Files
clang-p2996/mlir/lib/Dialect/Vector/Transforms/LowerVectorShapeCast.cpp
Diego Caballero 0935c0556b [mlir][Vector] Add support for 0-D 'vector.shape_cast' lowering
This PR adds support for shape casting from and to 0-D vectors.

Reviewed By: nicolasvasilache, hanchung, awarzynski

Differential Revision: https://reviews.llvm.org/D151851
2023-06-01 22:22:16 +00:00

196 lines
7.8 KiB
C++

//===- LowerVectorShapeCast.cpp - Lower 'vector.shape_cast' operation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.shape_cast' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#define DEBUG_TYPE "vector-shape-cast-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
/// vectors progressively on the way to target llvm.matrix intrinsics.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
class ShapeCastOp2DDownCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
desc = rewriter.create<vector::InsertStridedSliceOp>(
loc, vec, desc,
/*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
/// vectors progressively.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract_strided_slice from 1-D + vector.insert into 2-D
/// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
class ShapeCastOp2DUpCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
/*sizes=*/mostMinorVectorSize,
/*strides=*/1);
desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
// We typically should not lower general shape cast operations into data
// movement instructions, since the assumption is that these casts are
// optimized away during progressive lowering. For completeness, however,
// we fall back to a reference implementation that moves all elements
// into the right place if we get here.
class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
// Special case 2D / 1D lowerings with better implementations.
// TODO: make is ND / 1D to allow generic ND -> 1D -> MD.
int64_t srcRank = sourceVectorType.getRank();
int64_t resRank = resultVectorType.getRank();
if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
return failure();
// Generic ShapeCast lowering path goes all the way down to unrolled scalar
// extract/insert chains.
// TODO: consider evolving the semantics to only allow 1D source or dest and
// drop this potentially very expensive lowering.
// Compute number of elements involved in the reshape.
int64_t numElts = 1;
for (int64_t r = 0; r < srcRank; r++)
numElts *= sourceVectorType.getDimSize(r);
// Replace with data movement operations:
// x[0,0,0] = y[0,0]
// x[0,0,1] = y[0,1]
// x[0,1,0] = y[0,2]
// etc., incrementing the two index vectors "row-major"
// within the source and result shape.
SmallVector<int64_t> srcIdx(srcRank);
SmallVector<int64_t> resIdx(resRank);
Value result = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
for (int64_t i = 0; i < numElts; i++) {
if (i != 0) {
incIdx(srcIdx, sourceVectorType, srcRank - 1);
incIdx(resIdx, resultVectorType, resRank - 1);
}
Value extract;
if (srcRank == 0) {
// 0-D vector special case
assert(srcIdx.empty() && "Unexpected indices for 0-D vector");
extract = rewriter.create<vector::ExtractElementOp>(
loc, op.getSourceVectorType().getElementType(), op.getSource());
} else {
extract =
rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
}
if (resRank == 0) {
// 0-D vector special case
assert(resIdx.empty() && "Unexpected indices for 0-D vector");
result = rewriter.create<vector::InsertElementOp>(loc, extract, result);
} else {
result =
rewriter.create<vector::InsertOp>(loc, extract, result, resIdx);
}
}
rewriter.replaceOp(op, result);
return success();
}
private:
static void incIdx(SmallVector<int64_t> &idx, VectorType tp, int64_t r) {
assert(0 <= r && r < tp.getRank());
if (++idx[r] == tp.getDimSize(r)) {
idx[r] = 0;
incIdx(idx, tp, r - 1);
}
}
};
} // namespace
void mlir::vector::populateVectorShapeCastLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<ShapeCastOp2DDownCastRewritePattern,
ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern>(
patterns.getContext(), benefit);
}