Files
clang-p2996/mlir/test/lib/Analysis/DataFlow/TestDenseDataFlowAnalysis.h
Alex Zinenko 8a918c54bb [mlir] add backward dense dataflow analysis
This is the counterpart to the forward dense dataflow analysis and
integrates into the dataflow framework. The implementation follows the
structure of existing dataflow analyses.

Reviewed By: Mogball, phisiart

Differential Revision: https://reviews.llvm.org/D154713
2023-07-11 16:47:53 +00:00

172 lines
5.6 KiB
C++

//===- TestDenseDataFlowAnalysis.h - Dataflow test utilities ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/SparseAnalysis.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/IR/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
namespace mlir {
namespace dataflow {
namespace test {
/// This lattice represents a single underlying value for an SSA value.
class UnderlyingValue {
public:
/// Create an underlying value state with a known underlying value.
explicit UnderlyingValue(std::optional<Value> underlyingValue = std::nullopt)
: underlyingValue(underlyingValue) {}
/// Whether the state is uninitialized.
bool isUninitialized() const { return !underlyingValue.has_value(); }
/// Returns the underlying value.
Value getUnderlyingValue() const {
assert(!isUninitialized());
return *underlyingValue;
}
/// Join two underlying values. If there are conflicting underlying values,
/// go to the pessimistic value.
static UnderlyingValue join(const UnderlyingValue &lhs,
const UnderlyingValue &rhs) {
if (lhs.isUninitialized())
return rhs;
if (rhs.isUninitialized())
return lhs;
return lhs.underlyingValue == rhs.underlyingValue
? lhs
: UnderlyingValue(Value{});
}
/// Compare underlying values.
bool operator==(const UnderlyingValue &rhs) const {
return underlyingValue == rhs.underlyingValue;
}
void print(raw_ostream &os) const { os << underlyingValue; }
private:
std::optional<Value> underlyingValue;
};
/// This lattice represents, for a given memory resource, the potential last
/// operations that modified the resource.
class AccessLatticeBase {
public:
/// Clear all modifications.
ChangeResult reset() {
if (adjAccesses.empty())
return ChangeResult::NoChange;
adjAccesses.clear();
return ChangeResult::Change;
}
/// Join the last modifications.
ChangeResult merge(const AccessLatticeBase &rhs) {
ChangeResult result = ChangeResult::NoChange;
for (const auto &mod : rhs.adjAccesses) {
auto &lhsMod = adjAccesses[mod.first];
if (lhsMod != mod.second) {
lhsMod.insert(mod.second.begin(), mod.second.end());
result |= ChangeResult::Change;
}
}
return result;
}
/// Set the last modification of a value.
ChangeResult set(Value value, Operation *op) {
auto &lastMod = adjAccesses[value];
ChangeResult result = ChangeResult::NoChange;
if (lastMod.size() != 1 || *lastMod.begin() != op) {
result = ChangeResult::Change;
lastMod.clear();
lastMod.insert(op);
}
return result;
}
/// Get the adjacent accesses to a value. Returns std::nullopt if they
/// are not known.
std::optional<ArrayRef<Operation *>> getAdjacentAccess(Value value) const {
auto it = adjAccesses.find(value);
if (it == adjAccesses.end())
return {};
return it->second.getArrayRef();
}
void print(raw_ostream &os) const {
for (const auto &lastMod : adjAccesses) {
os << lastMod.first << ":\n";
for (Operation *op : lastMod.second)
os << " " << *op << "\n";
}
}
private:
/// The potential adjacent accesses to a memory resource. Use a set vector to
/// keep the results deterministic.
DenseMap<Value, SetVector<Operation *, SmallVector<Operation *, 2>,
SmallPtrSet<Operation *, 2>>>
adjAccesses;
};
/// Define the lattice class explicitly to provide a type ID.
struct UnderlyingValueLattice : public Lattice<UnderlyingValue> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(UnderlyingValueLattice)
using Lattice::Lattice;
};
/// An analysis that uses forwarding of values along control-flow and callgraph
/// edges to determine single underlying values for block arguments. This
/// analysis exists so that the test analysis and pass can test the behaviour of
/// the dense data-flow analysis on the callgraph.
class UnderlyingValueAnalysis
: public SparseDataFlowAnalysis<UnderlyingValueLattice> {
public:
using SparseDataFlowAnalysis::SparseDataFlowAnalysis;
/// The underlying value of the results of an operation are not known.
void visitOperation(Operation *op,
ArrayRef<const UnderlyingValueLattice *> operands,
ArrayRef<UnderlyingValueLattice *> results) override {
setAllToEntryStates(results);
}
/// At an entry point, the underlying value of a value is itself.
void setToEntryState(UnderlyingValueLattice *lattice) override {
propagateIfChanged(lattice,
lattice->join(UnderlyingValue{lattice->getPoint()}));
}
/// Look for the most underlying value of a value.
static Value
getMostUnderlyingValue(Value value,
function_ref<const UnderlyingValueLattice *(Value)>
getUnderlyingValueFn) {
const UnderlyingValueLattice *underlying;
do {
underlying = getUnderlyingValueFn(value);
if (!underlying || underlying->getValue().isUninitialized())
return {};
Value underlyingValue = underlying->getValue().getUnderlyingValue();
if (underlyingValue == value)
break;
value = underlyingValue;
} while (true);
return value;
}
};
} // namespace test
} // namespace dataflow
} // namespace mlir