Files
clang-p2996/lld/MachO/InputFiles.cpp
Jez Ng d9b6f7e312 [lld-macho] Teach ICF to dedup functions with identical unwind info
Dedup'ing unwind info is tricky because each CUE contains a different
function address, if ICF operated naively and compared the entire
contents of each CUE, entries with identical unwind info but belonging
to different functions would never be considered identical. To work
around this problem, we slice away the function address before
performing ICF. We rely on `relocateCompactUnwind()` to correctly handle
these truncated input sections.

Here are the numbers before and after D109944, D109945, and this diff
were applied, as tested on my 3.2 GHz 16-Core Intel Xeon W:

Without any optimizations:

             base           diff           difference (95% CI)
  sys_time   0.849 ± 0.015  0.896 ± 0.012  [  +4.8% ..   +6.2%]
  user_time  3.357 ± 0.030  3.512 ± 0.023  [  +4.3% ..   +5.0%]
  wall_time  3.944 ± 0.039  4.032 ± 0.031  [  +1.8% ..   +2.6%]
  samples    40             38

With `-dead_strip`:

             base           diff           difference (95% CI)
  sys_time   0.847 ± 0.010  0.896 ± 0.012  [  +5.2% ..   +6.5%]
  user_time  3.377 ± 0.014  3.532 ± 0.015  [  +4.4% ..   +4.8%]
  wall_time  3.962 ± 0.024  4.060 ± 0.030  [  +2.1% ..   +2.8%]
  samples    47             30

With `-dead_strip` and `--icf=all`:

             base           diff           difference (95% CI)
  sys_time   0.935 ± 0.013  0.957 ± 0.018  [  +1.5% ..   +3.2%]
  user_time  3.472 ± 0.022  6.531 ± 0.046  [ +87.6% ..  +88.7%]
  wall_time  4.080 ± 0.040  5.329 ± 0.060  [ +30.0% ..  +31.2%]
  samples    37             30

Unsurprisingly, ICF is now a lot slower, likely due to the much larger
number of input sections it needs to process. But the rest of the
linker only suffers a mild slowdown.

Note that the compact-unwind-bad-reloc.s test was expanded because we
now handle the relocation for CUE's function address in a separate code
path from the rest of the CUE relocations. The extended test covers both
code paths.

Reviewed By: #lld-macho, oontvoo

Differential Revision: https://reviews.llvm.org/D109946
2021-11-12 16:02:49 -05:00

1480 lines
59 KiB
C++

//===- InputFiles.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains functions to parse Mach-O object files. In this comment,
// we describe the Mach-O file structure and how we parse it.
//
// Mach-O is not very different from ELF or COFF. The notion of symbols,
// sections and relocations exists in Mach-O as it does in ELF and COFF.
//
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
// In ELF/COFF, sections are an atomic unit of data copied from input files to
// output files. When we merge or garbage-collect sections, we treat each
// section as an atomic unit. In Mach-O, that's not the case. Sections can
// consist of multiple subsections, and subsections are a unit of merging and
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
// ELF/COFF's sections than Mach-O's sections are.
//
// A section can have multiple symbols. A symbol that does not have the
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
// definition, a symbol is always present at the beginning of each subsection. A
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
// point to a middle of a subsection.
//
// The notion of subsections also affects how relocations are represented in
// Mach-O. All references within a section need to be explicitly represented as
// relocations if they refer to different subsections, because we obviously need
// to fix up addresses if subsections are laid out in an output file differently
// than they were in object files. To represent that, Mach-O relocations can
// refer to an unnamed location via its address. Scattered relocations (those
// with the R_SCATTERED bit set) always refer to unnamed locations.
// Non-scattered relocations refer to an unnamed location if r_extern is not set
// and r_symbolnum is zero.
//
// Without the above differences, I think you can use your knowledge about ELF
// and COFF for Mach-O.
//
//===----------------------------------------------------------------------===//
#include "InputFiles.h"
#include "Config.h"
#include "Driver.h"
#include "Dwarf.h"
#include "ExportTrie.h"
#include "InputSection.h"
#include "MachOStructs.h"
#include "ObjC.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/DWARF.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Reproduce.h"
#include "llvm/ADT/iterator.h"
#include "llvm/BinaryFormat/MachO.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TarWriter.h"
#include "llvm/TextAPI/Architecture.h"
#include "llvm/TextAPI/InterfaceFile.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace llvm::support::endian;
using namespace llvm::sys;
using namespace lld;
using namespace lld::macho;
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
std::string lld::toString(const InputFile *f) {
if (!f)
return "<internal>";
// Multiple dylibs can be defined in one .tbd file.
if (auto dylibFile = dyn_cast<DylibFile>(f))
if (f->getName().endswith(".tbd"))
return (f->getName() + "(" + dylibFile->installName + ")").str();
if (f->archiveName.empty())
return std::string(f->getName());
return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
}
SetVector<InputFile *> macho::inputFiles;
std::unique_ptr<TarWriter> macho::tar;
int InputFile::idCount = 0;
static VersionTuple decodeVersion(uint32_t version) {
unsigned major = version >> 16;
unsigned minor = (version >> 8) & 0xffu;
unsigned subMinor = version & 0xffu;
return VersionTuple(major, minor, subMinor);
}
static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
return {};
const char *hdr = input->mb.getBufferStart();
std::vector<PlatformInfo> platformInfos;
for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
PlatformInfo info;
info.target.Platform = static_cast<PlatformKind>(cmd->platform);
info.minimum = decodeVersion(cmd->minos);
platformInfos.emplace_back(std::move(info));
}
for (auto *cmd : findCommands<version_min_command>(
hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
PlatformInfo info;
switch (cmd->cmd) {
case LC_VERSION_MIN_MACOSX:
info.target.Platform = PlatformKind::macOS;
break;
case LC_VERSION_MIN_IPHONEOS:
info.target.Platform = PlatformKind::iOS;
break;
case LC_VERSION_MIN_TVOS:
info.target.Platform = PlatformKind::tvOS;
break;
case LC_VERSION_MIN_WATCHOS:
info.target.Platform = PlatformKind::watchOS;
break;
}
info.minimum = decodeVersion(cmd->version);
platformInfos.emplace_back(std::move(info));
}
return platformInfos;
}
static bool checkCompatibility(const InputFile *input) {
std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
if (platformInfos.empty())
return true;
auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
return removeSimulator(info.target.Platform) ==
removeSimulator(config->platform());
});
if (it == platformInfos.end()) {
std::string platformNames;
raw_string_ostream os(platformNames);
interleave(
platformInfos, os,
[&](const PlatformInfo &info) {
os << getPlatformName(info.target.Platform);
},
"/");
error(toString(input) + " has platform " + platformNames +
Twine(", which is different from target platform ") +
getPlatformName(config->platform()));
return false;
}
if (it->minimum > config->platformInfo.minimum)
warn(toString(input) + " has version " + it->minimum.getAsString() +
", which is newer than target minimum of " +
config->platformInfo.minimum.getAsString());
return true;
}
// This cache mostly exists to store system libraries (and .tbds) as they're
// loaded, rather than the input archives, which are already cached at a higher
// level, and other files like the filelist that are only read once.
