The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
192 lines
6.6 KiB
C++
192 lines
6.6 KiB
C++
//===- LoopCanonicalization.cpp - Cross-dialect canonicalization patterns -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains cross-dialect canonicalization patterns that cannot be
|
|
// actual canonicalization patterns due to undesired additional dependencies.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_SCFFORLOOPCANONICALIZATION
|
|
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::scf;
|
|
|
|
/// A simple, conservative analysis to determine if the loop is shape
|
|
/// conserving. I.e., the type of the arg-th yielded value is the same as the
|
|
/// type of the corresponding basic block argument of the loop.
|
|
/// Note: This function handles only simple cases. Expand as needed.
|
|
static bool isShapePreserving(ForOp forOp, int64_t arg) {
|
|
auto yieldOp = cast<YieldOp>(forOp.getBody()->getTerminator());
|
|
assert(arg < static_cast<int64_t>(yieldOp.getResults().size()) &&
|
|
"arg is out of bounds");
|
|
Value value = yieldOp.getResults()[arg];
|
|
while (value) {
|
|
if (value == forOp.getRegionIterArgs()[arg])
|
|
return true;
|
|
OpResult opResult = dyn_cast<OpResult>(value);
|
|
if (!opResult)
|
|
return false;
|
|
|
|
using tensor::InsertSliceOp;
|
|
value =
|
|
llvm::TypeSwitch<Operation *, Value>(opResult.getOwner())
|
|
.template Case<InsertSliceOp>(
|
|
[&](InsertSliceOp op) { return op.getDest(); })
|
|
.template Case<ForOp>([&](ForOp forOp) {
|
|
return isShapePreserving(forOp, opResult.getResultNumber())
|
|
? forOp.getIterOperands()[opResult.getResultNumber()]
|
|
: Value();
|
|
})
|
|
.Default([&](auto op) { return Value(); });
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// Fold dim ops of iter_args to dim ops of their respective init args. E.g.:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// %1 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
|
|
/// ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// is folded to:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// %1 = tensor.dim %0, %c0 : tensor<?x?xf32>
|
|
/// ...
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Note: Dim ops are folded only if it can be proven that the runtime type of
|
|
/// the iter arg does not change with loop iterations.
|
|
template <typename OpTy>
|
|
struct DimOfIterArgFolder : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto blockArg = dyn_cast<BlockArgument>(dimOp.getSource());
|
|
if (!blockArg)
|
|
return failure();
|
|
auto forOp = dyn_cast<ForOp>(blockArg.getParentBlock()->getParentOp());
|
|
if (!forOp)
|
|
return failure();
|
|
if (!isShapePreserving(forOp, blockArg.getArgNumber() - 1))
|
|
return failure();
|
|
|
|
Value initArg = forOp.getOpOperandForRegionIterArg(blockArg).get();
|
|
rewriter.updateRootInPlace(
|
|
dimOp, [&]() { dimOp.getSourceMutable().assign(initArg); });
|
|
|
|
return success();
|
|
};
|
|
};
|
|
|
|
/// Fold dim ops of loop results to dim ops of their respective init args. E.g.:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// ...
|
|
/// }
|
|
/// %1 = tensor.dim %r, %c0 : tensor<?x?xf32>
|
|
/// ```
|
|
///
|
|
/// is folded to:
|
|
///
|
|
/// ```
|
|
/// %0 = ... : tensor<?x?xf32>
|
|
/// %r = scf.for ... iter_args(%arg0 = %0) -> (tensor<?x?xf32>) {
|
|
/// ...
|
|
/// }
|
|
/// %1 = tensor.dim %0, %c0 : tensor<?x?xf32>
|
|
/// ```
|
|
///
|
|
/// Note: Dim ops are folded only if it can be proven that the runtime type of
|
|
/// the iter arg does not change with loop iterations.
|
|
template <typename OpTy>
|
|
struct DimOfLoopResultFolder : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy dimOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto forOp = dimOp.getSource().template getDefiningOp<scf::ForOp>();
|
|
if (!forOp)
|
|
return failure();
|
|
auto opResult = cast<OpResult>(dimOp.getSource());
|
|
unsigned resultNumber = opResult.getResultNumber();
|
|
if (!isShapePreserving(forOp, resultNumber))
|
|
return failure();
|
|
rewriter.updateRootInPlace(dimOp, [&]() {
|
|
dimOp.getSourceMutable().assign(forOp.getIterOperands()[resultNumber]);
|
|
});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Canonicalize AffineMinOp/AffineMaxOp operations in the context of scf.for
|
|
/// and scf.parallel loops with a known range.
|
|
template <typename OpTy>
|
|
struct AffineOpSCFCanonicalizationPattern : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
return scf::canonicalizeMinMaxOpInLoop(rewriter, op, scf::matchForLikeLoop);
|
|
}
|
|
};
|
|
|
|
struct SCFForLoopCanonicalization
|
|
: public impl::SCFForLoopCanonicalizationBase<SCFForLoopCanonicalization> {
|
|
void runOnOperation() override {
|
|
auto *parentOp = getOperation();
|
|
MLIRContext *ctx = parentOp->getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
scf::populateSCFForLoopCanonicalizationPatterns(patterns);
|
|
if (failed(applyPatternsAndFoldGreedily(parentOp, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::scf::populateSCFForLoopCanonicalizationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
MLIRContext *ctx = patterns.getContext();
|
|
patterns
|
|
.add<AffineOpSCFCanonicalizationPattern<affine::AffineMinOp>,
|
|
AffineOpSCFCanonicalizationPattern<affine::AffineMaxOp>,
|
|
DimOfIterArgFolder<tensor::DimOp>, DimOfIterArgFolder<memref::DimOp>,
|
|
DimOfLoopResultFolder<tensor::DimOp>,
|
|
DimOfLoopResultFolder<memref::DimOp>>(ctx);
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSCFForLoopCanonicalizationPass() {
|
|
return std::make_unique<SCFForLoopCanonicalization>();
|
|
}
|