbgs() << "\n";
DBGS() << "----";
if (debugPrintLoopInShortForm(op)) {
dbgs() << "\n";
return;
}
dbgs() << *op << "\n";
});
DBGS() << "\n";);
}
/// Return at most nLevels of immediately enclosing scf::ForOp loops.
/// Stops at the first parent that is not an scf::ForOp.
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
/// Control-flow and other containing ops with regions are not modeled atm.
static void
getAtMostNEnclosingLoops(tensor::PadOp padOp, int nLevels,
SmallVector<scf::ForOp> &reverseEnclosingLoops) {
scf::ForOp outermostEnclosingForOp = nullptr;
Operation *nextEnclosingOp = padOp->getParentOp();
while (nLevels-- > 0 &&
(outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
LLVM_DEBUG(DBGS() << "loops: ";
debugPrintLoopInShortForm(outermostEnclosingForOp);
dbgs() << "\n");
reverseEnclosingLoops.push_back(outermostEnclosingForOp);
nextEnclosingOp = outermostEnclosingForOp->getParentOp();
}
}
/// Return at most nLevels of immediately enclosing scf::ForOp loops.
/// Stops at the first parent that is not an scf::ForOp.
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
/// Control-flow and other containing ops with regions are not modeled atm.
static void
getEnclosingLoopsUntil(tensor::PadOp padOp, scf::ForOp untilLoop,
SmallVector<scf::ForOp> &reverseEnclosingLoops) {
scf::ForOp outermostEnclosingForOp = nullptr;
Operation *nextEnclosingOp = padOp->getParentOp();
while (outermostEnclosingForOp != untilLoop &&
(outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
LLVM_DEBUG(DBGS() << "loops: ";
debugPrintLoopInShortForm(outermostEnclosingForOp);
dbgs() << "\n");
reverseEnclosingLoops.push_back(outermostEnclosingForOp);
nextEnclosingOp = outermostEnclosingForOp->getParentOp();
}
}
// Get all the ops in the backwards slice starting from `padOp` and that
// are dominated by the outermost enclosing loop.
// This also requires tracking ops defining values used in the region but
// defined above.
static void computeBackwardSlice(tensor::PadOp padOp,
scf::ForOp outermostEnclosingForOp,
SetVector<Operation *> &backwardSlice) {
DominanceInfo domInfo(outermostEnclosingForOp);
BackwardSliceOptions sliceOptions;
sliceOptions.filter = [&](Operation *op) {
return domInfo.dominates(outermostEnclosingForOp, op) &&
!padOp->isProperAncestor(op);
};
sliceOptions.inclusive = true;
// First, add the ops required to compute the region to the backwardSlice.
SetVector<Value> valuesDefinedAbove;
getUsedValuesDefinedAbove(padOp.getRegion(), padOp.getRegion(),
valuesDefinedAbove);
for (Value v : valuesDefinedAbove) {
getBackwardSlice(v, &backwardSlice, sliceOptions);
}
// Then, add the backward slice from padOp itself.
getBackwardSlice(padOp.getOperation(), &backwardSlice, sliceOptions);
}
//===----------------------------------------------------------------------===//
// HoistPaddingAnalysis Implementation.
//===----------------------------------------------------------------------===//
namespace {
/// Analysis class to support tensor::PadOp hoisting across multiple enclosing
/// loops. The failure conditions are:
/// 1. Pad op has a use that is not an input of a LinalgOp.
/// 2. Pad op does not have a constant padding value.
/// 3. There is no immediately enclosing scf::ForOp.
/// 4. The backward slice from the pad op to the scf::ForOp to hoist above
/// contains an unknown op with non index type operands, a region, or a
/// memory effect.
/// 5. The backward slice from the pad op to the scf::ForOp to hoist above is
/// empty.
/// 6. The source tensor of pad op is not defined by an extract slice op.
/// 7. The source tensor of the extract slice op is not defined outside of
/// the outermost enclosing scf::ForOp.
/// 8. There is no enclosing scf::ForOp that indexes the padded data.
/// Other cases succeed and will trigger hoisting of the pad op.
struct HoistPaddingAnalysis {
HoistPaddingAnalysis(tensor::PadOp padOp, int numLoops);
HoistPaddingAnalysis(tensor::PadOp padOp, scf::ForOp outermostEnclosingForOp);
bool isValid() { return valid.has_value() && valid.value(); }
bool isInvalid() { return valid.has_value() && !valid.value(); }
/// Footprint of the hoistedPackedTensor, computed from the packingLoops.
SmallVector<Value> getHoistedPackedTensorSizes(RewriterBase &rewriter,
Location loc) const;
/// Performs optional hoisting to enable hoist padding to occur. This may be
/// necessary when `sliceOp` is not defined outside of the outermost enclosing
/// loop we want to hoist above.
///
/// Example:
/// ```
/// %source = linalg.fill(%cst, %arg0)
/// // %source is available for packing here!