// Theoretically this caching could be more efficient by hoisting it, but that
// would require altering many callers to track the state.
DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
// Open a given file path and return it as a memory-mapped file.
Optional<MemoryBufferRef> macho::readFile(StringRef path) {
CachedHashStringRef key(path);
auto entry = cachedReads.find(key);
if (entry != cachedReads.end())
return entry->second;
ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
if (std::error_code ec = mbOrErr.getError()) {
error("cannot open " + path + ": " + ec.message());
return None;
}
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
MemoryBufferRef mbref = mb->getMemBufferRef();
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
// If this is a regular non-fat file, return it.
const char *buf = mbref.getBufferStart();
const auto *hdr = reinterpret_cast<const fat_header *>(buf);
if (mbref.getBufferSize() < sizeof(uint32_t) ||
read32be(&hdr->magic) != FAT_MAGIC) {
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return cachedReads[key] = mbref;
}
// Object files and archive files may be fat files, which contain multiple
// real files for different CPU ISAs. Here, we search for a file that matches
// with the current link target and returns it as a MemoryBufferRef.
const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
if (reinterpret_cast<const char *>(arch + i + 1) >
buf + mbref.getBufferSize()) {
error(path + ": fat_arch struct extends beyond end of file");
return None;
}
if (read32be(&arch[i].cputype) != static_cast<uint32_t>(target->cpuType) ||
read32be(&arch[i].cpusubtype) != target->cpuSubtype)
continue;
uint32_t offset = read32be(&arch[i].offset);
uint32_t size = read32be(&arch[i].size);
if (offset + size > mbref.getBufferSize())
error(path + ": slice extends beyond end of file");
if (tar)
tar->append(relativeToRoot(path), mbref.getBuffer());
return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
path.copy(bAlloc));
}
error("unable to find matching architecture in " + path);
return None;
}
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
: id(idCount++), fileKind(kind), name(saver.save(interface.getPath())) {}
// Some sections comprise of fixed-size records, so instead of splitting them at
// symbol boundaries, we split them based on size. Records are distinct from
// literals in that they may contain references to other sections, instead of
// being leaf nodes in the InputSection graph.
//
// Note that "record" is a term I came up with. In contrast, "literal" is a term
// used by the Mach-O format.
static Optional<size_t> getRecordSize(StringRef segname, StringRef name) {
if (name == section_names::cfString) {
if (config->icfLevel != ICFLevel::none && segname == segment_names::data)
return target->wordSize == 8 ? 32 : 16;
} else if (name == section_names::compactUnwind) {
if (segname == segment_names::ld)
return target->wordSize == 8 ? 32 : 20;
}
return {};
}
template <class Section>
void ObjFile::parseSections(ArrayRef<Section> sections) {
subsections.reserve(sections.size());
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
for (const Section &sec : sections) {
StringRef name =
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
StringRef segname =
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
: buf + sec.offset,
static_cast<size_t>(sec.size)};
if (sec.align >= 32) {
error("alignment " + std::to_string(sec.align) + " of section " + name +
" is too large");
subsections.push_back({});
continue;
}
uint32_t align = 1 << sec.align;
uint32_t flags = sec.flags;
auto splitRecords = [&](int recordSize) -> void {
subsections.push_back({});
if (data.empty())
return;
SubsectionMap &subsecMap = subsections.back();
subsecMap.reserve(data.size() / recordSize);
auto *isec = make<ConcatInputSection>(
segname, name, this, data.slice(0, recordSize), align, flags);
subsecMap.push_back({0, isec});
for (uint64_t off = recordSize; off < data.size(); off += recordSize) {
// Copying requires less memory than constructing a fresh InputSection.
auto *copy = make<ConcatInputSection>(*isec);
copy->data = data.slice(off, recordSize);
subsecMap.push_back({off, copy});
}
};
if (sectionType(sec.flags) == S_CSTRING_LITERALS ||
(config->dedupLiterals && isWordLiteralSection(sec.flags))) {
if (sec.nreloc && config->dedupLiterals)
fatal(toString(this) + " contains relocations in " + sec.segname + "," +
sec.sectname +
", so LLD cannot deduplicate literals. Try re-running without "
"--deduplicate-literals.");
InputSection *isec;
if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
isec =
make<CStringInputSection>(segname, name, this, data, align, flags);
// FIXME: parallelize this?
cast<CStringInputSection>(isec)->splitIntoPieces();
} else {
isec = make<WordLiteralInputSection>(segname, name, this, data, align,
flags);
}
subsections.push_back({{0, isec}});
} else if (auto recordSize = getRecordSize(segname, name)) {
splitRecords(*recordSize);
} else if (segname == segment_names::llvm) {
// ld64 does not appear to emit contents from sections within the __LLVM
// segment. Symbols within those sections point to bitcode metadata
// instead of actual symbols. Global symbols within those sections could
// have the same name without causing duplicate symbol errors. Push an
// empty map to ensure indices line up for the remaining sections.
