Files
clang-p2996/mlir/test/Transforms/cse.mlir
tomnatan 2109587cee [MLIR] Don't sort operand of commutative ops when comparing two ops as there is a correctness issue
This feature was introduced in `D123492`.

Doing equivalence on pointers to sort operands of commutative operations is incorrect when checking equivalence of ops in separate regions (where the lhs and rhs operands are marked as equivalent but are not the same value).

It was also discussed in `D123492` and `D129480` that the correct solution would be to stable sort the operands in canonicalization (based on some numbering in the region maybe), but until that lands, reverting this change will unblock us and other users.

An example of a pass that might not work properly because of this is `DuplicateFunctionEliminationPass`.

Reviewed By: mehdi_amini, jpienaar

Differential Revision: https://reviews.llvm.org/D154699
2023-07-14 16:11:54 -07:00

462 lines
17 KiB
MLIR

// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(cse))' | FileCheck %s
// CHECK-DAG: #[[$MAP:.*]] = affine_map<(d0) -> (d0 mod 2)>
#map0 = affine_map<(d0) -> (d0 mod 2)>
// CHECK-LABEL: @simple_constant
func.func @simple_constant() -> (i32, i32) {
// CHECK-NEXT: %[[VAR_c1_i32:.*]] = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: return %[[VAR_c1_i32]], %[[VAR_c1_i32]] : i32, i32
%1 = arith.constant 1 : i32
return %0, %1 : i32, i32
}
// CHECK-LABEL: @basic
func.func @basic() -> (index, index) {
// CHECK: %[[VAR_c0:[0-9a-zA-Z_]+]] = arith.constant 0 : index
%c0 = arith.constant 0 : index
%c1 = arith.constant 0 : index
// CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = affine.apply #[[$MAP]](%[[VAR_c0]])
%0 = affine.apply #map0(%c0)
%1 = affine.apply #map0(%c1)
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_0]] : index, index
return %0, %1 : index, index
}
// CHECK-LABEL: @many
func.func @many(f32, f32) -> (f32) {
^bb0(%a : f32, %b : f32):
// CHECK-NEXT: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.addf %{{.*}}, %{{.*}} : f32
%c = arith.addf %a, %b : f32
%d = arith.addf %a, %b : f32
%e = arith.addf %a, %b : f32
%f = arith.addf %a, %b : f32
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_0]], %[[VAR_0]] : f32
%g = arith.addf %c, %d : f32
%h = arith.addf %e, %f : f32
%i = arith.addf %c, %e : f32
// CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_1]], %[[VAR_1]] : f32
%j = arith.addf %g, %h : f32
%k = arith.addf %h, %i : f32
// CHECK-NEXT: %[[VAR_3:[0-9a-zA-Z_]+]] = arith.addf %[[VAR_2]], %[[VAR_2]] : f32
%l = arith.addf %j, %k : f32
// CHECK-NEXT: return %[[VAR_3]] : f32
return %l : f32
}
/// Check that operations are not eliminated if they have different operands.
// CHECK-LABEL: @different_ops
func.func @different_ops() -> (i32, i32) {
// CHECK: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32
// CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%0 = arith.constant 0 : i32
%1 = arith.constant 1 : i32
// CHECK-NEXT: return %[[VAR_c0_i32]], %[[VAR_c1_i32]] : i32, i32
return %0, %1 : i32, i32
}
/// Check that operations are not eliminated if they have different result
/// types.
// CHECK-LABEL: @different_results
func.func @different_results(%arg0: tensor<*xf32>) -> (tensor<?x?xf32>, tensor<4x?xf32>) {
// CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<?x?xf32>
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = tensor.cast %{{.*}} : tensor<*xf32> to tensor<4x?xf32>
%0 = tensor.cast %arg0 : tensor<*xf32> to tensor<?x?xf32>
%1 = tensor.cast %arg0 : tensor<*xf32> to tensor<4x?xf32>
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : tensor<?x?xf32>, tensor<4x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<4x?xf32>
}
/// Check that operations are not eliminated if they have different attributes.
// CHECK-LABEL: @different_attributes