/// scf.for %i
/// scf.for %j
/// scf.for %k
/// %slice = tensor.extract_slice %source [%i, %j]
/// %padded_slice = tensor.pad %slice
/// ```
void enableHoistPadding(RewriterBase &rewriter);
/// Common analysis builder to finalize the construction of the analysis once
/// optional `enableHoistPadding` has run.
/// `reverseEnclosingLoops.back()` is the loop to hoist above.
void finalizeHoistPaddingAnalysis();
private:
/// Encodes whether the analysis is valid and hoisting can proceed.
std::optional<bool> valid;
/// The padOp to hoist.
tensor::PadOp opToHoist;
/// Immediately enclosing loops considered for hoisting padding.
SmallVector<scf::ForOp> reverseEnclosingLoops;
/// Drop any non-index dependencies of `padOp` and `sliceOp` from
/// `backwardSlice`. The method follows the use-def chains of the index
/// operands consumed by `padOp` and `sliceOp` and drops the operations
/// not part of this index computation. Afterwards, the filtered
/// `backwardSlice` contains only the loops whose induction variable is
/// used, directly or indirectly, to index the padded tensor. The method
/// returns failure if the filtered backward slice contains an unexpected
/// operation.
///
/// Example:
/// ```
/// %source = linalg.fill(%cst, %arg0)
/// scf.for %i
/// %unrelated = linalg.fill(%cst, %arg1) // not used to index
/// %source! scf.for %j (%arg2 = %unrelated)
/// scf.for %k // not used to index
/// %source!
/// %ubi = affine.min #map(%i)
/// %ubj = affine.min #map(%j)
/// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
/// %padded_slice = tensor.pad %slice
/// ```
/// dropNonIndexDependencies(%padded_slice, %slice)
/// removes [scf.for %k, linalg.fill(%cst, %arg1)] from backwardSlice.
LogicalResult dropNonIndexDependencies();
public:
/// The outermost loop, determined by `nLevels` above which `padOp` will
/// be hoisted.
scf::ForOp outermostEnclosingForOp;
/// Backward slice rooted at `padOp` and nested under
/// `outermostEnclosingForOp`.
SetVector<Operation *> backwardSlice;
/// The scf::ForOp immediately enclosing `padOp` such that:
/// 1. they are nested under `outermostEnclosingForOp` (inclusive)
/// 2. whose induction variable is used, directly or indirectly, in the
/// computation of `padOp`.
/// The span of these loops determines the footprint of the packed tensor.
SmallVector<scf::ForOp> packingLoops;
/// The ExtractSliceOp that feeds the PadOp we want to hoist.
tensor::ExtractSliceOp sliceOp;
/// If non-empty, this is the unique scf::ForOp that consumes the `sliceOp`.
scf::ForOp padConsumingForOp;
};
} // namespace
HoistPaddingAnalysis::HoistPaddingAnalysis(tensor::PadOp padOp, int numLoops)
: valid(std::nullopt), opToHoist(padOp) {
// Get at most `numLoops` of immediately enclosing loops.
getAtMostNEnclosingLoops(opToHoist, numLoops, reverseEnclosingLoops);
if (reverseEnclosingLoops.empty()) {
LLVM_DEBUG(DBGS() << "--No immediately enclosing loop -> Skip\n");
valid = false;
return;
}
outermostEnclosingForOp = reverseEnclosingLoops.back();
sliceOp = opToHoist.getSource().getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp) {
LLVM_DEBUG(DBGS() << "--Cannot find the extract slice op -> Skip\n");
valid = false;
return;
}
}
HoistPaddingAnalysis::HoistPaddingAnalysis(tensor::PadOp padOp,
scf::ForOp outermostEnclosingForOp)
: valid(std::nullopt), opToHoist(padOp) {
// Get enclosing loops until outermostEnclosingForOp.
getEnclosingLoopsUntil(opToHoist, outermostEnclosingForOp,
reverseEnclosingLoops);
if (reverseEnclosingLoops.empty()) {
LLVM_DEBUG(DBGS() << "--No immediately enclosing loop -> Skip\n");
valid = false;
return;
}
this->outermostEnclosingForOp = reverseEnclosingLoops.back();
if (this->outermostEnclosingForOp != outermostEnclosingForOp) {
LLVM_DEBUG(DBGS() << "--Unexpected outermost enclosing loop -> Skip\n");
valid = false;
return;
}
sliceOp = opToHoist.getSource().getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp) {
LLVM_DEBUG(DBGS() << "--Cannot find the extract slice op -> Skip\n");
valid = false;
return;
}
}
void HoistPaddingAnalysis::enableHoistPadding(RewriterBase &rewriter) {
if (isInvalid())
return;
// If the padded data is not yet available before entering the outermost
// enclosing loop, try to apply hoisting on this outermost loop.