// TODO: Evaluate whether the bitcode metadata is needed.
subsections.push_back({});
} else {
auto *isec =
make<ConcatInputSection>(segname, name, this, data, align, flags);
if (isDebugSection(isec->getFlags()) &&
isec->getSegName() == segment_names::dwarf) {
// Instead of emitting DWARF sections, we emit STABS symbols to the
// object files that contain them. We filter them out early to avoid
// parsing their relocations unnecessarily. But we must still push an
// empty map to ensure the indices line up for the remaining sections.
subsections.push_back({});
debugSections.push_back(isec);
} else {
subsections.push_back({{0, isec}});
}
}
}
}
// Find the subsection corresponding to the greatest section offset that is <=
// that of the given offset.
//
// offset: an offset relative to the start of the original InputSection (before
// any subsection splitting has occurred). It will be updated to represent the
// same location as an offset relative to the start of the containing
// subsection.
static InputSection *findContainingSubsection(SubsectionMap &map,
uint64_t *offset) {
auto it = std::prev(llvm::upper_bound(
map, *offset, [](uint64_t value, SubsectionEntry subsecEntry) {
return value < subsecEntry.offset;
}));
*offset -= it->offset;
return it->isec;
}
template <class Section>
static bool validateRelocationInfo(InputFile *file, const Section &sec,
relocation_info rel) {
const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
bool valid = true;
auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
valid = false;
return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
std::to_string(rel.r_address) + " of " + sec.segname + "," +
sec.sectname + " in " + toString(file))
.str();
};
if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
error(message("must be extern"));
if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
"be PC-relative"));
if (isThreadLocalVariables(sec.flags) &&
!relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
error(message("not allowed in thread-local section, must be UNSIGNED"));
if (rel.r_length < 2 || rel.r_length > 3 ||
!relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
error(message("has width " + std::to_string(1 << rel.r_length) +
" bytes, but must be " +
widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
" bytes"));
}
return valid;
}
template <class Section>
void ObjFile::parseRelocations(ArrayRef<Section> sectionHeaders,
const Section &sec, SubsectionMap &subsecMap) {
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<relocation_info> relInfos(
reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
auto subsecIt = subsecMap.rbegin();
for (size_t i = 0; i < relInfos.size(); i++) {
// Paired relocations serve as Mach-O's method for attaching a
// supplemental datum to a primary relocation record. ELF does not
// need them because the *_RELOC_RELA records contain the extra
// addend field, vs. *_RELOC_REL which omit the addend.
//
// The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
// and the paired *_RELOC_UNSIGNED record holds the minuend. The
// datum for each is a symbolic address. The result is the offset
// between two addresses.
//
// The ARM64_RELOC_ADDEND record holds the addend, and the paired
// ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
// base symbolic address.
//
// Note: X86 does not use *_RELOC_ADDEND because it can embed an
// addend into the instruction stream. On X86, a relocatable address
// field always occupies an entire contiguous sequence of byte(s),
// so there is no need to merge opcode bits with address
// bits. Therefore, it's easy and convenient to store addends in the
// instruction-stream bytes that would otherwise contain zeroes. By
// contrast, RISC ISAs such as ARM64 mix opcode bits with with
// address bits so that bitwise arithmetic is necessary to extract
// and insert them. Storing addends in the instruction stream is
// possible, but inconvenient and more costly at link time.
int64_t pairedAddend = 0;
relocation_info relInfo = relInfos[i];
if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
relInfo = relInfos[++i];
}
assert(i < relInfos.size());
if (!validateRelocationInfo(this, sec, relInfo))
continue;
if (relInfo.r_address & R_SCATTERED)
fatal("TODO: Scattered relocations not supported");
bool isSubtrahend =
target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
assert(!(embeddedAddend && pairedAddend));
int64_t totalAddend = pairedAddend + embeddedAddend;
Reloc r;
r.type = relInfo.r_type;
r.pcrel = relInfo.r_pcrel;
r.length = relInfo.r_length;
r.offset = relInfo.r_address;
if (relInfo.r_extern) {
r.referent = symbols[relInfo.r_symbolnum];
r.addend = isSubtrahend ? 0 : totalAddend;
} else {
assert(!isSubtrahend);
const Section &referentSec = sectionHeaders[relInfo.r_symbolnum - 1];
uint64_t referentOffset;
if (relInfo.r_pcrel) {
// The implicit addend for pcrel section relocations is the pcrel offset
// in terms of the addresses in the input file. Here we adjust it so
// that it describes the offset from the start of the referent section.
// FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
// have pcrel section relocations. We may want to factor this out into
// the arch-specific .cpp file.
assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
referentOffset =
sec.addr + relInfo.r_address + 4 + totalAddend - referentSec.addr;
} else {
// The addend for a non-pcrel relocation is its absolute address.
referentOffset = totalAddend - referentSec.addr;
}
SubsectionMap &referentSubsecMap = subsections[relInfo.r_symbolnum - 1];
r.referent = findContainingSubsection(referentSubsecMap, &referentOffset);
r.addend = referentOffset;
}
// Find the subsection that this relocation belongs to.
// Though not required by the Mach-O format, clang and gcc seem to emit
// relocations in order, so let's take advantage of it. However, ld64 emits
// unsorted relocations (in `-r` mode), so we have a fallback for that
// uncommon case.
