The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
145 lines
5.6 KiB
C++
145 lines
5.6 KiB
C++
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Shape/Transforms/BufferizableOpInterfaceImpl.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
using namespace mlir::shape;
|
|
|
|
namespace mlir {
|
|
namespace shape {
|
|
namespace {
|
|
|
|
/// Bufferization of shape.assuming.
|
|
struct AssumingOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<AssumingOpInterface,
|
|
shape::AssumingOp> {
|
|
AliasingOpOperandList
|
|
getAliasingOpOperands(Operation *op, OpResult opResult,
|
|
const AnalysisState &state) const {
|
|
// AssumingOps do not have tensor OpOperands. The yielded value can be any
|
|
// SSA value that is in scope. To allow for use-def chain traversal through
|
|
// AssumingOps in the analysis, the corresponding yield value is considered
|
|
// to be aliasing with the result.
|
|
auto assumingOp = cast<shape::AssumingOp>(op);
|
|
size_t resultNum = std::distance(op->getOpResults().begin(),
|
|
llvm::find(op->getOpResults(), opResult));
|
|
// TODO: Support multiple blocks.
|
|
assert(assumingOp.getDoRegion().getBlocks().size() == 1 &&
|
|
"expected exactly 1 block");
|
|
auto yieldOp = dyn_cast<shape::AssumingYieldOp>(
|
|
assumingOp.getDoRegion().front().getTerminator());
|
|
assert(yieldOp && "expected shape.assuming_yield terminator");
|
|
return {{&yieldOp->getOpOperand(resultNum), BufferRelation::Equivalent}};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto assumingOp = cast<shape::AssumingOp>(op);
|
|
assert(assumingOp.getDoRegion().getBlocks().size() == 1 &&
|
|
"only 1 block supported");
|
|
auto yieldOp = cast<shape::AssumingYieldOp>(
|
|
assumingOp.getDoRegion().front().getTerminator());
|
|
|
|
// Create new op and move over region.
|
|
TypeRange newResultTypes(yieldOp.getOperands());
|
|
auto newOp = rewriter.create<shape::AssumingOp>(
|
|
op->getLoc(), newResultTypes, assumingOp.getWitness());
|
|
newOp.getDoRegion().takeBody(assumingOp.getRegion());
|
|
|
|
// Update all uses of the old op.
|
|
rewriter.setInsertionPointAfter(newOp);
|
|
SmallVector<Value> newResults;
|
|
for (const auto &it : llvm::enumerate(assumingOp->getResultTypes())) {
|
|
if (isa<TensorType>(it.value())) {
|
|
newResults.push_back(rewriter.create<bufferization::ToTensorOp>(
|
|
assumingOp.getLoc(), newOp->getResult(it.index())));
|
|
} else {
|
|
newResults.push_back(newOp->getResult(it.index()));
|
|
}
|
|
}
|
|
|
|
// Replace old op.
|
|
rewriter.replaceOp(assumingOp, newResults);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of shape.assuming_yield. Bufferized as part of their enclosing
|
|
/// ops, so this is for analysis only.
|
|
struct AssumingYieldOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<AssumingYieldOpInterface,
|
|
shape::AssumingYieldOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
assert(isa<shape::AssumingOp>(op->getParentOp()) &&
|
|
"expected that parent is an AssumingOp");
|
|
OpResult opResult =
|
|
op->getParentOp()->getResult(opOperand.getOperandNumber());
|
|
return {{opResult, BufferRelation::Equivalent}};
|
|
}
|
|
|
|
bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// Yield operands always bufferize inplace. Otherwise, an alloc + copy
|
|
// may be generated inside the block. We should not return/yield allocations
|
|
// when possible.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto yieldOp = cast<shape::AssumingYieldOp>(op);
|
|
SmallVector<Value> newResults;
|
|
for (Value value : yieldOp.getOperands()) {
|
|
if (isa<TensorType>(value.getType())) {
|
|
FailureOr<Value> buffer = getBuffer(rewriter, value, options);
|
|
if (failed(buffer))
|
|
return failure();
|
|
newResults.push_back(*buffer);
|
|
} else {
|
|
newResults.push_back(value);
|
|
}
|
|
}
|
|
replaceOpWithNewBufferizedOp<shape::AssumingYieldOp>(rewriter, op,
|
|
newResults);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
} // namespace shape
|
|
} // namespace mlir
|
|
|
|
void mlir::shape::registerBufferizableOpInterfaceExternalModels(
|
|
DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, shape::ShapeDialect *dialect) {
|
|
shape::AssumingOp::attachInterface<AssumingOpInterface>(*ctx);
|
|
shape::AssumingYieldOp::attachInterface<AssumingYieldOpInterface>(*ctx);
|
|
});
|
|
}
|