Files
clang-p2996/mlir/test/Dialect/SparseTensor/GPU/gpu_combi.mlir
wren romano a0615d020a [mlir][sparse] Renaming the STEA field dimLevelType to lvlTypes
This commit is part of the migration of towards the new STEA syntax/design.  In particular, this commit includes the following changes:
* Renaming compiler-internal functions/methods:
  * `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}`
  * `Merger::{getDimLevelType => getLvlType}` (for consistency)
  * `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods)
* Renaming external facets to match:
  * the STEA parser and printer
  * the C and Python bindings
  * PyTACO

However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D150330
2023-05-17 14:24:09 -07:00

64 lines
2.3 KiB
MLIR

// RUN: mlir-opt %s --linalg-generalize-named-ops \
// RUN: --pre-sparsification-rewrite \
// RUN: --sparsification="parallelization-strategy=dense-outer-loop" \
// RUN: --sparse-gpu-codegen | FileCheck %s
#CSR = #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>
//
// CHECK-LABEL: gpu.module @sparse_kernels
// CHECK: gpu.func @kernel1
// CHECK: gpu.func @kernel0
//
// CHECK-LABEL: func.func @matmuls
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: %[[T1:.*]] = gpu.launch_func async @sparse_kernels::@kernel1 blocks
// CHECK: gpu.memcpy async [%[[T1]]]
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.wait
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: gpu.alloc async
// CHECK: gpu.memcpy async
// CHECK: %[[T0:.*]] = gpu.launch_func async @sparse_kernels::@kernel0 blocks
// CHECK: gpu.memcpy async [%[[T0]]]
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.dealloc async
// CHECK: gpu.wait
//
func.func @matmuls(%A: tensor<1024x8xf64>,
%B: tensor<8x1024xf64, #CSR>,
%C: tensor<1024x1024xf64, #CSR>) -> tensor<1024x1024xf64> {
%Z = arith.constant dense<0.0> : tensor<1024x1024xf64>
%T = linalg.matmul
ins(%A, %B: tensor<1024x8xf64>, tensor<8x1024xf64, #CSR>)
outs(%Z: tensor<1024x1024xf64>) -> tensor<1024x1024xf64>
%D = linalg.matmul
ins(%T, %C: tensor<1024x1024xf64>, tensor<1024x1024xf64, #CSR>)
outs(%Z: tensor<1024x1024xf64>) -> tensor<1024x1024xf64>
return %D : tensor<1024x1024xf64>
}