// TODO: we may want finer-grained hoisting of only that particular `sliceOp`.
if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
outermostEnclosingForOp =
hoistRedundantSubsetExtractInsert(rewriter, outermostEnclosingForOp);
}
}
void HoistPaddingAnalysis::finalizeHoistPaddingAnalysis() {
if (isInvalid())
return;
if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
LLVM_DEBUG(DBGS() << "--outermostEnclosingForOp:\n"
<< outermostEnclosingForOp << "\n"
<< "--sliceOp: " << sliceOp << "\n"
<< "--sliceOp.getSource(): " << sliceOp.getSource()
<< "\n");
LLVM_DEBUG(DBGS() << "----Source not defined outside of loops -> Skip\n");
valid = false;
return;
}
if (sliceOp->hasOneUse()) {
padConsumingForOp = dyn_cast<scf::ForOp>(*(sliceOp->getUsers().begin()));
}
// Check the region of `padOp` depends on a constant only. Adding hoisting
// support for arbitrary padding regions would require cloning all
// dependencies captured by the padding region.
Value paddingValue = opToHoist.getConstantPaddingValue();
if (!paddingValue ||
!isa_and_nonnull<arith::ConstantOp>(paddingValue.getDefiningOp())) {
LLVM_DEBUG(DBGS() << "Cannot find constant padding value -> Skip\n");
valid = false;
return;
}
computeBackwardSlice(opToHoist, outermostEnclosingForOp, backwardSlice);
if (backwardSlice.size() <= 1) {
valid = false;
return;
}
debugPrintBackwardSlice(backwardSlice);
// Remove all ops in the backward slice that are not used to index
// the padded tensor. In particular, keep `padOp`, `sliceOp`, and
// the loop and affine operations used for the index computation.
if (failed(dropNonIndexDependencies())) {
LLVM_DEBUG(DBGS() << "--Cannot dropNonIndexDependencies -> Skip\n");
valid = false;
return;
}
debugPrintBackwardSlice(backwardSlice);
// Add only the loops part of the filtered `backwardSlice` to the
// packing loops. All other loops are not used to index the padded
// data and consequently access the same data in every loop
// iteration. Adding them to the packing loops would increase the
// cache footprint of the packed data by storing the same data
// multiple times.
for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops))
if (backwardSlice.contains(forOp))
packingLoops.push_back(forOp);
// TODO: for multiple loops we need to track the use to the innermost loop.
if (packingLoops.size() > 1 && padConsumingForOp) {
LLVM_DEBUG(DBGS() << "--Cannot hoist multiple loops through iter_args -> "
"Downgrade to 1 loop\n");
packingLoops.resize(1);
}
// Note: at this point, packing loops may be empty but we would still like
// to hoist the padding if so specified.
// The analysis is valid and hoisting can occur.
valid = true;
}
LogicalResult HoistPaddingAnalysis::dropNonIndexDependencies() {
// Set of all values used for index computation.
SetVector<Value> indexEdges;
// Add all index operands of `operation` to `indexEdges`. An index operand
// is an operand of type index.
auto addIndexOperandsToIndexEdges = [&](Operation *operation) {
for (Value operand : operation->getOperands())
if (operand.getType().isIndex())
indexEdges.insert(operand);
};
// Check if any operation result is contained in `indexEdges`.
auto hasIndexResult = [&](Operation *operation) {
return llvm::any_of(operation->getResults(), [&](Value result) {
return indexEdges.contains(result);
});
};
// Starting from `opToHoist` and `sliceOp` walk the use-def edges of index
// type in `backwardSlice`. Add the index operands of an operation to
// `indexEdges` and remove all operations from `backwardSlice` that are not
// part of the index computation.
//
// Example:
// ```
// %source = linalg.fill(%cst, %arg0)
// scf.for %i
// %unrelated = linalg.fill(%cst, %arg1) // not used to index %source!
// scf.for %j (%arg2 = %unrelated)
// scf.for %k // not used to index %source!
// %ubi = affine.min #map(%i)
// %ubj = affine.min #map(%j)
// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
// %padded_slice = tensor.pad %slice
// ```
// After iterating `backwardSlice` we obtain:
// indexEdges = [%i, %j, %ubi, %ubj]
// backwardSlice = backwardSlice / [linalg.fill(%cst, %arg1), scf.for %k]
SetVector<Operation *> operationsToRemove;
for (Operation *op : llvm::reverse(backwardSlice)) {
// Add the index operands of `opToHoist` and `sliceOp` to start the
// exploration of the index computation.
if (op == opToHoist || op == sliceOp) {
addIndexOperandsToIndexEdges(op);
continue;
}
// Add the index operands of the loop if its induction variable is
// used for index computation.
if (auto forOp = dyn_cast<scf::ForOp>(op)) {
if (!hasIndexResult(op) && indexEdges.contains(forOp.getInductionVar())) {
addIndexOperandsToIndexEdges(op);
continue;
}
}
// Add the index operands of all other operations if at least one result
// is used for index computation.
if (hasIndexResult(op)) {
addIndexOperandsToIndexEdges(op);
// Check the operands of the remaining operations all have index type.
if (llvm::any_of(op->getOperandTypes(),
[](Type type) { return !type.isIndex(); })) {
LLVM_DEBUG(DBGS() << "Unsupported op with non index type operands: "
<< op << " -> Skip\n");
return failure();
}
// Check the remaining operations do not have regions or memory effects.
auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op);
bool hasMemoryEffect = effectInterface && !effectInterface.hasNoEffect();
if (hasMemoryEffect || op->getNumRegions() != 0) {
LLVM_DEBUG(DBGS() << "Unsupported op with region or memory effect: "
<< op << " -> Skip\n");
return failure();
}
continue;
}
// Remove all other operations not used by the index computation. An
// exception are constant operations that may be used by `opToHoist`.
if (!isa<arith::ConstantOp>(op))
operationsToRemove.insert(op);
}
backwardSlice.set_subtract(operationsToRemove);
return success();
}
SmallVector<Value>
HoistPaddingAnalysis::getHoistedPackedTensorSizes(RewriterBase &rewriter,
Location loc) const {
SmallVector<Value> dynamicTensorSizes;
// Upper bound the packing loop lengths to size the packed tensor. Taking
// upper bounds can make the sizes of the packed tensor independent of the
// enclosing loops. This independence is a prerequisite for reusing the same
// buffer for all enclosing loop iterations and hoisting its allocation out
// of the enclosing loops.
for (auto forOp : packingLoops) {
// Compute an upper bound `ubVal` for the upper bound of `forOp`.
FailureOr<OpFoldResult> loopUb = affine::reifyIndexValueBound(
rewriter, loc, presburger::BoundType::UB, forOp.getUpperBound(),
/*stopCondition=*/
[&](Value v, std::optional<int64_t> d) {
if (v == forOp.getUpperBound())
return false;
// Compute a bound that is independent of any affine op results.
Operation *op = v.getDefiningOp();
if (!op)
return true;
return !isa<affine::AffineMinOp, affine::AffineMaxOp,
affine::AffineApplyOp>(op);
},
/*closedUB=*/true);
assert(succeeded(loopUb) && "could not get upper bound");
Value ubVal = getValueOrCreateConstantIndexOp(rewriter, loc, *loopUb);
// Compute the maximal packing loop length as (ub - lb).ceilDiv(step) and
// store the result to `dynamicTensorSizes`.
// TODO: instead of using the lower bound of `forOp` directly, implement a
// lower bound computation similar to the upper bound computation.
AffineExpr lb, ub, step;
bindDims(rewriter.getContext(), lb, ub);
bindSymbols(rewriter.getContext(), step);
Value res = rewriter.createOrFold<affine::AffineApplyOp>(
loc, (ub - lb).ceilDiv(step),
ValueRange{forOp.getLowerBound(), ubVal,
cast<scf::ForOp>(forOp).getStep()});
dynamicTensorSizes.push_back(res);
}
return dynamicTensorSizes;
}
static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
return outer.isDefinedOutsideOfLoop(v) || matchPattern(v, m_Constant());
}
//===----------------------------------------------------------------------===//
// buildPackingLoopNest Implementation.
//===----------------------------------------------------------------------===//
/// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
/// The returned Value is guaranteed not to depend on any loop comprised in
/// [`outer`, `forOp`].
/// Return null if such a loop-independent quantity cannot be computed.
static Value buildLoopIterationCount(RewriterBase &rewriter, scf::ForOp outer,
scf::ForOp forOp) {
MLIRContext *ctx = forOp->getContext();
AffineExpr iv, lb, step;
bindDims(ctx, iv, lb);
bindSymbols(ctx, step);
if (!isDefinedOutsideOrConstant(outer, forOp.getLowerBound()) ||
!isDefinedOutsideOrConstant(outer, forOp.getStep()))
return Value();
Value ivVal = forOp.getInductionVar(), lbVal = forOp.getLowerBound(),
stepVal = forOp.getStep();
auto loc = forOp->getLoc();
return rewriter.createOrFold<affine::AffineApplyOp>(
loc, (iv - lb).ceilDiv(step), ValueRange{ivVal, lbVal, stepVal});
}
// Build a packing loop nest by iteratively traversing the backward slice and
// clone the operations, iteratively stepping into the loops that we encounter.
// The implementation proceeds in a stack-like fashion:
// 1. Iteratively clone and step into the loops, pushing the
// `hoistedPackedTensor`
// deeper in the stack.
// 2. At the innermost loop level, create a GenericOp if `transposeVector` is
// non-empty.
// 3. At the innermost loop level, create a InsertSliceOp.
// 4. Iteratively pop and yield the result of the InsertSliceOp across the
// cloned loops.
static FailureOr<PackingResult> buildPackingLoopNestImpl(
RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist,
ArrayRef<int64_t> transposeVector, RankedTensorType transposedTensorType,
tensor::EmptyOp emptyOp, const HoistPaddingAnalysis &analysis) {
SmallVector<OpFoldResult> offsets, sizes, strides;
SmallVector<Value> clonedLoopIvs, leadingHoistedPackedTensorIndexings;
scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
Location loc = opToHoist->getLoc();
RankedTensorType paddedTensorType = opToHoist.getResultType();
int paddedRank = paddedTensorType.getRank();
// Step 0. Populate bvm with opToHoist.getSource if relevant.