func.func @different_attributes(index, index) -> (i1, i1, i1) {
^bb0(%a : index, %b : index):
// CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = arith.cmpi slt, %{{.*}}, %{{.*}} : index
%0 = arith.cmpi slt, %a, %b : index
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.cmpi ne, %{{.*}}, %{{.*}} : index
/// Predicate 1 means inequality comparison.
%1 = arith.cmpi ne, %a, %b : index
%2 = "arith.cmpi"(%a, %b) {predicate = 1} : (index, index) -> i1
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]], %[[VAR_1]] : i1, i1, i1
return %0, %1, %2 : i1, i1, i1
}
/// Check that operations with side effects are not eliminated.
// CHECK-LABEL: @side_effect
func.func @side_effect() -> (memref<2x1xf32>, memref<2x1xf32>) {
// CHECK: %[[VAR_0:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32>
%0 = memref.alloc() : memref<2x1xf32>
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = memref.alloc() : memref<2x1xf32>
%1 = memref.alloc() : memref<2x1xf32>
// CHECK-NEXT: return %[[VAR_0]], %[[VAR_1]] : memref<2x1xf32>, memref<2x1xf32>
return %0, %1 : memref<2x1xf32>, memref<2x1xf32>
}
/// Check that operation definitions are properly propagated down the dominance
/// tree.
// CHECK-LABEL: @down_propagate_for
func.func @down_propagate_for() {
// CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: affine.for {{.*}} = 0 to 4 {
affine.for %i = 0 to 4 {
// CHECK-NEXT: "foo"(%[[VAR_c1_i32]], %[[VAR_c1_i32]]) : (i32, i32) -> ()
%1 = arith.constant 1 : i32
"foo"(%0, %1) : (i32, i32) -> ()
}
return
}
// CHECK-LABEL: @down_propagate
func.func @down_propagate() -> i32 {
// CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%0 = arith.constant 1 : i32
// CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true
%cond = arith.constant true
// CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c1_i32]] : i32)
cf.cond_br %cond, ^bb1, ^bb2(%0 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32)
%1 = arith.constant 1 : i32
cf.br ^bb2(%1 : i32)
^bb2(%arg : i32):
return %arg : i32
}
/// Check that operation definitions are NOT propagated up the dominance tree.
// CHECK-LABEL: @up_propagate_for
func.func @up_propagate_for() -> i32 {
// CHECK: affine.for {{.*}} = 0 to 4 {
affine.for %i = 0 to 4 {
// CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: "foo"(%[[VAR_c1_i32_0]]) : (i32) -> ()
%0 = arith.constant 1 : i32
"foo"(%0) : (i32) -> ()
}
// CHECK: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: return %[[VAR_c1_i32]] : i32
%1 = arith.constant 1 : i32
return %1 : i32
}
// CHECK-LABEL: func @up_propagate
func.func @up_propagate() -> i32 {
// CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32
%0 = arith.constant 0 : i32
// CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true
%cond = arith.constant true
// CHECK-NEXT: cf.cond_br %[[VAR_true]], ^bb1, ^bb2(%[[VAR_c0_i32]] : i32)
cf.cond_br %cond, ^bb1, ^bb2(%0 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%1 = arith.constant 1 : i32
// CHECK-NEXT: cf.br ^bb2(%[[VAR_c1_i32]] : i32)
cf.br ^bb2(%1 : i32)
^bb2(%arg : i32): // CHECK: ^bb2
// CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
%2 = arith.constant 1 : i32
// CHECK-NEXT: %[[VAR_1:[0-9a-zA-Z_]+]] = arith.addi %{{.*}}, %[[VAR_c1_i32_0]] : i32
%add = arith.addi %arg, %2 : i32
// CHECK-NEXT: return %[[VAR_1]] : i32
return %add : i32
}
/// The same test as above except that we are testing on a cfg embedded within
/// an operation region.
// CHECK-LABEL: func @up_propagate_region
func.func @up_propagate_region() -> i32 {
// CHECK-NEXT: {{.*}} "foo.region"
%0 = "foo.region"() ({
// CHECK-NEXT: %[[VAR_c0_i32:[0-9a-zA-Z_]+]] = arith.constant 0 : i32
// CHECK-NEXT: %[[VAR_true:[0-9a-zA-Z_]+]] = arith.constant true
// CHECK-NEXT: cf.cond_br
%1 = arith.constant 0 : i32
