Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion.mlir
wren romano 76647fce13 [mlir][sparse] Combining dimOrdering+higherOrdering fields into dimToLvl
This is a major step along the way towards the new STEA design.  While a great deal of this patch is simple renaming, there are several significant changes as well.  I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping.  Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D151505
2023-05-30 15:19:50 -07:00

316 lines
18 KiB
MLIR

// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#Tensor1 = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed", "compressed" ],
dimToLvl = affine_map<(i,j,k) -> (i,j,k)>
}>
#Tensor2 = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed", "compressed" ],
dimToLvl = affine_map<(i,j,k) -> (j,k,i)>
}>
#Tensor3 = #sparse_tensor.encoding<{
lvlTypes = [ "compressed", "compressed", "compressed" ],
dimToLvl = affine_map<(i,j,k) -> (k,i,j)>
}>
//
// Integration test that tests conversions between sparse tensors.
//
module {
//
// Output utilities.
//
func.func @dumpf64(%arg0: memref<?xf64>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant -1.0 : f64
%0 = vector.transfer_read %arg0[%c0], %d0: memref<?xf64>, vector<24xf64>
vector.print %0 : vector<24xf64>
return
}
func.func @dumpidx(%arg0: memref<?xindex>) {
%c0 = arith.constant 0 : index
%d0 = arith.constant 0 : index
%0 = vector.transfer_read %arg0[%c0], %d0: memref<?xindex>, vector<25xindex>
vector.print %0 : vector<25xindex>
return
}
//
// Main driver.
//
func.func @entry() {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
//
// Initialize a 3-dim dense tensor.
//
%t = arith.constant dense<[
[ [ 1.0, 2.0, 3.0, 4.0 ],
[ 5.0, 6.0, 7.0, 8.0 ],
[ 9.0, 10.0, 11.0, 12.0 ] ],
[ [ 13.0, 14.0, 15.0, 16.0 ],
[ 17.0, 18.0, 19.0, 20.0 ],
[ 21.0, 22.0, 23.0, 24.0 ] ]
]> : tensor<2x3x4xf64>
//
// Convert dense tensor directly to various sparse tensors.
// tensor1: stored as 2x3x4
// tensor2: stored as 3x4x2
// tensor3: stored as 4x2x3
//
%1 = sparse_tensor.convert %t : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor1>
%2 = sparse_tensor.convert %t : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor2>
%3 = sparse_tensor.convert %t : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor3>
//
// Convert sparse tensor to various sparse tensors. Note that the result
// should always correspond to the direct conversion, since the sparse
// tensor formats have the ability to restore into the original ordering.
//
%a = sparse_tensor.convert %1 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64, #Tensor1>
%b = sparse_tensor.convert %2 : tensor<2x3x4xf64, #Tensor2> to tensor<2x3x4xf64, #Tensor1>
%c = sparse_tensor.convert %3 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64, #Tensor1>
%d = sparse_tensor.convert %1 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64, #Tensor2>
%e = sparse_tensor.convert %2 : tensor<2x3x4xf64, #Tensor2> to tensor<2x3x4xf64, #Tensor2>
%f = sparse_tensor.convert %3 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64, #Tensor2>
%g = sparse_tensor.convert %1 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64, #Tensor3>
%h = sparse_tensor.convert %2 : tensor<2x3x4xf64, #Tensor2> to tensor<2x3x4xf64, #Tensor3>
%i = sparse_tensor.convert %3 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64, #Tensor3>
//
// Check number_of_entries.
//
// CHECK-COUNT-12: 24
%nv1 = sparse_tensor.number_of_entries %1 : tensor<2x3x4xf64, #Tensor1>
%nv2 = sparse_tensor.number_of_entries %2 : tensor<2x3x4xf64, #Tensor2>
%nv3 = sparse_tensor.number_of_entries %3 : tensor<2x3x4xf64, #Tensor3>
%nav = sparse_tensor.number_of_entries %a : tensor<2x3x4xf64, #Tensor1>
%nbv = sparse_tensor.number_of_entries %b : tensor<2x3x4xf64, #Tensor1>
%ncv = sparse_tensor.number_of_entries %c : tensor<2x3x4xf64, #Tensor1>
%ndv = sparse_tensor.number_of_entries %d : tensor<2x3x4xf64, #Tensor2>
%nev = sparse_tensor.number_of_entries %e : tensor<2x3x4xf64, #Tensor2>
%nfv = sparse_tensor.number_of_entries %f : tensor<2x3x4xf64, #Tensor2>
%ngv = sparse_tensor.number_of_entries %g : tensor<2x3x4xf64, #Tensor3>
%nhv = sparse_tensor.number_of_entries %h : tensor<2x3x4xf64, #Tensor3>
%niv = sparse_tensor.number_of_entries %i : tensor<2x3x4xf64, #Tensor3>
vector.print %nv1 : index
vector.print %nv2 : index
vector.print %nv3 : index
vector.print %nav : index
vector.print %nbv : index
vector.print %ncv : index
vector.print %ndv : index
vector.print %nev : index
vector.print %nfv : index
vector.print %ngv : index
vector.print %nhv : index
vector.print %niv : index
//
// Check values.