BlockArgument bbArg = dyn_cast<BlockArgument>(opToHoist.getSource());
while (bbArg) {
auto forOp = dyn_cast<scf::ForOp>(bbArg.getOwner()->getParentOp());
if (!forOp)
break;
if (forOp != outerLoop && !outerLoop->isAncestor(forOp))
break;
OpOperand &operand = forOp.getOpOperandForRegionIterArg(bbArg);
bvm.map(bbArg, operand.get());
bbArg = dyn_cast<BlockArgument>(operand.get());
}
// Step 1. iteratively clone loops and push `hoistedPackedTensor`.
Value hoistedPackedTensor = emptyOp.getResult();
OpBuilder::InsertionGuard g(rewriter);
for (Operation *op : analysis.backwardSlice) {
// Specifically sit out in the extract_slice(hoistedPackedTensor) case: this
// is the piece we seek to replace.
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op)) {
if (bvm.lookupOrDefault(sliceOp.getSource()) == hoistedPackedTensor) {
LLVM_DEBUG(DBGS() << "--Skip: " << sliceOp << "\n");
continue;
}
}
// Clone all operations except loops which require special handling.
auto forOp = dyn_cast<scf::ForOp>(op);
if (!forOp) {
// We are at the right insertion point within the loop nest.
rewriter.clone(*op, bvm);
continue;
}
// Create a packing loop that takes `hoistedPackedTensor` as iteration
// argument.
auto clonedForOp = rewriter.create<scf::ForOp>(
loc, bvm.lookupOrDefault(forOp.getLowerBound()),
bvm.lookupOrDefault(forOp.getUpperBound()),
bvm.lookupOrDefault(forOp.getStep()), hoistedPackedTensor);
// Map the induction var, region args and results to the `clonedForOp`.
bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
bvm.map(forOp.getResults(), clonedForOp.getResults());
assert(clonedForOp->getNumRegions() == 1);
clonedLoopIvs.push_back(clonedForOp.getInductionVar());
// Do not insert guard here, we get deeper into the loop nest.
rewriter.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
Value loopIndependentIterationCount =
buildLoopIterationCount(rewriter, outerLoop, clonedForOp);
// Assert the loop-independent iteration count can be computed.
if (!loopIndependentIterationCount)
llvm_unreachable("loop independence prerequisite not met");
leadingHoistedPackedTensorIndexings.push_back(
loopIndependentIterationCount);
hoistedPackedTensor = clonedForOp.getRegionIterArgs().front();
}
// Step 2. Construct offsets, sizes and strides for the innermost level of the
// packing loop.
int64_t nPackedLoops = clonedLoopIvs.size();
// offsets = [clonedLoopIvs, 0 .. 0].
offsets =
SmallVector<OpFoldResult>{leadingHoistedPackedTensorIndexings.begin(),
leadingHoistedPackedTensorIndexings.end()};
offsets.append(paddedRank, rewriter.getIndexAttr(0));
// sizes = [1 .. 1, transposedShape].
sizes = SmallVector<OpFoldResult>(nPackedLoops, rewriter.getIndexAttr(1));
for (int64_t sz : transposedTensorType.getShape()) {
// TODO: go grab dims when needed, atm tensor::PadOp yields a static tensor.
if (ShapedType::isDynamic(sz))
return failure();
sizes.push_back(rewriter.getIndexAttr(sz));
}
// strides = [1 .. 1].
strides = SmallVector<OpFoldResult>(nPackedLoops + paddedRank,
rewriter.getIndexAttr(1));
// Step 3. Optionally transpose the padded tensor.
GenericOp maybeTransposeOp;
Value paddedTensor = bvm.lookup(opToHoist.getResult());
if (!transposeVector.empty()) {
Value outputTensor = rewriter.create<tensor::ExtractSliceOp>(
loc, transposedTensorType, hoistedPackedTensor, offsets, sizes,
strides);
maybeTransposeOp = makeTransposeOp(rewriter, loc, paddedTensor,
outputTensor, transposeVector);
paddedTensor = maybeTransposeOp.getResult(0);
}
// Innermost tensor.insert_slice and yields are optional / need loops.
if (nPackedLoops > 0) {
// Step 4. Create InsertSliceOp at the innermost loop level, inserting an
// optionally transposed padded slice into the packed tensor.
Value inserted = rewriter.create<tensor::InsertSliceOp>(
loc, paddedTensor, hoistedPackedTensor, offsets, sizes, strides);
// Step 5. Iteratively pop the stack and propagate the yield.
Value valueToYield = inserted;
for (Value iv : llvm::reverse(clonedLoopIvs)) {
auto forOp = scf::getForInductionVarOwner(iv);
rewriter.setInsertionPointToEnd(&forOp.getRegion().front());
rewriter.create<scf::YieldOp>(loc, valueToYield);
valueToYield = forOp.getResult(0);
}
}
return PackingResult{
offsets,
sizes,
strides,
clonedLoopIvs,
leadingHoistedPackedTensorIndexings,
maybeTransposeOp,
cast<tensor::PadOp>(bvm.lookup(opToHoist.getResult()).getDefiningOp())};
}
/// Build the packing loop nest required to hoist `opToHoist` above
/// `outermostEnclosingForOp`.
