Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_scale.mlir
wren romano a0615d020a [mlir][sparse] Renaming the STEA field dimLevelType to lvlTypes
This commit is part of the migration of towards the new STEA syntax/design.  In particular, this commit includes the following changes:
* Renaming compiler-internal functions/methods:
  * `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}`
  * `Merger::{getDimLevelType => getLvlType}` (for consistency)
  * `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods)
* Renaming external facets to match:
  * the STEA parser and printer
  * the C and Python bindings
  * PyTACO

However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D150330
2023-05-17 14:24:09 -07:00

95 lines
3.2 KiB
MLIR

// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = enable-runtime-library=false
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#CSR = #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ] }>
#trait_scale = {
indexing_maps = [
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = X(i,j) * 2"
}
//
// Integration test that lowers a kernel annotated as sparse to actual sparse
// code, initializes a matching sparse storage scheme from a dense tensor,
// and runs the resulting code with the JIT compiler.
//
module {
//
// A kernel that scales a sparse matrix A by a factor of 2.0.
//
func.func @sparse_scale(%argx: tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR> {
%c = arith.constant 2.0 : f32
%0 = linalg.generic #trait_scale
outs(%argx: tensor<8x8xf32, #CSR>) {
^bb(%x: f32):
%1 = arith.mulf %x, %c : f32
linalg.yield %1 : f32
} -> tensor<8x8xf32, #CSR>
return %0 : tensor<8x8xf32, #CSR>
}
//
// Main driver that converts a dense tensor into a sparse tensor
// and then calls the sparse scaling kernel with the sparse tensor
// as input argument.
//
func.func @entry() {
%c0 = arith.constant 0 : index
%f0 = arith.constant 0.0 : f32
// Initialize a dense tensor.
%0 = arith.constant dense<[
[1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0],
[0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0],
[0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0],
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0]
]> : tensor<8x8xf32>
// Convert dense tensor to sparse tensor and call sparse kernel.
%1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
%2 = call @sparse_scale(%1)
: (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
// Print the resulting compacted values for verification.
//
// CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 )
//
%m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref<?xf32>
%v = vector.transfer_read %m[%c0], %f0: memref<?xf32>, vector<16xf32>
vector.print %v : vector<16xf32>
// Release the resources.
bufferization.dealloc_tensor %1 : tensor<8x8xf32, #CSR>
return
}
}