//
// CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 )
// CHECK-NEXT: ( 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23, 12, 24 )
// CHECK-NEXT: ( 1, 5, 9, 13, 17, 21, 2, 6, 10, 14, 18, 22, 3, 7, 11, 15, 19, 23, 4, 8, 12, 16, 20, 24 )
// CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 )
// CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 )
// CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 )
// CHECK-NEXT: ( 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23, 12, 24 )
// CHECK-NEXT: ( 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23, 12, 24 )
// CHECK-NEXT: ( 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23, 12, 24 )
// CHECK-NEXT: ( 1, 5, 9, 13, 17, 21, 2, 6, 10, 14, 18, 22, 3, 7, 11, 15, 19, 23, 4, 8, 12, 16, 20, 24 )
// CHECK-NEXT: ( 1, 5, 9, 13, 17, 21, 2, 6, 10, 14, 18, 22, 3, 7, 11, 15, 19, 23, 4, 8, 12, 16, 20, 24 )
// CHECK-NEXT: ( 1, 5, 9, 13, 17, 21, 2, 6, 10, 14, 18, 22, 3, 7, 11, 15, 19, 23, 4, 8, 12, 16, 20, 24 )
//
%v1 = sparse_tensor.values %1 : tensor<2x3x4xf64, #Tensor1> to memref<?xf64>
%v2 = sparse_tensor.values %2 : tensor<2x3x4xf64, #Tensor2> to memref<?xf64>
%v3 = sparse_tensor.values %3 : tensor<2x3x4xf64, #Tensor3> to memref<?xf64>
%av = sparse_tensor.values %a : tensor<2x3x4xf64, #Tensor1> to memref<?xf64>
%bv = sparse_tensor.values %b : tensor<2x3x4xf64, #Tensor1> to memref<?xf64>
%cv = sparse_tensor.values %c : tensor<2x3x4xf64, #Tensor1> to memref<?xf64>
%dv = sparse_tensor.values %d : tensor<2x3x4xf64, #Tensor2> to memref<?xf64>
%ev = sparse_tensor.values %e : tensor<2x3x4xf64, #Tensor2> to memref<?xf64>
%fv = sparse_tensor.values %f : tensor<2x3x4xf64, #Tensor2> to memref<?xf64>
%gv = sparse_tensor.values %g : tensor<2x3x4xf64, #Tensor3> to memref<?xf64>
%hv = sparse_tensor.values %h : tensor<2x3x4xf64, #Tensor3> to memref<?xf64>
%iv = sparse_tensor.values %i : tensor<2x3x4xf64, #Tensor3> to memref<?xf64>
call @dumpf64(%v1) : (memref<?xf64>) -> ()
call @dumpf64(%v2) : (memref<?xf64>) -> ()
call @dumpf64(%v3) : (memref<?xf64>) -> ()
call @dumpf64(%av) : (memref<?xf64>) -> ()
call @dumpf64(%bv) : (memref<?xf64>) -> ()
call @dumpf64(%cv) : (memref<?xf64>) -> ()
call @dumpf64(%dv) : (memref<?xf64>) -> ()
call @dumpf64(%ev) : (memref<?xf64>) -> ()
call @dumpf64(%fv) : (memref<?xf64>) -> ()
call @dumpf64(%gv) : (memref<?xf64>) -> ()
call @dumpf64(%hv) : (memref<?xf64>) -> ()
call @dumpf64(%iv) : (memref<?xf64>) -> ()
//
// Check coordinates.
