The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
162 lines
5.7 KiB
C++
162 lines
5.7 KiB
C++
//===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file Std transformations to expand Divs operation to help for the
|
|
// lowering to LLVM. Currently implemented transformations are Ceil and Floor
|
|
// for Signed Integers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Arith/Transforms/Passes.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
namespace mlir {
|
|
namespace memref {
|
|
#define GEN_PASS_DEF_EXPANDOPS
|
|
#include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
|
|
} // namespace memref
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
/// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with
|
|
/// AtomicRMWOpLowering pattern, e.g. with "minf" or "maxf" attributes, to
|
|
/// `memref.generic_atomic_rmw` with the expanded code.
|
|
///
|
|
/// %x = atomic_rmw "maxf" %fval, %F[%i] : (f32, memref<10xf32>) -> f32
|
|
///
|
|
/// will be lowered to
|
|
///
|
|
/// %x = memref.generic_atomic_rmw %F[%i] : memref<10xf32> {
|
|
/// ^bb0(%current: f32):
|
|
/// %cmp = arith.cmpf "ogt", %current, %fval : f32
|
|
/// %new_value = select %cmp, %current, %fval : f32
|
|
/// memref.atomic_yield %new_value : f32
|
|
/// }
|
|
struct AtomicRMWOpConverter : public OpRewritePattern<memref::AtomicRMWOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(memref::AtomicRMWOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
arith::CmpFPredicate predicate;
|
|
switch (op.getKind()) {
|
|
case arith::AtomicRMWKind::maxf:
|
|
predicate = arith::CmpFPredicate::OGT;
|
|
break;
|
|
case arith::AtomicRMWKind::minf:
|
|
predicate = arith::CmpFPredicate::OLT;
|
|
break;
|
|
default:
|
|
return failure();
|
|
}
|
|
|
|
auto loc = op.getLoc();
|
|
auto genericOp = rewriter.create<memref::GenericAtomicRMWOp>(
|
|
loc, op.getMemref(), op.getIndices());
|
|
OpBuilder bodyBuilder =
|
|
OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener());
|
|
|
|
Value lhs = genericOp.getCurrentValue();
|
|
Value rhs = op.getValue();
|
|
Value cmp = bodyBuilder.create<arith::CmpFOp>(loc, predicate, lhs, rhs);
|
|
Value select = bodyBuilder.create<arith::SelectOp>(loc, cmp, lhs, rhs);
|
|
bodyBuilder.create<memref::AtomicYieldOp>(loc, select);
|
|
|
|
rewriter.replaceOp(op, genericOp.getResult());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Converts `memref.reshape` that has a target shape of a statically-known
|
|
/// size to `memref.reinterpret_cast`.
|
|
struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(memref::ReshapeOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
auto shapeType = cast<MemRefType>(op.getShape().getType());
|
|
if (!shapeType.hasStaticShape())
|
|
return failure();
|
|
|
|
int64_t rank = cast<MemRefType>(shapeType).getDimSize(0);
|
|
SmallVector<OpFoldResult, 4> sizes, strides;
|
|
sizes.resize(rank);
|
|
strides.resize(rank);
|
|
|
|
Location loc = op.getLoc();
|
|
Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
for (int i = rank - 1; i >= 0; --i) {
|
|
Value size;
|
|
// Load dynamic sizes from the shape input, use constants for static dims.
|
|
if (op.getType().isDynamicDim(i)) {
|
|
Value index = rewriter.create<arith::ConstantIndexOp>(loc, i);
|
|
size = rewriter.create<memref::LoadOp>(loc, op.getShape(), index);
|
|
if (!isa<IndexType>(size.getType()))
|
|
size = rewriter.create<arith::IndexCastOp>(
|
|
loc, rewriter.getIndexType(), size);
|
|
sizes[i] = size;
|
|
} else {
|
|
auto sizeAttr = rewriter.getIndexAttr(op.getType().getDimSize(i));
|
|
size = rewriter.create<arith::ConstantOp>(loc, sizeAttr);
|
|
sizes[i] = sizeAttr;
|
|
}
|
|
strides[i] = stride;
|
|
if (i > 0)
|
|
stride = rewriter.create<arith::MulIOp>(loc, stride, size);
|
|
}
|
|
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
|
|
op, op.getType(), op.getSource(), /*offset=*/rewriter.getIndexAttr(0),
|
|
sizes, strides);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ExpandOpsPass : public memref::impl::ExpandOpsBase<ExpandOpsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext &ctx = getContext();
|
|
|
|
RewritePatternSet patterns(&ctx);
|
|
memref::populateExpandOpsPatterns(patterns);
|
|
ConversionTarget target(ctx);
|
|
|
|
target.addLegalDialect<arith::ArithDialect, memref::MemRefDialect>();
|
|
target.addDynamicallyLegalOp<memref::AtomicRMWOp>(
|
|
[](memref::AtomicRMWOp op) {
|
|
return op.getKind() != arith::AtomicRMWKind::maxf &&
|
|
op.getKind() != arith::AtomicRMWKind::minf;
|
|
});
|
|
target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) {
|
|
return !cast<MemRefType>(op.getShape().getType()).hasStaticShape();
|
|
});
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::memref::populateExpandOpsPatterns(RewritePatternSet &patterns) {
|
|
patterns.add<AtomicRMWOpConverter, MemRefReshapeOpConverter>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::memref::createExpandOpsPass() {
|
|
return std::make_unique<ExpandOpsPass>();
|
|
}
|