Files
clang-p2996/mlir/test/lib/Transforms/TestLoopFusion.cpp
Diego Caballero d7058acc14 [mlir] Add MemRef filter to affine data copy optimization
This patch extends affine data copy optimization utility with an
optional memref filter argument. When the memref filter is used, data
copy optimization will only generate copies for such a memref.

Note: this patch is just porting the memref filter feature from Uday's
'hop' branch: https://github.com/bondhugula/llvm-project/tree/hop.

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D74342
2020-02-14 13:41:45 -08:00

209 lines
7.6 KiB
C++

//===- TestLoopFusion.cpp - Test loop fusion ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to test various loop fusion utility functions.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Passes.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/LoopFusionUtils.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "test-loop-fusion"
using namespace mlir;
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
static llvm::cl::opt<bool> clTestDependenceCheck(
"test-loop-fusion-dependence-check",
llvm::cl::desc("Enable testing of loop fusion dependence check"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool> clTestSliceComputation(
"test-loop-fusion-slice-computation",
llvm::cl::desc("Enable testing of loop fusion slice computation"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool> clTestLoopFusionTransformation(
"test-loop-fusion-transformation",
llvm::cl::desc("Enable testing of loop fusion transformation"),
llvm::cl::cat(clOptionsCategory));
namespace {
struct TestLoopFusion : public FunctionPass<TestLoopFusion> {
void runOnFunction() override;
};
} // end anonymous namespace
// Run fusion dependence check on 'loops[i]' and 'loops[j]' at loop depths
// in range ['loopDepth' + 1, 'maxLoopDepth'].
// Emits a remark on 'loops[i]' if a fusion-preventing dependence exists.
// Returns false as IR is not transformed.
static bool testDependenceCheck(AffineForOp srcForOp, AffineForOp dstForOp,
unsigned i, unsigned j, unsigned loopDepth,
unsigned maxLoopDepth) {
mlir::ComputationSliceState sliceUnion;
for (unsigned d = loopDepth + 1; d <= maxLoopDepth; ++d) {
FusionResult result =
mlir::canFuseLoops(srcForOp, dstForOp, d, &sliceUnion);
if (result.value == FusionResult::FailBlockDependence) {
srcForOp.getOperation()->emitRemark("block-level dependence preventing"
" fusion of loop nest ")
<< i << " into loop nest " << j << " at depth " << loopDepth;
}
}
return false;
}
// Returns the index of 'op' in its block.
static unsigned getBlockIndex(Operation &op) {
unsigned index = 0;
for (auto &opX : *op.getBlock()) {
if (&op == &opX)
break;
++index;
}
return index;
}
// Returns a string representation of 'sliceUnion'.
static std::string getSliceStr(const mlir::ComputationSliceState &sliceUnion) {
std::string result;
llvm::raw_string_ostream os(result);
// Slice insertion point format [loop-depth, operation-block-index]
unsigned ipd = getNestingDepth(*sliceUnion.insertPoint);
unsigned ipb = getBlockIndex(*sliceUnion.insertPoint);
os << "insert point: (" << std::to_string(ipd) << ", " << std::to_string(ipb)
<< ")";
assert(sliceUnion.lbs.size() == sliceUnion.ubs.size());
os << " loop bounds: ";
for (unsigned k = 0, e = sliceUnion.lbs.size(); k < e; ++k) {
os << '[';
sliceUnion.lbs[k].print(os);
os << ", ";
sliceUnion.ubs[k].print(os);
os << "] ";
}
return os.str();
}
// Computes fusion slice union on 'loops[i]' and 'loops[j]' at loop depths
// in range ['loopDepth' + 1, 'maxLoopDepth'].
// Emits a string representation of the slice union as a remark on 'loops[j]'.
// Returns false as IR is not transformed.
static bool testSliceComputation(AffineForOp forOpA, AffineForOp forOpB,
unsigned i, unsigned j, unsigned loopDepth,
unsigned maxLoopDepth) {
for (unsigned d = loopDepth + 1; d <= maxLoopDepth; ++d) {
mlir::ComputationSliceState sliceUnion;
FusionResult result = mlir::canFuseLoops(forOpA, forOpB, d, &sliceUnion);
if (result.value == FusionResult::Success) {
forOpB.getOperation()->emitRemark("slice (")
<< " src loop: " << i << ", dst loop: " << j << ", depth: " << d
<< " : " << getSliceStr(sliceUnion) << ")";
}
}
return false;
}
// Attempts to fuse 'forOpA' into 'forOpB' at loop depths in range
// ['loopDepth' + 1, 'maxLoopDepth'].
// Returns true if loops were successfully fused, false otherwise.
static bool testLoopFusionTransformation(AffineForOp forOpA, AffineForOp forOpB,
unsigned i, unsigned j,
unsigned loopDepth,
unsigned maxLoopDepth) {
for (unsigned d = loopDepth + 1; d <= maxLoopDepth; ++d) {
mlir::ComputationSliceState sliceUnion;
FusionResult result = mlir::canFuseLoops(forOpA, forOpB, d, &sliceUnion);
if (result.value == FusionResult::Success) {
mlir::fuseLoops(forOpA, forOpB, &sliceUnion);
// Note: 'forOpA' is removed to simplify test output. A proper loop
// fusion pass should check the data dependence graph and run memref
// region analysis to ensure removing 'forOpA' is safe.
forOpA.erase();
return true;
}
}
return false;
}
using LoopFunc = function_ref<bool(AffineForOp, AffineForOp, unsigned, unsigned,
unsigned, unsigned)>;
// Run tests on all combinations of src/dst loop nests in 'depthToLoops'.
// If 'return_on_change' is true, returns on first invocation of 'fn' which
// returns true.
static bool
iterateLoops(DenseMap<unsigned, SmallVector<AffineForOp, 2>> &depthToLoops,
LoopFunc fn, bool return_on_change = false) {
bool changed = false;
for (auto &depthAndLoops : depthToLoops) {
unsigned loopDepth = depthAndLoops.first;
auto &loops = depthAndLoops.second;
unsigned numLoops = loops.size();
for (unsigned j = 0; j < numLoops; ++j) {
for (unsigned k = 0; k < numLoops; ++k) {
if (j != k)
changed |=
fn(loops[j], loops[k], j, k, loopDepth, depthToLoops.size());
if (changed && return_on_change)
return true;
}
}
}
return changed;
}
void TestLoopFusion::runOnFunction() {
DenseMap<unsigned, SmallVector<AffineForOp, 2>> depthToLoops;
if (clTestLoopFusionTransformation) {
// Run loop fusion until a fixed point is reached.
do {
depthToLoops.clear();
// Gather all AffineForOps by loop depth.
gatherLoops(getFunction(), depthToLoops);
// Try to fuse all combinations of src/dst loop nests in 'depthToLoops'.
} while (iterateLoops(depthToLoops, testLoopFusionTransformation,
/*return_on_change=*/true));
return;
}
// Gather all AffineForOps by loop depth.
gatherLoops(getFunction(), depthToLoops);
// Run tests on all combinations of src/dst loop nests in 'depthToLoops'.
if (clTestDependenceCheck)
iterateLoops(depthToLoops, testDependenceCheck);
if (clTestSliceComputation)
iterateLoops(depthToLoops, testSliceComputation);
}
namespace mlir {
void registerTestLoopFusion() {
PassRegistration<TestLoopFusion>("test-loop-fusion",
"Tests loop fusion utility functions.");
}
} // namespace mlir