InputSection *subsec;
while (subsecIt != subsecMap.rend() && subsecIt->offset > r.offset)
++subsecIt;
if (subsecIt == subsecMap.rend() ||
subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
subsec = findContainingSubsection(subsecMap, &r.offset);
// Now that we know the relocs are unsorted, avoid trying the 'fast path'
// for the other relocations.
subsecIt = subsecMap.rend();
} else {
subsec = subsecIt->isec;
r.offset -= subsecIt->offset;
}
subsec->relocs.push_back(r);
if (isSubtrahend) {
relocation_info minuendInfo = relInfos[++i];
// SUBTRACTOR relocations should always be followed by an UNSIGNED one
// attached to the same address.
assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
relInfo.r_address == minuendInfo.r_address);
Reloc p;
p.type = minuendInfo.r_type;
if (minuendInfo.r_extern) {
p.referent = symbols[minuendInfo.r_symbolnum];
p.addend = totalAddend;
} else {
uint64_t referentOffset =
totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
SubsectionMap &referentSubsecMap =
subsections[minuendInfo.r_symbolnum - 1];
p.referent =
findContainingSubsection(referentSubsecMap, &referentOffset);
p.addend = referentOffset;
}
subsec->relocs.push_back(p);
}
}
}
template <class NList>
static macho::Symbol *createDefined(const NList &sym, StringRef name,
InputSection *isec, uint64_t value,
uint64_t size) {
// Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
// N_EXT: Global symbols. These go in the symbol table during the link,
// and also in the export table of the output so that the dynamic
// linker sees them.
// N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
// symbol table during the link so that duplicates are
// either reported (for non-weak symbols) or merged
// (for weak symbols), but they do not go in the export
// table of the output.
// N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
// object files) may produce them. LLD does not yet support -r.
// These are translation-unit scoped, identical to the `0` case.
// 0: Translation-unit scoped. These are not in the symbol table during
// link, and not in the export table of the output either.
bool isWeakDefCanBeHidden =
(sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
if (sym.n_type & N_EXT) {
bool isPrivateExtern = sym.n_type & N_PEXT;
// lld's behavior for merging symbols is slightly different from ld64:
// ld64 picks the winning symbol based on several criteria (see
// pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
// just merges metadata and keeps the contents of the first symbol
// with that name (see SymbolTable::addDefined). For:
// * inline function F in a TU built with -fvisibility-inlines-hidden
// * and inline function F in another TU built without that flag
// ld64 will pick the one from the file built without
// -fvisibility-inlines-hidden.
// lld will instead pick the one listed first on the link command line and
// give it visibility as if the function was built without
// -fvisibility-inlines-hidden.
// If both functions have the same contents, this will have the same
// behavior. If not, it won't, but the input had an ODR violation in
// that case.
//
// Similarly, merging a symbol
// that's isPrivateExtern and not isWeakDefCanBeHidden with one
// that's not isPrivateExtern but isWeakDefCanBeHidden technically
// should produce one
// that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
// with ld64's semantics, because it means the non-private-extern
// definition will continue to take priority if more private extern
// definitions are encountered. With lld's semantics there's no observable
// difference between a symbol that's isWeakDefCanBeHidden or one that's
// privateExtern -- neither makes it into the dynamic symbol table. So just
// promote isWeakDefCanBeHidden to isPrivateExtern here.
if (isWeakDefCanBeHidden)
isPrivateExtern = true;
return symtab->addDefined(
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
isPrivateExtern, sym.n_desc & N_ARM_THUMB_DEF,
sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
}
assert(!isWeakDefCanBeHidden &&
"weak_def_can_be_hidden on already-hidden symbol?");
return make<Defined>(
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
/*isExternal=*/false, /*isPrivateExtern=*/false,
sym.n_desc & N_ARM_THUMB_DEF, sym.n_desc & REFERENCED_DYNAMICALLY,
sym.n_desc & N_NO_DEAD_STRIP);
}
// Absolute symbols are defined symbols that do not have an associated
// InputSection. They cannot be weak.
template <class NList>
static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
StringRef name) {
if (sym.n_type & N_EXT) {
return symtab->addDefined(
name, file, nullptr, sym.n_value, /*size=*/0,
/*isWeakDef=*/false, sym.n_type & N_PEXT, sym.n_desc & N_ARM_THUMB_DEF,
/*isReferencedDynamically=*/false, sym.n_desc & N_NO_DEAD_STRIP);
}
return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
/*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false,
sym.n_desc & N_ARM_THUMB_DEF,
/*isReferencedDynamically=*/false,
sym.n_desc & N_NO_DEAD_STRIP);
}
template <class NList>
macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
StringRef name) {
uint8_t type = sym.n_type & N_TYPE;
switch (type) {
case N_UNDF:
return sym.n_value == 0
? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
: symtab->addCommon(name, this, sym.n_value,
1 << GET_COMM_ALIGN(sym.n_desc),
sym.n_type & N_PEXT);
case N_ABS:
return createAbsolute(sym, this, name);
case N_PBUD:
case N_INDR:
error("TODO: support symbols of type " + std::to_string(type));
return nullptr;
case N_SECT:
llvm_unreachable(
"N_SECT symbols should not be passed to parseNonSectionSymbol");
default:
llvm_unreachable("invalid symbol type");
}
}
template <class NList> static bool isUndef(const NList &sym) {
return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
}
template <class LP>
void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
ArrayRef<typename LP::nlist> nList,
const char *strtab, bool subsectionsViaSymbols) {
using NList = typename LP::nlist;
// Groups indices of the symbols by the sections that contain them.
std::vector<std::vector<uint32_t>> symbolsBySection(subsections.size());
symbols.resize(nList.size());
SmallVector<unsigned, 32> undefineds;
for (uint32_t i = 0; i < nList.size(); ++i) {
const NList &sym = nList[i];
// Ignore debug symbols for now.
// FIXME: may need special handling.
if (sym.n_type & N_STAB)
continue;
StringRef name = strtab + sym.n_strx;
if ((sym.n_type & N_TYPE) == N_SECT) {
SubsectionMap &subsecMap = subsections[sym.n_sect - 1];
// parseSections() may have chosen not to parse this section.
if (subsecMap.empty())
continue;
symbolsBySection[sym.n_sect - 1].push_back(i);
} else if (isUndef(sym)) {
undefineds.push_back(i);
} else {
symbols[i] = parseNonSectionSymbol(sym, name);
}
}
for (size_t i = 0; i < subsections.size(); ++i) {
SubsectionMap &subsecMap = subsections[i];
if (subsecMap.empty())
continue;
std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
uint64_t sectionAddr = sectionHeaders[i].addr;
uint32_t sectionAlign = 1u << sectionHeaders[i].align;
InputSection *lastIsec = subsecMap.back().isec;
// Record-based sections have already been split into subsections during
// parseSections(), so we simply need to match Symbols to the corresponding
// subsection here.
if (getRecordSize(lastIsec->getSegName(), lastIsec->getName())) {
for (size_t j = 0; j < symbolIndices.size(); ++j) {
uint32_t symIndex = symbolIndices[j];
const NList &sym = nList[symIndex];
StringRef name = strtab + sym.n_strx;
uint64_t symbolOffset = sym.n_value - sectionAddr;
InputSection *isec = findContainingSubsection(subsecMap, &symbolOffset);
if (symbolOffset != 0) {
error(toString(lastIsec) + ": symbol " + name +
" at misaligned offset");
continue;
}
symbols[symIndex] = createDefined(sym, name, isec, 0, isec->getSize());
}
continue;
}
// Calculate symbol sizes and create subsections by splitting the sections
// along symbol boundaries.