//
// CHECK-NEXT: ( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 )
// CHECK-NEXT: ( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0 )
// CHECK-NEXT: ( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0 )
// CHECK-NEXT: ( 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 )
// CHECK-NEXT: ( 0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 )
//
%v10 = sparse_tensor.coordinates %1 { level = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%v11 = sparse_tensor.coordinates %1 { level = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%v12 = sparse_tensor.coordinates %1 { level = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%v20 = sparse_tensor.coordinates %2 { level = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%v21 = sparse_tensor.coordinates %2 { level = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%v22 = sparse_tensor.coordinates %2 { level = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%v30 = sparse_tensor.coordinates %3 { level = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%v31 = sparse_tensor.coordinates %3 { level = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%v32 = sparse_tensor.coordinates %3 { level = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%a10 = sparse_tensor.coordinates %a { level = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%a11 = sparse_tensor.coordinates %a { level = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%a12 = sparse_tensor.coordinates %a { level = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%b10 = sparse_tensor.coordinates %b { level = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%b11 = sparse_tensor.coordinates %b { level = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%b12 = sparse_tensor.coordinates %b { level = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%c10 = sparse_tensor.coordinates %c { level = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%c11 = sparse_tensor.coordinates %c { level = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%c12 = sparse_tensor.coordinates %c { level = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref<?xindex>
%d20 = sparse_tensor.coordinates %d { level = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%d21 = sparse_tensor.coordinates %d { level = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%d22 = sparse_tensor.coordinates %d { level = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%e20 = sparse_tensor.coordinates %e { level = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%e21 = sparse_tensor.coordinates %e { level = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%e22 = sparse_tensor.coordinates %e { level = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%f20 = sparse_tensor.coordinates %f { level = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%f21 = sparse_tensor.coordinates %f { level = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%f22 = sparse_tensor.coordinates %f { level = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref<?xindex>
%g30 = sparse_tensor.coordinates %g { level = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%g31 = sparse_tensor.coordinates %g { level = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%g32 = sparse_tensor.coordinates %g { level = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%h30 = sparse_tensor.coordinates %h { level = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%h31 = sparse_tensor.coordinates %h { level = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%h32 = sparse_tensor.coordinates %h { level = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%i30 = sparse_tensor.coordinates %i { level = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%i31 = sparse_tensor.coordinates %i { level = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
%i32 = sparse_tensor.coordinates %i { level = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref<?xindex>
call @dumpidx(%v10) : (memref<?xindex>) -> ()
call @dumpidx(%v11) : (memref<?xindex>) -> ()
call @dumpidx(%v12) : (memref<?xindex>) -> ()
call @dumpidx(%v20) : (memref<?xindex>) -> ()
call @dumpidx(%v21) : (memref<?xindex>) -> ()
call @dumpidx(%v22) : (memref<?xindex>) -> ()
call @dumpidx(%v30) : (memref<?xindex>) -> ()
call @dumpidx(%v31) : (memref<?xindex>) -> ()
call @dumpidx(%v32) : (memref<?xindex>) -> ()
call @dumpidx(%a10) : (memref<?xindex>) -> ()
call @dumpidx(%a11) : (memref<?xindex>) -> ()
call @dumpidx(%a12) : (memref<?xindex>) -> ()
call @dumpidx(%b10) : (memref<?xindex>) -> ()
call @dumpidx(%b11) : (memref<?xindex>) -> ()
call @dumpidx(%b12) : (memref<?xindex>) -> ()
call @dumpidx(%c10) : (memref<?xindex>) -> ()
call @dumpidx(%c11) : (memref<?xindex>) -> ()
call @dumpidx(%c12) : (memref<?xindex>) -> ()
call @dumpidx(%d20) : (memref<?xindex>) -> ()
call @dumpidx(%d21) : (memref<?xindex>) -> ()
call @dumpidx(%d22) : (memref<?xindex>) -> ()
call @dumpidx(%e20) : (memref<?xindex>) -> ()
call @dumpidx(%e21) : (memref<?xindex>) -> ()
call @dumpidx(%e22) : (memref<?xindex>) -> ()
call @dumpidx(%f20) : (memref<?xindex>) -> ()
call @dumpidx(%f21) : (memref<?xindex>) -> ()
call @dumpidx(%f22) : (memref<?xindex>) -> ()
call @dumpidx(%g30) : (memref<?xindex>) -> ()
call @dumpidx(%g31) : (memref<?xindex>) -> ()
call @dumpidx(%g32) : (memref<?xindex>) -> ()
call @dumpidx(%h30) : (memref<?xindex>) -> ()
call @dumpidx(%h31) : (memref<?xindex>) -> ()
call @dumpidx(%h32) : (memref<?xindex>) -> ()
call @dumpidx(%i30) : (memref<?xindex>) -> ()
call @dumpidx(%i31) : (memref<?xindex>) -> ()
call @dumpidx(%i32) : (memref<?xindex>) -> ()
// Release the resources.
bufferization.dealloc_tensor %1 : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %2 : tensor<2x3x4xf64, #Tensor2>
bufferization.dealloc_tensor %3 : tensor<2x3x4xf64, #Tensor3>
bufferization.dealloc_tensor %b : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %c : tensor<2x3x4xf64, #Tensor1>
bufferization.dealloc_tensor %d : tensor<2x3x4xf64, #Tensor2>
bufferization.dealloc_tensor %f : tensor<2x3x4xf64, #Tensor2>
bufferization.dealloc_tensor %g : tensor<2x3x4xf64, #Tensor3>
bufferization.dealloc_tensor %h : tensor<2x3x4xf64, #Tensor3>
return
}
}