/// The loop nest is built just before `outermostEnclosingForOp`.
static FailureOr<PackingResult> buildPackingLoopNestImpl(
RewriterBase &rewriter, IRMapping &bvm, tensor::PadOp opToHoist,
ArrayRef<int64_t> transposeVector, const HoistPaddingAnalysis &analysis) {
// Update actual number of loops, which may be smaller.
int nPackedLoops = analysis.packingLoops.size();
LLVM_DEBUG(DBGS() << "\n";
DBGS() << "Func:\n"
<< *opToHoist->getParentOfType<func::FuncOp>() << "\n";
DBGS() << "Start hoisting above " << nPackedLoops << " loops\n");
Location loc = opToHoist->getLoc();
RankedTensorType paddedTensorType = opToHoist.getResultType();
// Compute the type of the transposed padded tensor.
FailureOr<RankedTensorType> transposedTensorType =
tensor::computeTransposedType(paddedTensorType, transposeVector);
if (failed(transposedTensorType)) {
LLVM_DEBUG(DBGS() << "--Could not compute transposed type -> Skip\n");
return failure();
}
// Create the packed tensor<?x?x..? x transposedShape>.
SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamic);
// TODO: go grab dims when needed, atm tensor::PadOp yields a static tensor.
llvm::append_range(packedShape, transposedTensorType->getShape());
auto hoistedPackedTensorType = RankedTensorType::get(
packedShape, transposedTensorType->getElementType());
// Set the insertion point right before the outer loop and start packing.
scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(outerLoop);
SmallVector<Value> dynamicTensorSizes =
analysis.getHoistedPackedTensorSizes(rewriter, loc);
auto emptyOp = rewriter.create<tensor::EmptyOp>(
loc, hoistedPackedTensorType.getShape(),
hoistedPackedTensorType.getElementType(), dynamicTensorSizes);
return buildPackingLoopNestImpl(rewriter, bvm, opToHoist, transposeVector,
*transposedTensorType, emptyOp, analysis);
}
/// Build the packing loop nest required to hoist `opToHoist` above
/// `outermostEnclosingForOp`.
/// The loop nest is built just before `outermostEnclosingForOp`.
FailureOr<PackingResult> mlir::linalg::detail::buildPackingLoopNest(
RewriterBase &rewriter, tensor::PadOp opToHoist,
scf::ForOp outermostEnclosingForOp, ArrayRef<int64_t> transposeVector) {
HoistPaddingAnalysis analysis(opToHoist, outermostEnclosingForOp);
analysis.enableHoistPadding(rewriter);
analysis.finalizeHoistPaddingAnalysis();
if (!analysis.isValid()) {
LLVM_DEBUG(DBGS() << "--Analysis failed -> Skip\n");
return failure();
}
IRMapping bvm;
return buildPackingLoopNestImpl(rewriter, bvm, opToHoist, transposeVector,
analysis);
}
//===----------------------------------------------------------------------===//
// hoistPaddingOnTensors Implementation.
//===----------------------------------------------------------------------===//
/// Return true if we can walk back the use-def chain from `extractSliceOp` to
/// expectedSource going through DestinationStyleOpInterface inits only.
/// This is a poor man's analysis that is sufficient to check the extractSliceOp
/// the matches tensor.pad we want to hoist.
/// In the future, it will be easier to ensure this with a matching symmetric
/// tensor.unpad op.
static bool tracesBackToExpectedValue(tensor::ExtractSliceOp extractSliceOp,
Value expectedSource) {
LLVM_DEBUG(DBGS() << "Start tracesBackToExpectedValue on: " << extractSliceOp
<< "\n");
LLVM_DEBUG(DBGS() << "--with extractSlice: " << extractSliceOp << "\n");
Value source = extractSliceOp.getSource();
LLVM_DEBUG(DBGS() << "--with starting source: " << source << "\n");
while (source && source != expectedSource) {
auto destOp =
dyn_cast_or_null<DestinationStyleOpInterface>(source.getDefiningOp());
if (!destOp)
break;
LLVM_DEBUG(DBGS() << "--step dest op: " << destOp << "\n");
source = destOp.getDpsInitOperand(cast<OpResult>(source).getResultNumber())
->get();
}
LLVM_DEBUG(DBGS() << "--final source: " << source << "\n");
LLVM_DEBUG(DBGS() << "--expected source: " << expectedSource << "\n");
return source == expectedSource;
}
/// If the original consumer of `outerSliceOp` was a `forOp` (i.e. through an
/// iter arg), propagate the `hoistedPackedTensor` value through the same iter
/// arg.
/// TODO: for multiple loops we need to track the use to the innermost loop.
///
/// Match:
/// ```
/// %outerSliceOp = tensor.extract_slice ..
/// %f = scf.for ... iter_args(%arg0 = %outerSliceOp) {
/// %hoistedPackedTensor = tensor.pad %arg0
/// %1 = compute %hoistedPackedTensor
/// %2 = tensor.extract_slice %1
/// scf.yield %2
/// }
/// ```
///
/// and rewrite as:
/// ```
/// %outerSliceOp = tensor.extract_slice ..
