The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
334 lines
12 KiB
C++
334 lines
12 KiB
C++
//====----- OutlineShapeComputation.cpp -----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Shape/Analysis/ShapeMappingAnalysis.h"
|
|
#include "mlir/Dialect/Shape/IR/Shape.h"
|
|
#include "mlir/Dialect/Shape/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <queue>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
namespace mlir {
|
|
#define GEN_PASS_DEF_OUTLINESHAPECOMPUTATION
|
|
#include "mlir/Dialect/Shape/Transforms/Passes.h.inc"
|
|
} // namespace mlir
|
|
|
|
#define DEBUG_TYPE "outline-shape-computation"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
// A Value is an input of the cluster if it is an operand of an operation in the
|
|
// cluster and its defining operation is not in the cluster.
|
|
SmallVector<Value, 4>
|
|
getInputsOfCluster(const llvm::SmallVector<Operation *, 8> &cluster) {
|
|
SmallVector<Value, 4> inputs;
|
|
llvm::SmallDenseSet<Value> inputSet;
|
|
llvm::SmallDenseSet<Operation *> opSet;
|
|
for (Operation *op : cluster) {
|
|
bool inserted = opSet.insert(op).second;
|
|
(void)inserted;
|
|
assert(inserted && "cluster contains duplicate operations");
|
|
}
|
|
|
|
for (Operation *op : cluster) {
|
|
for (Value operand : op->getOperands()) {
|
|
Operation *operandOp = operand.getDefiningOp();
|
|
if (opSet.find(operandOp) != opSet.end()) {
|
|
// Skip if defining op is in the cluster.
|
|
continue;
|
|
}
|
|
if (inputSet.insert(operand).second)
|
|
inputs.push_back(operand);
|
|
}
|
|
}
|
|
return inputs;
|
|
}
|
|
|
|
// Create a shape.func representing the shape computation for `shape`.
|
|
std::pair<shape::FuncOp, SmallVector<Value>>
|
|
createFuncFromCluster(OpBuilder &b, const SmallVector<Operation *, 8> &cluster,
|
|
Value shape, StringRef fnName, Location loc) {
|
|
SmallVector<Value, 4> inputs = getInputsOfCluster(cluster);
|
|
auto fnType =
|
|
cluster.empty()
|
|
? b.getFunctionType(shape.getType(), shape.getType())
|
|
: b.getFunctionType(ValueRange(inputs).getTypes(), shape.getType());
|
|
shape::FuncOp fnOp = b.create<shape::FuncOp>(loc, fnName, fnType);
|
|
Block *block = fnOp.addEntryBlock();
|
|
b.setInsertionPoint(block, block->end());
|
|
IRMapping bvm;
|
|
if (cluster.empty()) {
|
|
bvm.map(shape, fnOp.getArgument(0));
|
|
} else {
|
|
for (auto inputAndArg : llvm::zip(inputs, fnOp.getArguments()))
|
|
bvm.map(std::get<0>(inputAndArg), std::get<1>(inputAndArg));
|
|
}
|
|
|
|
for (Operation *op : cluster)
|
|
b.clone(*op, bvm);
|
|
llvm::SmallVector<Value, 4> fnReturns;
|
|
fnReturns.push_back(bvm.lookupOrDefault(shape));
|
|
|
|
b.create<shape::ReturnOp>(loc, fnReturns);
|
|
fnOp.setPrivate();
|
|
return std::make_pair(fnOp, inputs);
|
|
}
|
|
|
|
// The operations in the cluster might be unsorted, which could be inconvenient
|
|
// when creating shape.func op.
|
|
DenseMap<Value, SmallVector<Operation *, 8>>
|
|
getOrderedClusters(const DenseMap<Value, DenseSet<Operation *>> &clusters,
|
|
func::FuncOp funcOp) {
|
|
// Compute all clusters that each operation is in
|
|
DenseMap<Operation *, SmallVector<Value>> op2Shapes;
|
|
for (const auto &it : clusters) {
|
|
Value shape = it.first;
|
|
const DenseSet<Operation *> &cluster = it.second;
|
|
for (Operation *cOp : cluster)
|
|
op2Shapes[cOp].push_back(shape);
|
|
}
|
|
|
|
// Iterate through all operations in order. Get all the clusters `cOp` belongs
|
|
// to and construct the new ordered cluster as it traverses.