// We populate subsecMap by repeatedly splitting the last (highest address)
// subsection.
llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
return nList[lhs].n_value < nList[rhs].n_value;
});
SubsectionEntry subsecEntry = subsecMap.back();
for (size_t j = 0; j < symbolIndices.size(); ++j) {
uint32_t symIndex = symbolIndices[j];
const NList &sym = nList[symIndex];
StringRef name = strtab + sym.n_strx;
InputSection *isec = subsecEntry.isec;
uint64_t subsecAddr = sectionAddr + subsecEntry.offset;
size_t symbolOffset = sym.n_value - subsecAddr;
uint64_t symbolSize =
j + 1 < symbolIndices.size()
? nList[symbolIndices[j + 1]].n_value - sym.n_value
: isec->data.size() - symbolOffset;
// There are 4 cases where we do not need to create a new subsection:
// 1. If the input file does not use subsections-via-symbols.
// 2. Multiple symbols at the same address only induce one subsection.
// (The symbolOffset == 0 check covers both this case as well as
// the first loop iteration.)
// 3. Alternative entry points do not induce new subsections.
// 4. If we have a literal section (e.g. __cstring and __literal4).
if (!subsectionsViaSymbols || symbolOffset == 0 ||
sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
symbols[symIndex] =
createDefined(sym, name, isec, symbolOffset, symbolSize);
continue;
}
auto *concatIsec = cast<ConcatInputSection>(isec);
auto *nextIsec = make<ConcatInputSection>(*concatIsec);
nextIsec->wasCoalesced = false;
if (isZeroFill(isec->getFlags())) {
// Zero-fill sections have NULL data.data() non-zero data.size()
nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
isec->data = {nullptr, symbolOffset};
} else {
nextIsec->data = isec->data.slice(symbolOffset);
isec->data = isec->data.slice(0, symbolOffset);
}
// By construction, the symbol will be at offset zero in the new
// subsection.
symbols[symIndex] =
createDefined(sym, name, nextIsec, /*value=*/0, symbolSize);
// TODO: ld64 appears to preserve the original alignment as well as each
// subsection's offset from the last aligned address. We should consider
// emulating that behavior.
nextIsec->align = MinAlign(sectionAlign, sym.n_value);
subsecMap.push_back({sym.n_value - sectionAddr, nextIsec});
subsecEntry = subsecMap.back();
}
}
// Undefined symbols can trigger recursive fetch from Archives due to
// LazySymbols. Process defined symbols first so that the relative order
// between a defined symbol and an undefined symbol does not change the
// symbol resolution behavior. In addition, a set of interconnected symbols
// will all be resolved to the same file, instead of being resolved to
// different files.
for (unsigned i : undefineds) {
const NList &sym = nList[i];
StringRef name = strtab + sym.n_strx;
symbols[i] = parseNonSectionSymbol(sym, name);
}
}
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
StringRef sectName)
: InputFile(OpaqueKind, mb) {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
ConcatInputSection *isec =
make<ConcatInputSection>(segName.take_front(16), sectName.take_front(16),
/*file=*/this, data);
isec->live = true;
subsections.push_back({{0, isec}});
}
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName)
: InputFile(ObjKind, mb), modTime(modTime) {
this->archiveName = std::string(archiveName);
if (target->wordSize == 8)
parse<LP64>();
else
parse<ILP32>();
}
template <class LP> void ObjFile::parse() {
using Header = typename LP::mach_header;
using SegmentCommand = typename LP::segment_command;
using Section = typename LP::section;
using NList = typename LP::nlist;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
Architecture arch = getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
if (arch != config->arch()) {
auto msg = config->errorForArchMismatch
? static_cast<void (*)(const Twine &)>(error)
: warn;
msg(toString(this) + " has architecture " + getArchitectureName(arch) +
" which is incompatible with target architecture " +
getArchitectureName(config->arch()));
return;
}
if (!checkCompatibility(this))
return;
for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
StringRef data{reinterpret_cast<const char *>(cmd + 1),
cmd->cmdsize - sizeof(linker_option_command)};
parseLCLinkerOption(this, cmd->count, data);
}
ArrayRef<Section> sectionHeaders;
if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
sectionHeaders =
ArrayRef<Section>{reinterpret_cast<const Section *>(c + 1), c->nsects};
parseSections(sectionHeaders);
}
// TODO: Error on missing LC_SYMTAB?
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
auto *c = reinterpret_cast<const symtab_command *>(cmd);
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
c->nsyms);
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
}
// The relocations may refer to the symbols, so we parse them after we have
// parsed all the symbols.
for (size_t i = 0, n = subsections.size(); i < n; ++i)
if (!subsections[i].empty())
parseRelocations(sectionHeaders, sectionHeaders[i], subsections[i]);
parseDebugInfo();
if (config->emitDataInCodeInfo)
parseDataInCode();
registerCompactUnwind();
}
void ObjFile::parseDebugInfo() {
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
if (!dObj)
return;
auto *ctx = make<DWARFContext>(
std::move(dObj), "",
[&](Error err) {
warn(toString(this) + ": " + toString(std::move(err)));
},
[&](Error warning) {
warn(toString(this) + ": " + toString(std::move(warning)));
});
// TODO: Since object files can contain a lot of DWARF info, we should verify
// that we are parsing just the info we need
const DWARFContext::compile_unit_range &units = ctx->compile_units();
// FIXME: There can be more than one compile unit per object file. See
// PR48637.
auto it = units.begin();
compileUnit = it->get();
}
void ObjFile::parseDataInCode() {
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
if (!cmd)
return;
const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
dataInCodeEntries = {
reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
c->datasize / sizeof(data_in_code_entry)};
assert(is_sorted(dataInCodeEntries, [](const data_in_code_entry &lhs,
const data_in_code_entry &rhs) {
return lhs.offset < rhs.offset;
}));
}
// Create pointers from symbols to their associated compact unwind entries.
void ObjFile::registerCompactUnwind() {
// First, locate the __compact_unwind section.