/// %hoistedPackedTensor = tensor.pad %outerSliceOp
/// %f = scf.for ... iter_args(%arg0 = %hoistedPackedTensor) {
/// %1 = compute %arg0
/// scf.yield %1
/// }
/// %2 = tensor.extract_slice %forOp
/// ```
///
/// Return null when no rewrite happened.
static tensor::ExtractSliceOp
padThroughLoopIterArg(RewriterBase &rewriter, Value paddedValueBeforeHoisting,
Value hoistedPackedTensor,
tensor::ExtractSliceOp outerSliceOp, scf::ForOp forOp) {
LLVM_DEBUG(DBGS() << "Start padThroughLoopIterArg on: " << forOp << "\n");
LLVM_DEBUG(DBGS() << "--paddedValueBeforeHoisting: "
<< paddedValueBeforeHoisting << "\n");
OpOperand *pUse = nullptr;
for (OpOperand &use : outerSliceOp->getUses()) {
if (use.getOwner() == forOp) {
assert(!pUse && "Multiple slice uses in the for loop");
pUse = &use;
}
}
assert(pUse && "No slice use in the for loop");
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointAfter(hoistedPackedTensor.getDefiningOp());
std::optional<unsigned> maybeOperandNumber =
forOp.getIterArgNumberForOpOperand(*pUse);
assert(maybeOperandNumber.has_value() && "expected a proper iter arg number");
int64_t operandNumber = maybeOperandNumber.value();
auto yieldOp = cast<scf::YieldOp>(forOp.getBody(0)->getTerminator());
auto yieldingExtractSliceOp = yieldOp->getOperand(operandNumber)
.getDefiningOp<tensor::ExtractSliceOp>();
if (!yieldingExtractSliceOp)
return tensor::ExtractSliceOp();
// Poor man's analysis sufficient to ensure extractSlice matches tensor.pad.
// In the future, it will be easier to ensure this with a matching symmetric
// tensor.unpad op.
if (!tracesBackToExpectedValue(yieldingExtractSliceOp,
paddedValueBeforeHoisting))
return tensor::ExtractSliceOp();
SmallVector<Value> initArgs = forOp.getInitArgs();
initArgs[operandNumber] = hoistedPackedTensor;
SmallVector<Value> yieldOperands = yieldOp.getOperands();
yieldOperands[operandNumber] = yieldingExtractSliceOp.getSource();
int64_t numOriginalForOpResults = initArgs.size();
LLVM_DEBUG(DBGS() << "numOriginalForOpResults: " << numOriginalForOpResults
<< "\n");
tensor::ExtractSliceOp extracted;
{
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointAfter(forOp);
extracted = rewriter.create<tensor::ExtractSliceOp>(
hoistedPackedTensor.getLoc(), hoistedPackedTensor,
outerSliceOp.getMixedOffsets(), outerSliceOp.getMixedSizes(),
outerSliceOp.getMixedStrides());
rewriter.replaceAllUsesWith(forOp.getResult(operandNumber), extracted);
}
scf::ForOp newForOp =
replaceLoopWithNewYields(rewriter, forOp, initArgs, yieldOperands);
LLVM_DEBUG(DBGS() << "newForOp results: " << newForOp.getNumResults()
<< "\n");
LLVM_DEBUG(DBGS() << "replace source of: " << extracted << "\n");
LLVM_DEBUG(DBGS() << "with result #"
<< numOriginalForOpResults + operandNumber
<< " of forOp, giving us: " << extracted << "\n");
rewriter.startRootUpdate(extracted);
extracted.getSourceMutable().assign(
newForOp.getResult(numOriginalForOpResults + operandNumber));
rewriter.finalizeRootUpdate(extracted);
LLVM_DEBUG(DBGS() << "replace uses of: " << paddedValueBeforeHoisting
<< "\n");
LLVM_DEBUG(DBGS() << "with region iter arg #"
<< numOriginalForOpResults + operandNumber << "\n");
rewriter.replaceAllUsesWith(
paddedValueBeforeHoisting,
newForOp.getRegionIterArg(numOriginalForOpResults + operandNumber));
return extracted;
}
/// Produce a tensor extracted from the packingResult. This can be used as a
/// replacement for `opToHoist` in callers.
static Value replaceByPackingResult(RewriterBase &rewriter,
const IRMapping &bvm,
tensor::PadOp opToHoist,
RankedTensorType transposedTensorType,
const HoistPaddingAnalysis &analysis,
const PackingResult &packingResult) {
// The replacement occurs under a single insertion point within the original
// loop, just before opToHoist.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(opToHoist);
Location loc = opToHoist->getLoc();
RankedTensorType paddedTensorType = opToHoist.getResultType();
int paddedRank = paddedTensorType.getRank();
int64_t nPackedLoops = packingResult.clonedLoopIvs.size();
LLVM_DEBUG(DBGS() << "nPackedLoops: " << nPackedLoops << " loops\n");
scf::ForOp outerLoop = analysis.outermostEnclosingForOp;
ArrayRef<scf::ForOp> packingLoops = analysis.packingLoops;
Value hoistedPackedTensor;
SmallVector<Value> loopIterationCounts;
SmallVector<OpFoldResult> offsets(nPackedLoops + paddedRank,
rewriter.getIndexAttr(0));
if (nPackedLoops > 0) {
loopIterationCounts =
llvm::to_vector<4>(llvm::map_range(packingLoops, [&](Operation *loop) {
return buildLoopIterationCount(rewriter, outerLoop,
cast<scf::ForOp>(loop));
}));
// Assert all loop iteration counts can be computed.
