This might simplify frontend implementation by avoiding recomputation for the same value. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D154244
234 lines
6.9 KiB
MLIR
234 lines
6.9 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=false
|
|
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
|
|
// DEFINE: %{run} = mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{compile} | %{run}
|
|
//
|
|
|
|
// Do the same run, but now with direct IR generation and, if available, VLA
|
|
// vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
|
|
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
|
|
// REDEFINE: --entry-function=entry_lli \
|
|
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
|
|
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
|
|
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
|
|
// REDEFINE: FileCheck %s
|
|
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
|
|
|
|
// TODO: Pack only support CodeGen Path
|
|
|
|
#SortedCOO = #sparse_tensor.encoding<{
|
|
lvlTypes = [ "compressed-nu", "singleton" ]
|
|
}>
|
|
|
|
#SortedCOOI32 = #sparse_tensor.encoding<{
|
|
lvlTypes = [ "compressed-nu", "singleton" ],
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
lvlTypes = [ "dense", "compressed" ],
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#BCOO = #sparse_tensor.encoding<{
|
|
lvlTypes = [ "dense", "compressed-hi-nu", "singleton" ]
|
|
}>
|
|
|
|
module {
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
%c0 = arith.constant 0 : index
|
|
%f0 = arith.constant 0.0 : f64
|
|
%i0 = arith.constant 0 : i32
|
|
//
|
|
// Initialize a 3-dim dense tensor.
|
|
//
|
|
%data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0]
|
|
> : tensor<3xf64>
|
|
|
|
%pos = arith.constant dense<
|
|
[0, 3]
|
|
> : tensor<2xindex>
|
|
|
|
%index = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xindex>
|
|
|
|
%pos32 = arith.constant dense<
|
|
[0, 3]
|
|
> : tensor<2xi32>
|
|
|
|
%index32 = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xi32>
|
|
|
|
%s4 = sparse_tensor.pack %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex>
|
|
to tensor<10x10xf64, #SortedCOO>
|
|
%s5= sparse_tensor.pack %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>
|
|
to tensor<10x10xf64, #SortedCOOI32>
|
|
|
|
%csr_data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0, 4.0]
|
|
> : tensor<4xf64>
|
|
|
|
%csr_pos32 = arith.constant dense<
|
|
[0, 1, 3]
|
|
> : tensor<3xi32>
|
|
|
|
%csr_index32 = arith.constant dense<
|
|
[1, 0, 1]
|
|
> : tensor<3xi32>
|
|
%csr= sparse_tensor.pack %csr_data, %csr_pos32, %csr_index32 : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>
|
|
to tensor<2x2xf64, #CSR>
|
|
|
|
%bdata = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0]
|
|
> : tensor<6xf64>
|
|
|
|
%bpos = arith.constant dense<
|
|
[0, 3, 3, 5]
|
|
> : tensor<4xindex>
|
|
|
|
%bindex = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8],
|
|
[ 2, 3],
|
|
[ 4, 2],
|
|
[ 10, 10]]
|
|
> : tensor<6x2xindex>
|
|
%bs = sparse_tensor.pack %bdata, %bpos, %bindex :
|
|
tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex> to tensor<2x10x10xf64, #BCOO>
|
|
|
|
// CHECK:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s4 : tensor<10x10xf64, #SortedCOO> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s5 : tensor<10x10xf64, #SortedCOOI32> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:0
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %csr : tensor<2x2xf64, #CSR> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
%d_csr = tensor.empty() : tensor<4xf64>
|
|
%p_csr = tensor.empty() : tensor<3xi32>
|
|
%i_csr = tensor.empty() : tensor<3xi32>
|
|
%rd_csr, %rp_csr, %ri_csr, %ld_csr, %lp_csr, %li_csr = sparse_tensor.unpack %csr : tensor<2x2xf64, #CSR>
|
|
outs(%d_csr, %p_csr, %i_csr : tensor<4xf64>, tensor<3xi32>, tensor<3xi32>)
|
|
-> tensor<4xf64>, (tensor<3xi32>, tensor<3xi32>), index, (index, index)
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3, {{.*}} )
|
|
%vd_csr = vector.transfer_read %rd_csr[%c0], %f0 : tensor<4xf64>, vector<4xf64>
|
|
vector.print %vd_csr : vector<4xf64>
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:3
|
|
//
|
|
// CHECK-NEXT:4
|
|
// CHECK-NEXT:5
|
|
//
|
|
// Make sure the trailing zeros are not traversed.
|
|
// CHECK-NOT: 0
|
|
sparse_tensor.foreach in %bs : tensor<2x10x10xf64, #BCOO> do {
|
|
^bb0(%0: index, %1: index, %2: index, %v: f64) :
|
|
vector.print %v: f64
|
|
}
|
|
|
|
%od = tensor.empty() : tensor<3xf64>
|
|
%op = tensor.empty() : tensor<2xi32>
|
|
%oi = tensor.empty() : tensor<3x2xi32>
|
|
%d, %p, %i, %dl, %pl, %il = sparse_tensor.unpack %s5 : tensor<10x10xf64, #SortedCOOI32>
|
|
outs(%od, %op, %oi : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32>)
|
|
-> tensor<3xf64>, (tensor<2xi32>, tensor<3x2xi32>), index, (index, index)
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3 )
|
|
%vd = vector.transfer_read %d[%c0], %f0 : tensor<3xf64>, vector<3xf64>
|
|
vector.print %vd : vector<3xf64>
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) )
|
|
%vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32>
|
|
vector.print %vi : vector<3x2xi32>
|
|
|
|
|
|
%bod = tensor.empty() : tensor<6xf64>
|
|
%bop = tensor.empty() : tensor<4xindex>
|
|
%boi = tensor.empty() : tensor<6x2xindex>
|
|
%bd, %bp, %bi, %ld, %lp, %li = sparse_tensor.unpack %bs : tensor<2x10x10xf64, #BCOO>
|
|
outs(%bod, %bop, %boi : tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex>)
|
|
-> tensor<6xf64>, (tensor<4xindex>, tensor<6x2xindex>), index, (index, index)
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3, 4, 5, {{.*}} )
|
|
%vbd = vector.transfer_read %bd[%c0], %f0 : tensor<6xf64>, vector<6xf64>
|
|
vector.print %vbd : vector<6xf64>
|
|
// CHECK-NEXT: 5
|
|
vector.print %ld : index
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ), ( 2, 3 ), ( 4, 2 ), ( {{.*}}, {{.*}} ) )
|
|
%vbi = vector.transfer_read %bi[%c0, %c0], %c0 : tensor<6x2xindex>, vector<6x2xindex>
|
|
vector.print %vbi : vector<6x2xindex>
|
|
// CHECK-NEXT: 10
|
|
vector.print %li : index
|
|
|
|
return
|
|
}
|
|
}
|