%true = arith.constant true
cf.cond_br %true, ^bb1, ^bb2(%1 : i32)
^bb1: // CHECK: ^bb1:
// CHECK-NEXT: %[[VAR_c1_i32:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: cf.br
%c1_i32 = arith.constant 1 : i32
cf.br ^bb2(%c1_i32 : i32)
^bb2(%arg : i32): // CHECK: ^bb2(%[[VAR_1:.*]]: i32):
// CHECK-NEXT: %[[VAR_c1_i32_0:[0-9a-zA-Z_]+]] = arith.constant 1 : i32
// CHECK-NEXT: %[[VAR_2:[0-9a-zA-Z_]+]] = arith.addi %[[VAR_1]], %[[VAR_c1_i32_0]] : i32
// CHECK-NEXT: "foo.yield"(%[[VAR_2]]) : (i32) -> ()
%c1_i32_0 = arith.constant 1 : i32
%2 = arith.addi %arg, %c1_i32_0 : i32
"foo.yield" (%2) : (i32) -> ()
}) : () -> (i32)
return %0 : i32
}
/// This test checks that nested regions that are isolated from above are
/// properly handled.
// CHECK-LABEL: @nested_isolated
func.func @nested_isolated() -> i32 {
// CHECK-NEXT: arith.constant 1
%0 = arith.constant 1 : i32
// CHECK-NEXT: @nested_func
func.func @nested_func() {
// CHECK-NEXT: arith.constant 1
%foo = arith.constant 1 : i32
"foo.yield"(%foo) : (i32) -> ()
}
// CHECK: "foo.region"
"foo.region"() ({
// CHECK-NEXT: arith.constant 1
%foo = arith.constant 1 : i32
"foo.yield"(%foo) : (i32) -> ()
}) : () -> ()
return %0 : i32
}
/// This test is checking that CSE gracefully handles values in graph regions
/// where the use occurs before the def, and one of the defs could be CSE'd with
/// the other.
// CHECK-LABEL: @use_before_def
func.func @use_before_def() {
// CHECK-NEXT: test.graph_region
test.graph_region {
// CHECK-NEXT: arith.addi
%0 = arith.addi %1, %2 : i32
// CHECK-NEXT: arith.constant 1
// CHECK-NEXT: arith.constant 1
%1 = arith.constant 1 : i32
%2 = arith.constant 1 : i32
// CHECK-NEXT: "foo.yield"(%{{.*}}) : (i32) -> ()
"foo.yield"(%0) : (i32) -> ()
}
return
}
/// This test is checking that CSE is removing duplicated read op that follow
/// other.
// CHECK-LABEL: @remove_direct_duplicated_read_op
func.func @remove_direct_duplicated_read_op() -> i32 {
// CHECK-NEXT: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i32
%0 = "test.op_with_memread"() : () -> (i32)
%1 = "test.op_with_memread"() : () -> (i32)
// CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE]], %[[READ_VALUE]] : i32
%2 = arith.addi %0, %1 : i32
return %2 : i32
}
/// This test is checking that CSE is removing duplicated read op that follow
/// other.
// CHECK-LABEL: @remove_multiple_duplicated_read_op
func.func @remove_multiple_duplicated_read_op() -> i64 {
// CHECK: %[[READ_VALUE:.*]] = "test.op_with_memread"() : () -> i64
%0 = "test.op_with_memread"() : () -> (i64)
%1 = "test.op_with_memread"() : () -> (i64)
// CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %[[READ_VALUE]] : i64
%2 = arith.addi %0, %1 : i64
%3 = "test.op_with_memread"() : () -> (i64)
// CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64
%4 = arith.addi %2, %3 : i64
%5 = "test.op_with_memread"() : () -> (i64)
// CHECK-NEXT: %{{.*}} = arith.addi %{{.*}}, %{{.*}} : i64
%6 = arith.addi %4, %5 : i64
// CHECK-NEXT: return %{{.*}} : i64
return %6 : i64
}
/// This test is checking that CSE is not removing duplicated read op that
/// have write op in between.
// CHECK-LABEL: @dont_remove_duplicated_read_op_with_sideeffecting
func.func @dont_remove_duplicated_read_op_with_sideeffecting() -> i32 {
// CHECK-NEXT: %[[READ_VALUE0:.*]] = "test.op_with_memread"() : () -> i32
%0 = "test.op_with_memread"() : () -> (i32)
"test.op_with_memwrite"() : () -> ()
// CHECK: %[[READ_VALUE1:.*]] = "test.op_with_memread"() : () -> i32
%1 = "test.op_with_memread"() : () -> (i32)
// CHECK-NEXT: %{{.*}} = arith.addi %[[READ_VALUE0]], %[[READ_VALUE1]] : i32
%2 = arith.addi %0, %1 : i32
return %2 : i32
}
// Check that an operation with a single region can CSE.
func.func @cse_single_block_ops(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @cse_single_block_ops