|
|
DenseMap<Value, SmallVector<Operation *, 8>> orderedClusters;
|
|
funcOp.walk([&](Operation *op) {
|
|
auto it = op2Shapes.find(op);
|
|
if (it != op2Shapes.end()) {
|
|
Operation *cOp = it->first;
|
|
for (Value shape : it->second)
|
|
orderedClusters[shape].push_back(cOp);
|
|
}
|
|
});
|
|
|
|
return orderedClusters;
|
|
}
|
|
|
|
void constructShapeFunc(
|
|
const std::vector<shape::WithOp> &allWithOps, MLIRContext *context,
|
|
DenseMap<Value, SmallVector<Operation *, 8>> &clusters,
|
|
SymbolTable &symbolTable,
|
|
DenseMap<Value, shape::ShapeMappingValue> &dynShape2ShapeFunc,
|
|
func::FuncOp funcOp, shape::ShapeMappingAnalysis &shapeMappingAnalysis) {
|
|
std::string shapeCalculationNamePrefix = "shape_cal_";
|
|
int shapeCalculationNameIdx = 0;
|
|
OpBuilder builder(context);
|
|
|
|
// Construct a shape function
|
|
for (shape::WithOp withOp : allWithOps) {
|
|
Value value = withOp.getOperand();
|
|
Value shape = withOp.getShape();
|
|
RankedTensorType rankedType = dyn_cast<RankedTensorType>(value.getType());
|
|
if (rankedType == nullptr)
|
|
continue;
|
|
|
|
const SmallVector<Operation *, 8> &cluster = clusters[shape];
|
|
shape::ShapeMappingValue shapeMappingValue;
|
|
auto it = dynShape2ShapeFunc.find(shape);
|
|
if (it == dynShape2ShapeFunc.end()) {
|
|
std::string name = shapeCalculationNamePrefix +
|
|
std::to_string(shapeCalculationNameIdx++);
|
|
Location loc = value.getLoc();
|
|
builder.setInsertionPointAfter(funcOp);
|
|
auto pair = createFuncFromCluster(builder, cluster, shape, name, loc);
|
|
const SmallVector<Value> &inputs = pair.second;
|
|
shape::FuncOp shapeFuncOp = pair.first;
|
|
StringAttr insertedName = symbolTable.insert(shapeFuncOp);
|
|
auto symbol = FlatSymbolRefAttr::get(context, insertedName);
|
|
|
|
shapeMappingValue.funcSymbol = symbol;
|
|
shapeMappingValue.inputs = inputs;
|
|
} else {
|
|
shapeMappingValue = it->second;
|
|
}
|
|
dynShape2ShapeFunc[shape] = shapeMappingValue;
|
|
shapeMappingAnalysis.shapeMapping.insert(
|
|
std::make_pair(value, shapeMappingValue));
|
|
}
|
|
}
|
|
|
|
struct OutlineShapeComputationPass
|
|
: public impl::OutlineShapeComputationBase<OutlineShapeComputationPass> {
|
|
|
|
void runOnOperation() override;
|
|
|
|
private:
|
|
bool calOnlyUsedByWithShapesRecursively(Operation *op, Value prevOutput);
|
|
|
|
void getClusterFromValue(Value shape,
|
|
DenseMap<Value, DenseSet<Operation *>> &clusters);
|
|
|
|
DenseMap<Value, SmallVector<Operation *, 8>>
|
|
constructClustersForEachShape(const std::vector<shape::WithOp> &allWithOps,
|
|
func::FuncOp funcOp);
|
|
|
|
DenseSet<Operation *> onlyUsedByWithShapes;
|
|
};
|
|
|
|
class TensorDimOpRewriter : public OpRewritePattern<tensor::DimOp> {
|
|
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tensor::DimOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto shapeOf =
|
|
rewriter.create<shape::ShapeOfOp>(op.getLoc(), op.getSource());
|
|
rewriter.replaceOpWithNewOp<shape::GetExtentOp>(op, op.getType(), shapeOf,
|
|
op.getIndex());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
void OutlineShapeComputationPass::runOnOperation() {
|
|
ModuleOp moduleOp = getOperation();
|
|
SymbolTable symbolTable(moduleOp);
|
|
DenseMap<Value, shape::ShapeMappingValue> dynShape2ShapeFunc;
|
|
auto &shapeMappingAnalysis = getAnalysis<shape::ShapeMappingAnalysis>();
|
|
// TODO: This is as we populate this analysis during a pass that mutates. This
|
|
// pass currently requires 1 single module being compiled.
|
|
shapeMappingAnalysis.shapeMapping.clear();
|
|
markAnalysesPreserved<shape::ShapeMappingAnalysis>();
|
|
|
|
moduleOp.walk([&](func::FuncOp funcOp) {
|
|
MLIRContext *context = funcOp.getContext();
|
|
RewritePatternSet prevPatterns(context);
|
|
prevPatterns.insert<TensorDimOpRewriter>(context);
|
|
if (failed(applyPatternsAndFoldGreedily(funcOp, std::move(prevPatterns))))
|
|
return signalPassFailure();
|
|
|
|
// initialize class member `onlyUsedByWithShapes`
|
|
onlyUsedByWithShapes.clear();
|
|
funcOp.walk([&](Operation *op) {
|
|
calOnlyUsedByWithShapesRecursively(op, /*prevOutput=*/nullptr);
|
|
});
|
|
LLVM_DEBUG({
|
|
llvm::dbgs() << "onlyUsedByWithShapes table: \n";
|
|
for (auto it : onlyUsedByWithShapes)
|
|
llvm::dbgs() << *it << "\n";
|
|
});
|
|
|
|
// collect all the shape.with_shape ops.