SubsectionMap *cuSubsecMap = nullptr;
for (SubsectionMap &map : subsections) {
if (map.empty())
continue;
if (map[0].isec->getSegName() != segment_names::ld)
continue;
cuSubsecMap = &map;
break;
}
if (!cuSubsecMap)
return;
for (SubsectionEntry &entry : *cuSubsecMap) {
ConcatInputSection *isec = cast<ConcatInputSection>(entry.isec);
// Hack!! Since each CUE contains a different function address, if ICF
// operated naively and compared the entire contents of each CUE, entries
// with identical unwind info but belonging to different functions would
// never be considered equivalent. To work around this problem, we slice
// away the function address here. (Note that we do not adjust the offsets
// of the corresponding relocations.) We rely on `relocateCompactUnwind()`
// to correctly handle these truncated input sections.
isec->data = isec->data.slice(target->wordSize);
ConcatInputSection *referentIsec;
for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
Reloc &r = *it;
// We only wish to handle the relocation for CUE::functionAddress.
if (r.offset != 0) {
++it;
continue;
}
uint64_t add = r.addend;
if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
// Check whether the symbol defined in this file is the prevailing one.
// Skip if it is e.g. a weak def that didn't prevail.
if (sym->getFile() != this) {
++it;
continue;
}
add += sym->value;
referentIsec = cast<ConcatInputSection>(sym->isec);
} else {
referentIsec =
cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
}
if (referentIsec->getSegName() != segment_names::text)
error("compact unwind references address in " + toString(referentIsec) +
" which is not in segment __TEXT");
// The functionAddress relocations are typically section relocations.
// However, unwind info operates on a per-symbol basis, so we search for
// the function symbol here.
auto symIt = llvm::lower_bound(
referentIsec->symbols, add,
[](Defined *d, uint64_t add) { return d->value < add; });
// The relocation should point at the exact address of a symbol (with no
// addend).
if (symIt == referentIsec->symbols.end() || (*symIt)->value != add) {
assert(referentIsec->wasCoalesced);
++it;
continue;
}
(*symIt)->compactUnwind = isec;
// Since we've sliced away the functionAddress, we should remove the
// corresponding relocation too. Given that clang emits relocations in
// reverse order of address, this relocation should be at the end of the
// vector for most of our input object files, so this is typically an O(1)
// operation.
it = isec->relocs.erase(it);
}
}
}
// The path can point to either a dylib or a .tbd file.
static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
Optional<MemoryBufferRef> mbref = readFile(path);
if (!mbref) {
error("could not read dylib file at " + path);
return nullptr;
}
return loadDylib(*mbref, umbrella);
}
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
// the first document storing child pointers to the rest of them. When we are
// processing a given TBD file, we store that top-level document in
// currentTopLevelTapi. When processing re-exports, we search its children for
// potentially matching documents in the same TBD file. Note that the children
// themselves don't point to further documents, i.e. this is a two-level tree.
//
// Re-exports can either refer to on-disk files, or to documents within .tbd
// files.
static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
const InterfaceFile *currentTopLevelTapi) {
// Search order:
// 1. Install name basename in -F / -L directories.
{
StringRef stem = path::stem(path);
SmallString<128> frameworkName;
path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
bool isFramework = path.endswith(frameworkName);
if (isFramework) {
for (StringRef dir : config->frameworkSearchPaths) {
SmallString<128> candidate = dir;
path::append(candidate, frameworkName);
if (Optional<StringRef> dylibPath = resolveDylibPath(candidate.str()))
return loadDylib(*dylibPath, umbrella);
}
} else if (Optional<StringRef> dylibPath = findPathCombination(
stem, config->librarySearchPaths, {".tbd", ".dylib"}))
return loadDylib(*dylibPath, umbrella);
}
// 2. As absolute path.
if (path::is_absolute(path, path::Style::posix))
for (StringRef root : config->systemLibraryRoots)
if (Optional<StringRef> dylibPath = resolveDylibPath((root + path).str()))
return loadDylib(*dylibPath, umbrella);
// 3. As relative path.
// TODO: Handle -dylib_file
// Replace @executable_path, @loader_path, @rpath prefixes in install name.
SmallString<128> newPath;
if (config->outputType == MH_EXECUTE &&
path.consume_front("@executable_path/")) {
// ld64 allows overriding this with the undocumented flag -executable_path.
// lld doesn't currently implement that flag.
// FIXME: Consider using finalOutput instead of outputFile.
path::append(newPath, path::parent_path(config->outputFile), path);
path = newPath;
} else if (path.consume_front("@loader_path/")) {
fs::real_path(umbrella->getName(), newPath);
path::remove_filename(newPath);
path::append(newPath, path);
path = newPath;
} else if (path.startswith("@rpath/")) {
for (StringRef rpath : umbrella->rpaths) {
newPath.clear();
if (rpath.consume_front("@loader_path/")) {
fs::real_path(umbrella->getName(), newPath);
path::remove_filename(newPath);
}
path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
if (Optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
return loadDylib(*dylibPath, umbrella);
}
}
// FIXME: Should this be further up?