// CHECK: %[[OP:.+]] = test.cse_of_single_block_op
// CHECK-NOT: test.cse_of_single_block_op
// CHECK: return %[[OP]], %[[OP]]
// Operations with different number of bbArgs dont CSE.
func.func @no_cse_varied_bbargs(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @no_cse_varied_bbargs
// CHECK: %[[OP0:.+]] = test.cse_of_single_block_op
// CHECK: %[[OP1:.+]] = test.cse_of_single_block_op
// CHECK: return %[[OP0]], %[[OP1]]
// Operations with different regions dont CSE
func.func @no_cse_region_difference_simple(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
test.region_yield %arg0 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
test.region_yield %arg1 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @no_cse_region_difference_simple
// CHECK: %[[OP0:.+]] = test.cse_of_single_block_op
// CHECK: %[[OP1:.+]] = test.cse_of_single_block_op
// CHECK: return %[[OP0]], %[[OP1]]
// Operation with identical region with multiple statements CSE.
func.func @cse_single_block_ops_identical_bodies(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>, %c : f32, %d : i1)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %1, %2 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %1, %2 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @cse_single_block_ops_identical_bodies
// CHECK: %[[OP:.+]] = test.cse_of_single_block_op
// CHECK-NOT: test.cse_of_single_block_op
// CHECK: return %[[OP]], %[[OP]]
// Operation with non-identical regions dont CSE.
func.func @no_cse_single_block_ops_different_bodies(%a : tensor<?x?xf32>, %b : tensor<?x?xf32>, %c : f32, %d : i1)
-> (tensor<?x?xf32>, tensor<?x?xf32>) {
%0 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %1, %2 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
%1 = test.cse_of_single_block_op inputs(%a, %b) {
^bb0(%arg0 : f32, %arg1 : f32):
%1 = arith.divf %arg0, %arg1 : f32
%2 = arith.remf %arg0, %c : f32
%3 = arith.select %d, %2, %1 : f32
test.region_yield %3 : f32
} : tensor<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
return %0, %1 : tensor<?x?xf32>, tensor<?x?xf32>
}
// CHECK-LABEL: func @no_cse_single_block_ops_different_bodies
// CHECK: %[[OP0:.+]] = test.cse_of_single_block_op
// CHECK: %[[OP1:.+]] = test.cse_of_single_block_op
// CHECK: return %[[OP0]], %[[OP1]]
func.func @failing_issue_59135(%arg0: tensor<2x2xi1>, %arg1: f32, %arg2 : tensor<2xi1>) -> (tensor<2xi1>, tensor<2xi1>) {
%false_2 = arith.constant false
%true_5 = arith.constant true
%9 = test.cse_of_single_block_op inputs(%arg2) {
^bb0(%out: i1):
%true_144 = arith.constant true
test.region_yield %true_144 : i1
} : tensor<2xi1> -> tensor<2xi1>
%15 = test.cse_of_single_block_op inputs(%arg2) {
^bb0(%out: i1):
%true_144 = arith.constant true
test.region_yield %true_144 : i1
} : tensor<2xi1> -> tensor<2xi1>
%93 = arith.maxsi %false_2, %true_5 : i1
return %9, %15 : tensor<2xi1>, tensor<2xi1>
}
// CHECK-LABEL: func @failing_issue_59135
// CHECK: %[[TRUE:.+]] = arith.constant true
// CHECK: %[[OP:.+]] = test.cse_of_single_block_op
// CHECK: test.region_yield %[[TRUE]]
// CHECK: return %[[OP]], %[[OP]]
func.func @cse_multiple_regions(%c: i1, %t: tensor<5xf32>) -> (tensor<5xf32>, tensor<5xf32>) {
%r1 = scf.if %c -> (tensor<5xf32>) {
%0 = tensor.empty() : tensor<5xf32>
scf.yield %0 : tensor<5xf32>
} else {
scf.yield %t : tensor<5xf32>
}
%r2 = scf.if %c -> (tensor<5xf32>) {
%0 = tensor.empty() : tensor<5xf32>
scf.yield %0 : tensor<5xf32>
} else {
scf.yield %t : tensor<5xf32>
}
return %r1, %r2 : tensor<5xf32>, tensor<5xf32>
}
// CHECK-LABEL: func @cse_multiple_regions
// CHECK: %[[if:.*]] = scf.if {{.*}} {
// CHECK: tensor.empty
// CHECK: scf.yield
// CHECK: } else {
// CHECK: scf.yield
// CHECK: }
// CHECK-NOT: scf.if
// CHECK: return %[[if]], %[[if]]