|
|
std::vector<shape::WithOp> allWithOps;
|
|
funcOp.walk([&](shape::WithOp withOp) { allWithOps.push_back(withOp); });
|
|
|
|
DenseMap<Value, SmallVector<Operation *, 8>> clusters =
|
|
constructClustersForEachShape(allWithOps, funcOp);
|
|
constructShapeFunc(allWithOps, context, clusters, symbolTable,
|
|
dynShape2ShapeFunc, funcOp, shapeMappingAnalysis);
|
|
|
|
for (shape::WithOp withOp : allWithOps) {
|
|
Value value = withOp.getOperand();
|
|
for (Operation *user :
|
|
llvm::make_early_inc_range(withOp.getResult().getUsers())) {
|
|
if (auto valueOf = llvm::dyn_cast<shape::ValueOfOp>(user)) {
|
|
// For pattern like
|
|
// %1 = shape.with_shape %arg1, %0
|
|
// %2 = shape.value_of %1
|
|
// because shape.value doesn't care the shape, the shape.with_shape is
|
|
// redundant.
|
|
// If type of %arg1 and %2 has same type, just
|
|
// replaced %2 with %arg1.
|
|
// If type of %arg1 has different type like !shape.value_shape,
|
|
// transform into
|
|
// %2 = shape.value_of %arg1
|
|
if (valueOf.getType() == value.getType())
|
|
valueOf.replaceAllUsesWith(value);
|
|
else
|
|
valueOf.setOperand(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Apply patterns, note this also performs DCE.
|
|
if (failed(applyPatternsAndFoldGreedily(funcOp, {})))
|
|
return signalPassFailure();
|
|
});
|
|
}
|
|
|
|
DenseMap<Value, SmallVector<Operation *, 8>>
|
|
OutlineShapeComputationPass::constructClustersForEachShape(
|
|
const std::vector<shape::WithOp> &allWithOps, func::FuncOp funcOp) {
|
|
DenseMap<Value, DenseSet<Operation *>> clusters;
|
|
for (shape::WithOp withOp : allWithOps) {
|
|
Value shape = withOp.getShape();
|
|
if (clusters.count(shape) == 0)
|
|
getClusterFromValue(shape, clusters);
|
|
}
|
|
return getOrderedClusters(clusters, funcOp);
|
|
}
|
|
|
|
// The output of a cluster is the `shape`, and the inputs are the outputs of
|
|
// operations who are not in `onlyUsedByWithShapes`
|
|
void OutlineShapeComputationPass::getClusterFromValue(
|
|
Value shape, DenseMap<Value, DenseSet<Operation *>> &clusters) {
|
|
DenseSet<Operation *> cluster;
|
|
|
|
DenseSet<Operation *> visited;
|
|
std::queue<Operation *> queue;
|
|
|
|
// defOp == nullptr means shape is the argument of the func op
|
|
if (Operation *defOp = shape.getDefiningOp()) {
|
|
visited.insert(defOp);
|
|
queue.push(defOp);
|
|
}
|
|
while (!queue.empty()) {
|
|
Operation *op = queue.front();
|
|
queue.pop();
|
|
if (onlyUsedByWithShapes.contains(op)) {
|
|
cluster.insert(op);
|
|
for (Value inp : op->getOperands()) {
|
|
Operation *inpDefOp = inp.getDefiningOp();
|
|
if (nullptr != inpDefOp && !visited.contains(inpDefOp)) {
|
|
visited.insert(inpDefOp);
|
|
queue.push(inpDefOp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
clusters[shape] = std::move(cluster);
|
|
}
|
|
|
|
// Returns whether `op` is a shape.with_shape, or all the users' of `op`
|
|
// eventually point to the shape operand of shape.with_shape ops
|
|
bool OutlineShapeComputationPass::calOnlyUsedByWithShapesRecursively(
|
|
Operation *op, Value prevOutput) {
|
|
if (onlyUsedByWithShapes.contains(op))
|
|
return true;
|
|
|
|
if (auto withOp = llvm::dyn_cast<shape::WithOp>(op))
|
|
return withOp.getShape() == prevOutput;
|
|
|
|
if (op->use_empty())
|
|
return false;
|
|
|
|
for (Value oup : op->getResults())
|
|
for (Operation *user : oup.getUsers())
|
|
if (!calOnlyUsedByWithShapesRecursively(user, oup))
|
|
return false;
|
|
|
|
onlyUsedByWithShapes.insert(op);
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::createOutlineShapeComputationPass() {
|
|
return std::make_unique<OutlineShapeComputationPass>();
|
|
}
|