if (currentTopLevelTapi) {
for (InterfaceFile &child :
make_pointee_range(currentTopLevelTapi->documents())) {
assert(child.documents().empty());
if (path == child.getInstallName()) {
auto file = make<DylibFile>(child, umbrella);
file->parseReexports(child);
return file;
}
}
}
if (Optional<StringRef> dylibPath = resolveDylibPath(path))
return loadDylib(*dylibPath, umbrella);
return nullptr;
}
// If a re-exported dylib is public (lives in /usr/lib or
// /System/Library/Frameworks), then it is considered implicitly linked: we
// should bind to its symbols directly instead of via the re-exporting umbrella
// library.
static bool isImplicitlyLinked(StringRef path) {
if (!config->implicitDylibs)
return false;
if (path::parent_path(path) == "/usr/lib")
return true;
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
if (path.consume_front("/System/Library/Frameworks/")) {
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
return path::filename(path) == frameworkName;
}
return false;
}
static void loadReexport(StringRef path, DylibFile *umbrella,
const InterfaceFile *currentTopLevelTapi) {
DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
if (!reexport)
error("unable to locate re-export with install name " + path);
}
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
bool isBundleLoader)
: InputFile(DylibKind, mb), refState(RefState::Unreferenced),
isBundleLoader(isBundleLoader) {
assert(!isBundleLoader || !umbrella);
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
// Initialize installName.
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
auto *c = reinterpret_cast<const dylib_command *>(cmd);
currentVersion = read32le(&c->dylib.current_version);
compatibilityVersion = read32le(&c->dylib.compatibility_version);
installName =
reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
} else if (!isBundleLoader) {
// macho_executable and macho_bundle don't have LC_ID_DYLIB,
// so it's OK.
error("dylib " + toString(this) + " missing LC_ID_DYLIB load command");
return;
}
if (config->printEachFile)
message(toString(this));
inputFiles.insert(this);
deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
if (!checkCompatibility(this))
return;
checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
rpaths.push_back(rpath);
}
// Initialize symbols.
exportingFile = isImplicitlyLinked(installName) ? this : this->umbrella;
if (const load_command *cmd = findCommand(hdr, LC_DYLD_INFO_ONLY)) {
auto *c = reinterpret_cast<const dyld_info_command *>(cmd);
parseTrie(buf + c->export_off, c->export_size,
[&](const Twine &name, uint64_t flags) {
StringRef savedName = saver.save(name);
if (handleLDSymbol(savedName))
return;
bool isWeakDef = flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
bool isTlv = flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
symbols.push_back(symtab->addDylib(savedName, exportingFile,
isWeakDef, isTlv));
});
} else {
error("LC_DYLD_INFO_ONLY not found in " + toString(this));
return;
}
}
void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
target->headerSize;
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
auto *cmd = reinterpret_cast<const load_command *>(p);
p += cmd->cmdsize;
if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
cmd->cmd == LC_REEXPORT_DYLIB) {
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef reexportPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
loadReexport(reexportPath, exportingFile, nullptr);
}
// FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
// LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
// MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
if (config->namespaceKind == NamespaceKind::flat &&
cmd->cmd == LC_LOAD_DYLIB) {
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
StringRef dylibPath =
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
if (!dylib)
error(Twine("unable to locate library '") + dylibPath +
"' loaded from '" + toString(this) + "' for -flat_namespace");
}
}
}
// Some versions of XCode ship with .tbd files that don't have the right
// platform settings.
static constexpr std::array<StringRef, 3> skipPlatformChecks{
"/usr/lib/system/libsystem_kernel.dylib",
"/usr/lib/system/libsystem_platform.dylib",
"/usr/lib/system/libsystem_pthread.dylib"};
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
bool isBundleLoader)
: InputFile(DylibKind, interface), refState(RefState::Unreferenced),
isBundleLoader(isBundleLoader) {
// FIXME: Add test for the missing TBD code path.
if (umbrella == nullptr)
umbrella = this;
this->umbrella = umbrella;
installName = saver.save(interface.getInstallName());
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
currentVersion = interface.getCurrentVersion().rawValue();
if (config->printEachFile)
message(toString(this));
inputFiles.insert(this);
if (!is_contained(skipPlatformChecks, installName) &&
!is_contained(interface.targets(), config->platformInfo.target)) {
error(toString(this) + " is incompatible with " +
std::string(config->platformInfo.target));
return;
}
checkAppExtensionSafety(interface.isApplicationExtensionSafe());
exportingFile = isImplicitlyLinked(installName) ? this : umbrella;
auto addSymbol = [&](const Twine &name) -> void {
symbols.push_back(symtab->addDylib(saver.save(name), exportingFile,
/*isWeakDef=*/false,
/*isTlv=*/false));
};
// TODO(compnerd) filter out symbols based on the target platform
// TODO: handle weak defs, thread locals
for (const auto *symbol : interface.symbols()) {
if (!symbol->getArchitectures().has(config->arch()))
continue;
if (handleLDSymbol(symbol->getName()))
continue;
switch (symbol->getKind()) {
case SymbolKind::GlobalSymbol:
addSymbol(symbol->getName());
break;
case SymbolKind::ObjectiveCClass:
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
// want to emulate that.
addSymbol(objc::klass + symbol->getName());
addSymbol(objc::metaclass + symbol->getName());
break;
case SymbolKind::ObjectiveCClassEHType:
addSymbol(objc::ehtype + symbol->getName());
break;
case SymbolKind::ObjectiveCInstanceVariable:
addSymbol(objc::ivar + symbol->getName());
break;
}
}
}
void DylibFile::parseReexports(const InterfaceFile &interface) {
const InterfaceFile *topLevel =
interface.getParent() == nullptr ? &interface : interface.getParent();
for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
InterfaceFile::const_target_range targets = intfRef.targets();
if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
is_contained(targets, config->platformInfo.target))
loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
}
}
// $ld$ symbols modify the properties/behavior of the library (e.g. its install
// name, compatibility version or hide/add symbols) for specific target
// versions.