if (llvm ::any_of(loopIterationCounts, [](Value v) { return !v; }))
llvm_unreachable("loop independence prerequisite not met");
// offsets = [maybe_leading_ivs = originalLoopIvs, 0 .. 0].
std::copy(loopIterationCounts.begin(), loopIterationCounts.end(),
offsets.begin());
hoistedPackedTensor =
scf::getForInductionVarOwner(packingResult.clonedLoopIvs.front())
->getResult(0);
} else {
// If no loops were created, this is just hoisting without packing.
hoistedPackedTensor = bvm.lookup(opToHoist.getResult());
}
LLVM_DEBUG(DBGS() << "hoistedPackedTensor: " << hoistedPackedTensor << "\n");
// If the consumer of `padOp` was a `forOp`, propagate through iter args.
scf::ForOp forOp = analysis.padConsumingForOp;
if (forOp) {
return padThroughLoopIterArg(rewriter, opToHoist, hoistedPackedTensor,
analysis.sliceOp, forOp);
}
// offsets = [maybe_leading_ivs, 0 .. 0].
// sizes = [1 .. 1, transposedShape] (defined above).
// strides = [1 .. 1] (defined above)
return rewriter.create<tensor::ExtractSliceOp>(
loc, transposedTensorType, hoistedPackedTensor, offsets,
packingResult.sizes, packingResult.strides);
}
FailureOr<Value> mlir::linalg::hoistPaddingOnTensors(
RewriterBase &rewriter, tensor::PadOp opToHoist, int64_t numLoops,
ArrayRef<int64_t> transposeVector, tensor::PadOp &hoistedOp,
SmallVectorImpl<GenericOp> &transposeOps) {
LLVM_DEBUG(DBGS() << "\n"; DBGS() << " Try to hoist " << *(opToHoist) << "\n";
DBGS() << " by " << numLoops << " loops\n");
HoistPaddingAnalysis analysis(opToHoist, numLoops);
analysis.enableHoistPadding(rewriter);
analysis.finalizeHoistPaddingAnalysis();
if (!analysis.isValid()) {
LLVM_DEBUG(DBGS() << "--Analysis failed -> Skip\n");
return failure();
}
/// Construct the packing loop nest.
IRMapping bvm;
FailureOr<PackingResult> packingResult = buildPackingLoopNestImpl(
rewriter, bvm, opToHoist, transposeVector, analysis);
if (failed(packingResult)) {
LLVM_DEBUG(DBGS() << "--buildPackingLoopNestImpl failed -> Skip\n");
return failure();
}
if (!transposeVector.empty())
transposeOps.push_back(packingResult->maybeTransposeOp);
FailureOr<RankedTensorType> transposedTensorType =
tensor::computeTransposedType(opToHoist.getResultType(), transposeVector);
assert(succeeded(transposedTensorType) && "unexpected failure in type");
// Now the packed tensor is ready, replace the original padding op by a
// 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
Value newResult =
replaceByPackingResult(rewriter, bvm, opToHoist, *transposedTensorType,
analysis, *packingResult);
Location loc = opToHoist->getLoc();
RankedTensorType paddedTensorType = opToHoist.getResultType();
if (!transposeVector.empty()) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPointAfter(newResult.getDefiningOp());
// Transpose the packed tensor back to the original storage order.
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, paddedTensorType.getShape(), paddedTensorType.getElementType());
GenericOp unTransposeOp =
makeTransposeOp(rewriter, loc, newResult, emptyTensor, transposeVector);
newResult = unTransposeOp.getResult(0);
transposeOps.push_back(unTransposeOp);
}
LLVM_DEBUG(DBGS() << "newResult: " << newResult << "\n");
LLVM_DEBUG(
DBGS() << "After hoisting: "
<< newResult.getDefiningOp()->getParentOfType<func::FuncOp>()
<< "\n");
// Make the newly cloned `opToHoist` available to the caller.
hoistedOp = packingResult->hoistedPadOp;
LLVM_DEBUG(DBGS() << "--SUCCESS\n");
return newResult;
}
FailureOr<Value>
mlir::linalg::hoistPaddingOnTensors(tensor::PadOp opToHoist, int64_t numLoops,
ArrayRef<int64_t> transposeVector,
tensor::PadOp &hoistedOp,
SmallVectorImpl<GenericOp> &transposeOps) {
IRRewriter rewriter(opToHoist.getContext());
return hoistPaddingOnTensors(rewriter, opToHoist, numLoops, transposeVector,
hoistedOp, transposeOps);
}