bool DylibFile::handleLDSymbol(StringRef originalName) {
if (!originalName.startswith("$ld$"))
return false;
StringRef action;
StringRef name;
std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
if (action == "previous")
handleLDPreviousSymbol(name, originalName);
else if (action == "install_name")
handleLDInstallNameSymbol(name, originalName);
return true;
}
void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
// originalName: $ld$ previous $ <installname> $ <compatversion> $
// <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
StringRef installName;
StringRef compatVersion;
StringRef platformStr;
StringRef startVersion;
StringRef endVersion;
StringRef symbolName;
StringRef rest;
std::tie(installName, name) = name.split('$');
std::tie(compatVersion, name) = name.split('$');
std::tie(platformStr, name) = name.split('$');
std::tie(startVersion, name) = name.split('$');
std::tie(endVersion, name) = name.split('$');
std::tie(symbolName, rest) = name.split('$');
// TODO: ld64 contains some logic for non-empty symbolName as well.
if (!symbolName.empty())
return;
unsigned platform;
if (platformStr.getAsInteger(10, platform) ||
platform != static_cast<unsigned>(config->platform()))
return;
VersionTuple start;
if (start.tryParse(startVersion)) {
warn("failed to parse start version, symbol '" + originalName +
"' ignored");
return;
}
VersionTuple end;
if (end.tryParse(endVersion)) {
warn("failed to parse end version, symbol '" + originalName + "' ignored");
return;
}
if (config->platformInfo.minimum < start ||
config->platformInfo.minimum >= end)
return;
this->installName = saver.save(installName);
if (!compatVersion.empty()) {
VersionTuple cVersion;
if (cVersion.tryParse(compatVersion)) {
warn("failed to parse compatibility version, symbol '" + originalName +
"' ignored");
return;
}
compatibilityVersion = encodeVersion(cVersion);
}
}
void DylibFile::handleLDInstallNameSymbol(StringRef name,
StringRef originalName) {
// originalName: $ld$ install_name $ os<version> $ install_name
StringRef condition, installName;
std::tie(condition, installName) = name.split('$');
VersionTuple version;
if (!condition.consume_front("os") || version.tryParse(condition))
warn("failed to parse os version, symbol '" + originalName + "' ignored");
else if (version == config->platformInfo.minimum)
this->installName = saver.save(installName);
}
void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
if (config->applicationExtension && !dylibIsAppExtensionSafe)
warn("using '-application_extension' with unsafe dylib: " + toString(this));
}
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f)
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)) {}
void ArchiveFile::addLazySymbols() {
for (const object::Archive::Symbol &sym : file->symbols())
symtab->addLazy(sym.getName(), this, sym);
}
static Expected<InputFile *> loadArchiveMember(MemoryBufferRef mb,
uint32_t modTime,
StringRef archiveName,
uint64_t offsetInArchive) {
if (config->zeroModTime)
modTime = 0;
switch (identify_magic(mb.getBuffer())) {
case file_magic::macho_object:
return make<ObjFile>(mb, modTime, archiveName);
case file_magic::bitcode:
return make<BitcodeFile>(mb, archiveName, offsetInArchive);
default:
return createStringError(inconvertibleErrorCode(),
mb.getBufferIdentifier() +
" has unhandled file type");
}
}
Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
if (!seen.insert(c.getChildOffset()).second)
return Error::success();
Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
if (!mb)
return mb.takeError();
// Thin archives refer to .o files, so --reproduce needs the .o files too.
if (tar && c.getParent()->isThin())
tar->append(relativeToRoot(CHECK(c.getFullName(), this)), mb->getBuffer());
Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
if (!modTime)
return modTime.takeError();
Expected<InputFile *> file =
loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset());
if (!file)
return file.takeError();
inputFiles.insert(*file);
printArchiveMemberLoad(reason, *file);
return Error::success();
}
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
object::Archive::Child c =
CHECK(sym.getMember(), toString(this) +
": could not get the member defining symbol " +
toMachOString(sym));
// `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
// and become invalid after that call. Copy it to the stack so we can refer
// to it later.
const object::Archive::Symbol symCopy = sym;
// ld64 doesn't demangle sym here even with -demangle.
// Match that: intentionally don't call toMachOString().
if (Error e = fetch(c, symCopy.getName()))
error(toString(this) + ": could not get the member defining symbol " +
toMachOString(symCopy) + ": " + toString(std::move(e)));
}
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
BitcodeFile &file) {
StringRef name = saver.save(objSym.getName());
// TODO: support weak references
if (objSym.isUndefined())
return symtab->addUndefined(name, &file, /*isWeakRef=*/false);
// TODO: Write a test demonstrating why computing isPrivateExtern before
// LTO compilation is important.
bool isPrivateExtern = false;
switch (objSym.getVisibility()) {
case GlobalValue::HiddenVisibility:
isPrivateExtern = true;
break;
case GlobalValue::ProtectedVisibility:
error(name + " has protected visibility, which is not supported by Mach-O");
break;
case GlobalValue::DefaultVisibility:
break;
}
if (objSym.isCommon())
return symtab->addCommon(name, &file, objSym.getCommonSize(),
objSym.getCommonAlignment(), isPrivateExtern);
return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
/*size=*/0, objSym.isWeak(), isPrivateExtern,
/*isThumb=*/false,
/*isReferencedDynamically=*/false,
/*noDeadStrip=*/false);
}
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
uint64_t offsetInArchive)
: InputFile(BitcodeKind, mb) {
std::string path = mb.getBufferIdentifier().str();
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
// name. If two members with the same name are provided, this causes a
// collision and ThinLTO can't proceed.
// So, we append the archive name to disambiguate two members with the same
// name from multiple different archives, and offset within the archive to
// disambiguate two members of the same name from a single archive.
MemoryBufferRef mbref(
mb.getBuffer(),
saver.save(archiveName.empty() ? path
: archiveName + sys::path::filename(path) +
utostr(offsetInArchive)));
obj = check(lto::InputFile::create(mbref));
// Convert LTO Symbols to LLD Symbols in order to perform resolution. The
// "winning" symbol will then be marked as Prevailing at LTO compilation
// time.
for (const lto::InputFile::Symbol &objSym : obj->symbols())
symbols.push_back(createBitcodeSymbol(objSym, *this));
}
template void ObjFile::parse<LP64>();